Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 72
Filter
1.
Mar Drugs ; 22(8)2024 Jul 25.
Article in English | MEDLINE | ID: mdl-39195451

ABSTRACT

Aquaporins (AQPs) are a family of integral membrane proteins that selectively transport water and glycerol across the cell membrane. Because AQPs are involved in a wide range of physiological functions and pathophysiological conditions, AQP-based therapeutics may have the broad potential for clinical utility, including for disorders of water and energy balance. However, AQP modulators have not yet been developed as suitable candidates for clinical applications. In this study, to identify potential modulators of AQPs, we screened 31 natural products by measuring the water and glycerol permeability of mouse erythrocyte membranes using a stopped-flow light scattering method. None of the tested natural compounds substantially affected the osmotic water permeability. However, several compounds considerably affected the glycerol permeability. Stichoposide C increased the glycerol permeability of mouse erythrocyte membranes, whereas rhizochalin decreased it at nanomolar concentrations. Immunohistochemistry revealed that AQP7 was the main aquaglyceroporin in mouse erythrocyte membranes. We further verified the effects of stichoposide C and rhizochalin on aquaglyceroporins using human AQP3-expressing keratinocyte cells. Stichoposide C, but not stichoposide D, increased AQP3-mediated transepithelial glycerol transport, whereas the peracetyl aglycon of rhizochalin was the most potent inhibitor of glycerol transport among the tested rhizochalin derivatives. Collectively, stichoposide C and the peracetyl aglycon of rhizochalin might function as modulators of AQP3 and AQP7, and suggests the possibility of these natural products as potential drug candidates for aquaglyceroporin modulators.


Subject(s)
Aquaglyceroporins , Glycerol , Animals , Mice , Aquaglyceroporins/metabolism , Humans , Glycerol/metabolism , Water/chemistry , Water/metabolism , Erythrocyte Membrane/drug effects , Erythrocyte Membrane/metabolism , Aquaporin 3/metabolism , Keratinocytes/drug effects , Keratinocytes/metabolism , Biological Transport/drug effects , Aquaporins/metabolism , Cell Membrane Permeability/drug effects
2.
Nephrol Dial Transplant ; 38(6): 1408-1420, 2023 05 31.
Article in English | MEDLINE | ID: mdl-36520078

ABSTRACT

BACKGROUND: The water channels aquaporin-1 (AQP1) and AQP7 are abundantly expressed in the peritoneal membrane. While AQP1 facilitates water transport during peritoneal dialysis (PD), the role of AQP7, which mediates glycerol transport during fasting, remains unknown. METHODS: We investigated the distribution of AQP7 and AQP1 and used a mouse model of PD to investigate the role of AQP7 in the peritoneal membrane at baseline and after fasting. RESULTS: Single nucleus RNA-sequencing revealed that AQP7 was mostly detected in mature adipocytes, whereas AQP1 was essentially expressed in endothelial cells. Fasting induced significant decreases in whole body fat, plasma glucose, insulin and triglycerides, as well as higher plasma glycerol and corticosterone levels in mice, paralleled by major decreases in adipocyte size and levels of fatty acid synthase and leptin, and increased levels of hormone-sensitive lipase mRNAs in the peritoneum. Mechanistically, fasting upregulated the expression of AQP1 and AQP7 in the peritoneum, with increased ultrafiltration but no change in small solute transport. Studies based on Aqp1 and Aqp7 knockout mice and RU-486 inhibition demonstrated that the glucocorticoid induction of AQP1 mediates the increase in ultrafiltration whereas AQP7 regulates the size of adipocytes in the peritoneum. CONCLUSIONS: Fasting induces a coordinated regulation of lipolytic and lipogenic factors and aqua(glycero)porins in the peritoneum, driving structural and functional changes. These data yield novel information on the specific roles of aquaporins in the peritoneal membrane and indicate that fasting improves fluid removal in a mouse model of PD.


Subject(s)
Glycerol , Peritoneum , Animals , Mice , Peritoneum/metabolism , Glycerol/metabolism , Endothelial Cells/metabolism , Aquaporin 1/genetics , Adipocytes/metabolism , Water/metabolism , Mice, Knockout , Fasting
3.
Zoolog Sci ; 40(6): 455-462, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38064372

ABSTRACT

Aquaporin (AQP) 7 and AQP9 are membrane channel proteins called aquaglyceroporins and are related to glucose and lipid metabolism. AQP7 is mainly expressed in white adipose tissue (WAT) and is involved in releasing glycerol into the bloodstream. AQP9 is the glycerol channel in the liver that supplies glycerol to the hepatic cells. In this study, we investigated the relationship between the expression of aquaglyceroporins and lifestyle-related diseases, such as obesity and fatty liver, using 22-week-old db/db mice. Body weight, WAT, and liver weight showed increases in db/db mice. The levels of liver lipids, plasma lipids, insulin, and leptin were also increased in db/db mice. Gene expression related to fatty acid and triglyceride synthesis in the liver was enhanced in db/db mice. In addition, gene and protein expression of gluconeogenesis-related enzymes was increased. Conversely, lipolysis-related gene expression in WAT was reduced. In the db/db mice, AQP9 expression in the liver was raised; however, AQP7 expression in WAT was reduced. These results suggest that in db/db mice, enhanced hepatic AQP9 expression increased the supply of glycerol to the liver and induced fatty liver and hyperglycemia. Additionally, reduced AQP7 expression in WAT is associated with excessive lipid accumulation in adipocytes. Aquaglyceroporins are essential molecules for glucose and lipid metabolism, and may be potential target molecules for the treatment of obesity and lifestyle-related diseases.


Subject(s)
Aquaglyceroporins , Aquaporins , Fatty Liver , Obesity , Animals , Mice , Aquaglyceroporins/genetics , Aquaglyceroporins/metabolism , Aquaporins/genetics , Aquaporins/metabolism , Fatty Liver/genetics , Fatty Liver/metabolism , Glucose/metabolism , Glycerol/metabolism , Lipids , Liver/metabolism , Obesity/genetics , Obesity/metabolism
4.
Cell Mol Life Sci ; 79(12): 592, 2022 Nov 15.
Article in English | MEDLINE | ID: mdl-36378343

ABSTRACT

The cystic fibrosis transmembrane conductance regulator (CFTR) is an anion channel that is crucial for fluid homeodynamics throughout the male reproductive tract. Previous evidence shed light on a potential molecular partnership between this channel and aquaporins (AQPs). Herein, we explore the role of CFTR on AQPs-mediated glycerol permeability in mouse Sertoli cells (mSCs). We were able to identify the expression of CFTR, AQP3, AQP7, and AQP9 in mSCs by RT-PCR, Western blot, and immunofluorescence techniques. Cells were then treated with CFTRinh-172, a specific CFTR inhibitor, and its glycerol permeability was evaluated by stopped-flow light scattering. We observed that CFTR inhibition decreased glycerol permeability in mSCs by 30.6% when compared to the control group. A DUOLINK proximity ligation assay was used to evaluate the endogenous protein-protein interactions between CFTR and the various aquaglyceroporins we identified. We positively detected that CFTR is in close proximity with AQP3, AQP7, and AQP9 and that, through a possible physical interaction, CFTR can modulate AQP-mediated glycerol permeability in mSCs. As glycerol is essential for the control of the blood-testis barrier and elevated concentration in testis results in the disruption of spermatogenesis, we suggest that the malfunction of CFTR and the consequent alteration in glycerol permeability is a potential link between male infertility and cystic fibrosis.


Subject(s)
Aquaporins , Glycerol , Animals , Male , Mice , Aquaporins/genetics , Aquaporins/metabolism , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Glycerol/metabolism , Permeability , Sertoli Cells/metabolism
5.
Int J Mol Sci ; 24(6)2023 Mar 22.
Article in English | MEDLINE | ID: mdl-36983077

ABSTRACT

The natural polyphenolic compound Rottlerin (RoT) showed anticancer properties in a variety of human cancers through the inhibition of several target molecules implicated in tumorigenesis, revealing its potential as an anticancer agent. Aquaporins (AQPs) are found overexpressed in different types of cancers and have recently emerged as promising pharmacological targets. Increasing evidence suggests that the water/glycerol channel aquaporin-3 (AQP3) plays a key role in cancer and metastasis. Here, we report the ability of RoT to inhibit human AQP3 activity with an IC50 in the micromolar range (22.8 ± 5.82 µM for water and 6.7 ± 2.97 µM for glycerol permeability inhibition). Moreover, we have used molecular docking and molecular dynamics simulations to understand the structural determinants of RoT that explain its ability to inhibit AQP3. Our results show that RoT blocks AQP3-glycerol permeation by establishing strong and stable interactions at the extracellular region of AQP3 pores interacting with residues essential for glycerol permeation. Altogether, our multidisciplinary approach unveiled RoT as an anticancer drug against tumors where AQP3 is highly expressed providing new information to aquaporin research that may boost future drug design.


Subject(s)
Aquaporin 3 , Aquaporins , Humans , Aquaporin 3/chemistry , Molecular Docking Simulation , Glycerol/chemistry , Aquaporins/chemistry , Water/metabolism
6.
Int J Mol Sci ; 24(4)2023 Feb 08.
Article in English | MEDLINE | ID: mdl-36834823

ABSTRACT

Glycerol is a key metabolite for lipid accumulation in insulin-sensitive tissues. We examined the role of aquaporin-7 (AQP7), the main glycerol channel in adipocytes, in the improvement of brown adipose tissue (BAT) whitening, a process whereby brown adipocytes differentiate into white-like unilocular cells, after cold exposure or bariatric surgery in male Wistar rats with diet-induced obesity (DIO) (n = 229). DIO promoted BAT whitening, evidenced by increased BAT hypertrophy, steatosis and upregulation of the lipogenic factors Pparg2, Mogat2 and Dgat1. AQP7 was detected in BAT capillary endothelial cells and brown adipocytes, and its expression was upregulated by DIO. Interestingly, AQP7 gene and protein expressions were downregulated after cold exposure (4 °C) for 1 week or one month after sleeve gastrectomy in parallel to the improvement of BAT whitening. Moreover, Aqp7 mRNA expression was positively associated with transcripts of the lipogenic factors Pparg2, Mogat2 and Dgat1 and regulated by lipogenic (ghrelin) and lipolytic (isoproterenol and leptin) signals. Together, the upregulation of AQP7 in DIO might contribute to glycerol influx used for triacylglycerol synthesis in brown adipocytes, and hence, BAT whitening. This process is reversible by cold exposure and bariatric surgery, thereby suggesting the potential of targeting BAT AQP7 as an anti-obesity therapy.


Subject(s)
Aquaporins , Bariatric Surgery , Animals , Male , Rats , Adipose Tissue, Brown/metabolism , Aquaporins/metabolism , Endothelial Cells/metabolism , Glycerol/metabolism , Obesity/metabolism , Rats, Wistar
7.
Yeast ; 39(5): 323-336, 2022 05.
Article in English | MEDLINE | ID: mdl-35348234

ABSTRACT

Cellular membranes separate cells from the environment and hence, from molecules essential for their survival. To overcome this hurdle, cells developed specialized transport proteins for the transfer of metabolites across these membranes. Crucial metabolites that need to cross the membrane of each living organism, are the carbon sources. While many organisms prefer glucose as a carbon source, the yeast Yarrowia lipolytica seems to favor glycerol over glucose. The fast growth of Y. lipolytica on glycerol and its flexible metabolism renders this yeast a fascinating organism to study the glycerol metabolism. Based on sequence similarities to the known fungal glycerol transporter ScStl1p and glycerol channel ScFps1p, ten proteins of Y. lipolytica were found that are potentially involved in glycerol uptake. To evaluate, which of these proteins is able to transport glycerol in vivo, a complementation assay with a glycerol transport-deficient strain of Saccharomyces cerevisiae was performed. Six of the ten putative transporters enabled the growth of S. cerevisiae stl1Δ on glycerol and thus, were confirmed as glycerol transporting proteins. Disruption of the transporters in Y. lipolytica abolished its growth on 25 g/L glycerol, but the individual expression of five of the identified glycerol transporters restored growth. Surprisingly, the transporter-disrupted Y. lipolytica strain retained its ability to grow on high glycerol concentrations. This study provides insight into the glycerol uptake of Y. lipolytica at low glycerol concentrations through the characterization of six glycerol transporters and indicates the existence of further mechanisms active at high glycerol concentrations.


Subject(s)
Yarrowia , Carbon/metabolism , Glucose/metabolism , Glycerol/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Yarrowia/metabolism
8.
Cell Mol Life Sci ; 78(6): 3073-3085, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33231721

ABSTRACT

Inflammasomes are large immune multiprotein complexes that tightly regulate the production of the pro-inflammatory cytokines, being dependent on cell regulatory volume mechanisms. Aquaporins (AQPs) are protein channels that facilitate the transport of water and glycerol (aquaglyceroporins) through membranes, essential for cell volume regulation. Although these membrane proteins are highly expressed in monocytes and macrophages, their role in the inflammatory process is still unclear. Here, we investigated the role of aquaglyceroporin AQP3 in NLRP3-inflammasome activation by complementary approaches based either on shRNA silencing or on AQP3 selective inhibition. The latter has been achieved using a reported potent gold-based inhibitor, Auphen. AQP3 inhibition or silencing partially blocked LPS-priming and decreased production of IL-6, proIL-1ß, and TNF-α, suggesting the possible involvement of AQP3 in macrophage priming by Toll-like receptor 4 engagement. Moreover, AQP3-dependent cell reswelling increased IL-1ß release through caspase-1 activation. NLRP3-inflammasome activation induced by reswelling, nigericin, and ATP was also blocked when AQP3 was inhibited or silenced. Altogether, these data point towards AQPs as potential players in the setting of the inflammatory response.


Subject(s)
Aquaporin 3/metabolism , Inflammasomes/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Aquaporin 3/antagonists & inhibitors , Aquaporin 3/genetics , Caspase 1/deficiency , Caspase 1/genetics , Caspase 1/metabolism , Cell Line , Cytokines/metabolism , Glycerol/metabolism , Humans , Interleukin-1beta/genetics , Interleukin-1beta/metabolism , Lipopolysaccharides/pharmacology , Macrophages/cytology , Macrophages/drug effects , Macrophages/metabolism , Nigericin/pharmacology , Organogold Compounds/chemistry , Organogold Compounds/metabolism , Potassium/metabolism , RNA Interference , RNA, Small Interfering/metabolism , Toll-Like Receptor 4/metabolism , Up-Regulation/drug effects
9.
Article in English | MEDLINE | ID: mdl-35988877

ABSTRACT

The effect of acute hypoosmotic stress on the neural response was investigated using the neurons identified in the abdominal ganglion of the amphibious mollusk Onchidium. The membrane potential of an identified neuron (Ip-1/2) was not significantly altered in 50% hypoosmotic artificial sea water. In isotonic 50% artificial seawater (ASW) with osmolarity that was compensated for using glycerol or urea, the membrane potentials of Ip-1/2 were also not altered compared to those in 50% hypoosmotic ASW. However, hyperpolarization was induced in isotonic 50% ASW when osmolarity was compensated for using sucrose or mannose. In the presence of volume-regulated anion channel (VRAC) inhibitors (niflumic acid and glibenclamide), the Ip-1/2 membrane potentials were hyperpolarized in 50% hypoosmotic ASW. These results suggest that there is a compensatory mechanism involving aquaglyceroporin and VRAC-like channels that maintains membrane potential under hypoosmotic conditions. Here, we detected the expression of aquaglyceroporin mRNA in neural tissues of Onchidium.


Subject(s)
Aquaglyceroporins , Gastropoda , Animals , Anions/metabolism , Anions/pharmacology , Aquaglyceroporins/metabolism , Aquaglyceroporins/pharmacology , Gastropoda/metabolism , Glyburide/metabolism , Glyburide/pharmacology , Glycerol/metabolism , Mannose/metabolism , Mannose/pharmacology , Membrane Potentials/physiology , Neurons/metabolism , Niflumic Acid/metabolism , Niflumic Acid/pharmacology , RNA, Messenger/metabolism , Sucrose/metabolism
10.
Parasitology ; 148(10): 1137-1142, 2021 09.
Article in English | MEDLINE | ID: mdl-33602349

ABSTRACT

Aquaglyceroporins (AQPs) are membrane proteins that function in osmoregulation and the uptake of low molecular weight solutes, in particular glycerol and urea. The AQP family is highly conserved, with two major subfamilies having arisen very early in prokaryote evolution and retained by eukaryotes. A complex evolutionary history indicates multiple lineage-specific expansions, losses and not uncommonly a complete loss. Consequently, the AQP family is highly evolvable and has been associated with significant events in life on Earth. In the African trypanosomes, a role for the AQP2 paralogue, in sensitivity to two chemotherapeutic agents, pentamidine and melarsoprol, is well established, albeit with the mechanisms for cell entry and resistance unclear until very recently. Here, we discuss AQP evolution, structure and mechanisms by which AQPs impact drug sensitivity, suggesting that AQP2 stability is highly sensitive to mutation while serving as the major uptake pathway for pentamidine.


Subject(s)
Aquaglyceroporins/genetics , Drug Resistance/genetics , Protozoan Proteins/genetics , Trypanocidal Agents/pharmacology , Trypanosoma/drug effects , Trypanosoma/metabolism
11.
Int J Mol Sci ; 21(7)2020 Apr 02.
Article in English | MEDLINE | ID: mdl-32252345

ABSTRACT

Polyoxometalates (POMs) are of increasing interest due to their proven anticancer activities. Aquaporins (AQPs) were found to be overexpressed in tumors bringing particular attention to their inhibitors as anticancer drugs. Herein, we report for the first time the ability of polyoxotungstates (POTs), such as of Wells-Dawson P2W18, P2W12, and P2W15, and Preyssler P5W30 structures, to affect aquaporin-3 (AQP3) activity and impair melanoma cell migration. The tested POTs were revealed to inhibit AQP3 function with different effects, with P2W18, P2W12, and P5W30 being the most potent (50% inhibitory concentration (IC50) = 0.8, 2.8, and 3.2 µM), and P2W15 being the weakest (IC50 > 100 µM). The selectivity of P2W18 toward AQP3 was confirmed in yeast cells transformed with human aquaglyceroporins. The effect of P2W12 and P2W18 on melanoma cells that highly express AQP3 revealed an impairment of cell migration between 55% and 65% after 24 h, indicating that the anticancer properties of these compounds may in part be due to the blockage of AQP3-mediated permeability. Altogether, our data revealed that P2W18 strongly affects AQP3 activity and cancer cell growth, unveiling its potential as an anticancer drug against tumors where AQP3 is highly expressed.


Subject(s)
Aquaporin 3/antagonists & inhibitors , Tungsten Compounds/pharmacology , Animals , Aquaporin 3/chemistry , Aquaporin 3/genetics , Aquaporin 3/metabolism , Cell Line, Tumor , Cell Membrane Permeability/drug effects , Cell Movement/drug effects , Dose-Response Relationship, Drug , Glycerol/metabolism , Humans , Melanoma , Molecular Structure , Tungsten Compounds/chemistry , Water/metabolism
12.
Article in English | MEDLINE | ID: mdl-31160283

ABSTRACT

The arsenal of drugs used to treat leishmaniasis, caused by Leishmania spp., is limited and beset by toxicity and emergent resistance. Furthermore, our understanding of drug mode of action and potential routes to resistance is limited. Forward genetic approaches have revolutionized our understanding of drug mode of action in the related kinetoplastid parasite Trypanosoma brucei Therefore, we screened our genome-scale T. brucei RNA interference (RNAi) library against the current antileishmanial drugs sodium stibogluconate (antimonial), paromomycin, miltefosine, and amphotericin B. Identification of T. brucei orthologues of the known Leishmania antimonial and miltefosine plasma membrane transporters effectively validated our approach, while a cohort of 42 novel drug efficacy determinants provides new insights and serves as a resource. Follow-up analyses revealed the antimonial selectivity of the aquaglyceroporin TbAQP3. A lysosomal major facilitator superfamily transporter contributes to paromomycin-aminoglycoside efficacy. The vesicle-associated membrane protein TbVAMP7B and a flippase contribute to amphotericin B and miltefosine action and are potential cross-resistance determinants. Finally, multiple phospholipid-transporting flippases, including the T. brucei orthologue of the Leishmania miltefosine transporter, a putative ß-subunit/CDC50 cofactor, and additional membrane-associated hits, affect amphotericin B efficacy, providing new insights into mechanisms of drug uptake and action. The findings from this orthology-based chemogenomic profiling approach substantially advance our understanding of antileishmanial drug action and potential resistance mechanisms and should facilitate the development of improved therapies as well as surveillance for drug-resistant parasites.


Subject(s)
Antiprotozoal Agents/pharmacology , Trypanosoma brucei brucei/metabolism , Adenosine Triphosphatases/metabolism , Amphotericin B/pharmacology , Antimony Sodium Gluconate/pharmacology , Leishmania/parasitology , Paromomycin/pharmacology , Phosphorylcholine/analogs & derivatives , Phosphorylcholine/pharmacology , R-SNARE Proteins/metabolism , Trypanosoma brucei brucei/drug effects , Trypanosoma brucei brucei/genetics
13.
Climacteric ; 22(5): 466-471, 2019 10.
Article in English | MEDLINE | ID: mdl-30888885

ABSTRACT

Objective: We previously reported that tissue-specific effects of estrogen on Aquaporin-7 (AQP7) expression are associated with the development of menopausal obesity. The current study was designed to identify the estrogen response elements (EREs) in the promoter of Aqp7 and investigate the role of AQP7 in the regulation of estrogen-induced anti-adipogenesis. Methods: We measured AQP7 expression and intracellular fat accumulation in 3T3-L1 adipocytes either silenced with shRNA or treated with estrogen receptor (ER)-specific antagonists or agonists before exposure to estrogen. EREs were predicted by Bioinformatics, assessed by chromatin immunoprecipitation, and verified by luciferase reporter assay. Results: We found that regulation of AQP7 expression was mainly via ERα, as confirmed by the use of ER selective antagonists and agonists. In addition, the induction of AQP7 expression by estrogen was linked to ER binding with two EREs in the promoter region of Aqp7. Furthermore, we found that the regulation of adipogenesis by 17ß-estradiol was AQP7 dependent, as evidenced by the increase in fat accumulation after silencing AQP7. Conclusions: Estrogen induces AQP7 expression by binding EREs in the promoter of the Aqp7 gene, resulting in fat catabolism of adipocyte. These results provide new insights into the molecular mechanisms underpinning the anti-adipogenic effect of estrogen.


Subject(s)
Aquaporins/genetics , Estradiol/pharmacology , Menopause , Obesity/genetics , Adipocytes/metabolism , Aquaporins/physiology , Female , Gene Expression Regulation , Humans , Obesity/metabolism , Response Elements , Subcutaneous Fat/metabolism
14.
Int J Mol Sci ; 20(4)2019 Feb 20.
Article in English | MEDLINE | ID: mdl-30791644

ABSTRACT

Integral membrane proteins of the aquaporin family facilitate rapid water flux across cellular membranes in all domains of life. Although the water-conducting pore is clearly defined in an aquaporin monomer, all aquaporins assemble into stable tetramers. In order to investigate the role of protomer⁻protomer interactions, we analyzed the activity of heterotetramers containing increasing fractions of mutated monomers, which have an impaired oligomerization propensity and activity. In order to enforce interaction between the protomers, we designed and analyzed a genetically fused homotetramer of GlpF, the aquaglyceroporin of the bacterium Escherichia coli (E. coli). However, increasing fractions of the oligomerization-impaired mutant GlpF E43A affected the activity of the GlpF heterotetramer in a nearly linear manner, indicating that the reduced protein activity, caused by the introduced mutations, cannot be fully compensated by simply covalently linking the monomers. Taken together, the results underline the importance of exactly positioned monomer⁻monomer contacts in an assembled GlpF tetramer.


Subject(s)
Aquaporins/chemistry , Aquaporins/metabolism , Escherichia coli Proteins/chemistry , Escherichia coli Proteins/metabolism , Protein Multimerization , Aquaporins/genetics , Bacterial Outer Membrane Proteins/chemistry , Bacterial Outer Membrane Proteins/genetics , Bacterial Outer Membrane Proteins/metabolism , Biological Transport , Cloning, Molecular , Escherichia coli Proteins/genetics , Gene Expression , Mutation , Recombinant Fusion Proteins , Structure-Activity Relationship
15.
Am J Physiol Endocrinol Metab ; 315(3): E367-E373, 2018 09 01.
Article in English | MEDLINE | ID: mdl-29783856

ABSTRACT

Aquaglyceroporin 7 (AQP7) facilitates the transport of glycerol across cell membranes. In mice, fasting and refeeding regulate adipose tissue AQP7 abundance, and a role in controlling triglyceride accumulation in adipose tissue has been proposed. AQP7 is also expressed in skeletal muscle, where its function remains to be determined. Here, the abundance of AQP7 in abdominal subcutaneous adipose tissue (SAT) and skeletal muscle was evaluated in the overnight fasted and postprandial state in eight lean and eight obese men with type 2 diabetes (T2D). A biopsy from SAT and muscle was collected after an overnight fast and 2 h after ingestion of a low-fat test meal. Palmitate turnover was evaluated using a [9,10-3H] palmitate dilution technique. Tissue samples were analyzed by immunoblotting. Meal intake did not affect AQP7 expression in SAT or skeletal muscle. No association between the SAT AQP7 abundance and palmitate turnover was found. SAT AQP7 abundance was similar in lean and obese T2D men, whereas muscle AQP7 abundance was more than fourfold higher in obese T2D men. In conclusion, meal intake did not affect AQP7 protein abundance in SAT or skeletal muscle. In addition, SAT AQP7 expression does not appear to be involved in the regulation of adipose tissue lipolysis. However, in contrast to SAT AQP7, skeletal muscle AQP7 protein abundance is markedly increased in obese T2D men, potentially contributing to the excess lipid accumulation in skeletal muscle in type 2 diabetes.


Subject(s)
Aquaporins/metabolism , Diabetes Mellitus, Type 2/metabolism , Muscle, Skeletal/metabolism , Obesity/metabolism , Adipose Tissue/metabolism , Adult , Eating , Humans , Lipolysis , Male , Middle Aged , Palmitates/metabolism , Subcutaneous Fat/metabolism , Young Adult
16.
Biochem Biophys Res Commun ; 504(2): 393-399, 2018 10 02.
Article in English | MEDLINE | ID: mdl-29890131

ABSTRACT

Arsenic is associated with several adverse health outcomes, and people with diabetes may be more susceptible to arsenic. In this study, we found that arsenic levels in some tissues such as liver, kidney, and heart but not lung of type 1 diabetes mellitus (T1DM) mice were higher than in those of normal mice after a single oral dose of arsenic trioxide for 2 h. However, little is known about the molecular mechanism of the increased tissue uptake of trivalent inorganic arsenic in mice with T1DM. This study aimed to investigate the expression of the mammalian arsenic transporters aquaglyceroporins (AQPs) and glucose transporter 1 (GLUT1) in T1DM mice and compare them with those in normal mice. Results showed that the levels of AQP9 and GLUT1 mRNA and protein were higher in T1DM mouse liver than in the normal one. The levels of AQP7 mRNA and protein were higher in T1DM mouse kidney. In the heart, we observed that the levels of AQP7 and GLUT1 mRNA and protein were higher in T1DM mice, but the levels of AQP9 mRNA and protein in the lung had no significant difference between both mice. These results suggested that T1DM may increase the expression of transporters of trivalent inorganic arsenic and thus increase the arsenic uptake in specific tissues.


Subject(s)
Aquaporins/metabolism , Arsenic/adverse effects , Diabetes Mellitus, Type 1/metabolism , Glucose Transporter Type 1/metabolism , Animals , Arsenic Trioxide/adverse effects , Arsenites/adverse effects , Biological Transport , Blood Glucose/analysis , Body Weight , Inorganic Chemicals , Kidney/metabolism , Liver/metabolism , Male , Mice , Mice, Inbred ICR , RNA, Messenger/metabolism , Tissue Distribution
17.
J Anat ; 233(2): 177-192, 2018 08.
Article in English | MEDLINE | ID: mdl-29806093

ABSTRACT

Aquaporin-mediated fluid transport in the mammalian efferent duct and epididymis is believed to play a role in sperm maturation and concentration. In fish, such as the marine teleost gilthead seabream (Sparus aurata), the control of fluid homeostasis in the spermatic duct seems also to be crucial for male fertility, but no information exists on the expression and distribution of aquaporins. In this study, reverse transcriptase-polymerase chain reaction and immunoblotting analyses, employing available and newly raised paralog-specific antibodies for seabream aquaporins, indicate that up to nine functional aquaporins, Aqp0a, -1aa, -1ab, -3a, -4a, -7, -8bb, -9b and -10b, are expressed in the spermatic duct. Immunolocalization of the channels in the resting spermatic duct reveals that Aqp0a, -1aa, -4a, -7 and -10b are expressed in the monolayered luminal epithelium, Aqp8b and -9b in smooth muscle fibers, and Aqp1ab and -3a in different interstitial lamina cells. In the epithelial cells, Aqp0a and -1aa are localized in the short apical microvilli, and Aqp4a and -10b show apical and basolateral staining, whereas Aqp7 is solely detected in vesicular compartments. Upon spermiation, an elongation of the epithelial cells sterocilia, as well as the folding of the epithelium, is observed. At this stage, single- and double-immunostaining, using two aquaporin paralogs or the Na+ /K+ -ATPase membrane marker, indicate that Aqp1ab, -3a, -7, -8bb and -9b staining remains unchanged, whereas in epithelial cells Aqp1aa translation is supressed, Aqp4a internalizes, and Aqp0a and -10b accumulate in the apical, lateral and basal plasma membrane. These findings uncover a cell type- and region-specific distribution of multiple aquaporins in the piscine spermatic duct, which shares conserved features of the mammalian system. The data therefore suggest that aquaporins may play different roles in the regulation of fluid homeostasis and sperm maturation in the male reproductive tract of fish.


Subject(s)
Aquaporins/metabolism , Sea Bream/metabolism , Spermatic Cord/metabolism , Animals , Cilia/physiology , Epithelial Cells/physiology , Homeostasis , Male
18.
J Membr Biol ; 250(6): 629-639, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28914342

ABSTRACT

Orthodox aquaporins are transmembrane channel proteins that facilitate rapid diffusion of water, while aquaglyceroporins facilitate the diffusion of small uncharged molecules such as glycerol and arsenic trioxide. Aquaglyceroporins play important roles in human physiology, in particular for glycerol metabolism and arsenic detoxification. We have developed a unique system applying the strain of the yeast Pichia pastoris, where the endogenous aquaporins/aquaglyceroporins have been removed and human aquaglyceroporins AQP3, AQP7, and AQP9 are recombinantly expressed enabling comparative permeability measurements between the expressed proteins. Using a newly established Nuclear Magnetic Resonance approach based on measurement of the intracellular life time of water, we propose that human aquaglyceroporins are poor facilitators of water and that the water transport efficiency is similar to that of passive diffusion across native cell membranes. This is distinctly different from glycerol and arsenic trioxide, where high glycerol transport efficiency was recorded.


Subject(s)
Aquaglyceroporins/chemistry , Water/chemistry , Humans , Magnetic Resonance Spectroscopy
19.
Microb Cell Fact ; 16(1): 41, 2017 Mar 09.
Article in English | MEDLINE | ID: mdl-28279185

ABSTRACT

BACKGROUND: We previously selected four strains of Saccharomyces cerevisiae for their ability to produce the aquaporin Fps1 in sufficient yield for further study. Yields from the yeast strains spt3Δ, srb5Δ, gcn5Δ and yTHCBMS1 (supplemented with 0.5 µg/mL doxycycline) that had been transformed with an expression plasmid containing 249 base pairs of 5' untranslated region (UTR) in addition to the primary FPS1 open reading frame (ORF) were 10-80 times higher than yields from wild-type cells expressing the same plasmid. One of the strains increased recombinant yields of the G protein-coupled receptor adenosine receptor 2a (A2aR) and soluble green fluorescent protein (GFP). The specific molecular mechanisms underpinning a high-yielding Fps1 phenotype remained incompletely described. RESULTS: Polysome profiling experiments were used to analyze the translational state of spt3Δ, srb5Δ, gcn5Δ and yTHCBMS1 (supplemented with 0.5 µg/mL doxycycline); all but gcn5Δ were found to exhibit a clear block in translation initiation. Four additional strains with known initiation blocks (rpl31aΔ, rpl22aΔ, ssf1Δ and nop1Δ) also improved the yield of recombinant Fps1 compared to wild-type. Expression of the eukaryotic transcriptional activator GCN4 was increased in spt3Δ, srb5Δ, gcn5Δ and yTHCBMS1 (supplemented with 0.5 µg/mL doxycycline); these four strains also exhibited constitutive phosphorylation of the eukaryotic initiation factor, eIF2α. Both responses are indicative of a constitutively-stressed phenotype. Investigation of the 5'UTR of FPS1 in the expression construct revealed two untranslated ORFs (uORF1 and uORF2) upstream of the primary ORF. Deletion of either uORF1 or uORF1 and uORF2 further improved recombinant yields in our four strains; the highest yields of the uORF deletions were obtained from wild-type cells. Frame-shifting the stop codon of the native uORF (uORF2) so that it extended into the FPS1 ORF did not substantially alter Fps1 yields in spt3Δ or wild-type cells, suggesting that high-yielding strains are able to bypass 5'uORFs in the FPS1 gene via leaky scanning, which is a known stress-response mechanism. Yields of recombinant A2aR, GFP and horseradish peroxidase could be improved in one or more of the yeast strains suggesting that a stressed phenotype may also be important in high-yielding cell factories. CONCLUSIONS: Regulation of Fps1 levels in yeast by translational control may be functionally important; the presence of a native uORF (uORF2) may be required to maintain low levels of Fps1 under normal conditions, but higher levels as part of a stress response. Constitutively-stressed yeast strains may be useful high-yielding microbial cell factories for recombinant protein production.


Subject(s)
Aquaporin 1/biosynthesis , Aquaporin 1/genetics , Gene Expression Regulation, Fungal , Peptide Chain Initiation, Translational/genetics , Saccharomyces cerevisiae/genetics , 5' Untranslated Regions , Codon, Terminator , Doxycycline/pharmacology , Genes, Fungal , Green Fluorescent Proteins/genetics , Open Reading Frames , Plasmids/genetics , Polyribosomes , Receptor, Adenosine A2A/biosynthesis , Receptor, Adenosine A2A/genetics , Recombinant Proteins/biosynthesis , Saccharomyces cerevisiae/drug effects , Saccharomyces cerevisiae Proteins/genetics
20.
Biol Cell ; 108(10): 294-305, 2016 Oct.
Article in English | MEDLINE | ID: mdl-27406921

ABSTRACT

BACKGROUND INFORMATION: Anopheles gambiae is the major mosquito vector for Plasmodium falciparum malaria in sub-Saharan Africa, where it survives in stressful climates. Aquaporin water channels are expressed in all life forms, where they provide environmental adaptation by conferring rapid trans-cellular movement of water (classical aquaporins) or water plus glycerol (aquaglyceroporins). Here, we report an aquaglyceroporin homolog in A. gambiae, AgAQP3 (A. gambiae aquaglyceroporin 3). RESULTS: Despite atypical pore-lining amino acids, AgAQP3 is permeated by water, glycerol and urea, and is not significantly inhibited by 1 mM HgCl2 . AgAQP3 is expressed more heavily in male mosquitoes, yet adult female A. gambiae abundantly express AgAQP3 in Malpighian tubules and gut where large amounts of fluid exchange occur during blood meal digestion, water and nutrient absorption and waste secretion. Reducing expression of AgAQP3 by RNA interference reduces median mosquito survival at 39°C. After an infectious blood meal, mosquitoes with depleted AgAQP3 expression exhibit fewer P. falciparum oocysts in the midgut compared to control mosquitoes. CONCLUSIONS: Our studies reveal critical contributions of AgAQP3 to A. gambiae heat tolerance and P. falciparum development in vivo. SIGNIFICANCE: This study indicates that AgAQP3 may be a major factor explaining why A. gambiae is an important malaria vector mosquito in sub-Saharan Africa, and may be a potential target for novel malaria control strategies.


Subject(s)
Anopheles/physiology , Aquaporin 3/metabolism , Insect Proteins/metabolism , Insect Vectors/physiology , Malaria, Falciparum/transmission , Plasmodium falciparum/parasitology , Adaptation, Physiological , Animals , Anopheles/genetics , Aquaporin 3/analysis , Aquaporin 3/genetics , Female , Hot Temperature , Humans , Insect Proteins/analysis , Insect Vectors/genetics , Male , RNA Interference , RNA, Small Interfering/genetics , Stress, Physiological
SELECTION OF CITATIONS
SEARCH DETAIL