Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.240
Filter
1.
Cell ; 187(3): 733-749.e16, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38306984

ABSTRACT

Autoimmune diseases disproportionately affect females more than males. The XX sex chromosome complement is strongly associated with susceptibility to autoimmunity. Xist long non-coding RNA (lncRNA) is expressed only in females to randomly inactivate one of the two X chromosomes to achieve gene dosage compensation. Here, we show that the Xist ribonucleoprotein (RNP) complex comprising numerous autoantigenic components is an important driver of sex-biased autoimmunity. Inducible transgenic expression of a non-silencing form of Xist in male mice introduced Xist RNP complexes and sufficed to produce autoantibodies. Male SJL/J mice expressing transgenic Xist developed more severe multi-organ pathology in a pristane-induced lupus model than wild-type males. Xist expression in males reprogrammed T and B cell populations and chromatin states to more resemble wild-type females. Human patients with autoimmune diseases displayed significant autoantibodies to multiple components of XIST RNP. Thus, a sex-specific lncRNA scaffolds ubiquitous RNP components to drive sex-biased immunity.


Subject(s)
Autoantibodies , Autoimmune Diseases , RNA, Long Noncoding , Animals , Female , Humans , Male , Mice , Autoantibodies/genetics , Autoimmune Diseases/genetics , Autoimmunity/genetics , Ribonucleoproteins/genetics , Ribonucleoproteins/metabolism , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , X Chromosome/genetics , X Chromosome/metabolism , X Chromosome Inactivation , Sex Characteristics
2.
Cell ; 186(23): 5084-5097.e18, 2023 11 09.
Article in English | MEDLINE | ID: mdl-37918394

ABSTRACT

Anti-NMDA receptor (NMDAR) autoantibodies cause NMDAR encephalitis, the most common autoimmune encephalitis, leading to psychosis, seizures, and autonomic dysfunction. Current treatments comprise broad immunosuppression or non-selective antibody removal. We developed NMDAR-specific chimeric autoantibody receptor (NMDAR-CAAR) T cells to selectively eliminate anti-NMDAR B cells and disease-causing autoantibodies. NMDAR-CAARs consist of an extracellular multi-subunit NMDAR autoantigen fused to intracellular 4-1BB/CD3ζ domains. NMDAR-CAAR T cells recognize a large panel of human patient-derived autoantibodies, release effector molecules, proliferate, and selectively kill antigen-specific target cell lines even in the presence of high autoantibody concentrations. In a passive transfer mouse model, NMDAR-CAAR T cells led to depletion of an anti-NMDAR B cell line and sustained reduction of autoantibody levels without notable off-target toxicity. Treatment of patients may reduce side effects, prevent relapses, and improve long-term prognosis. Our preclinical work paves the way for CAAR T cell phase I/II trials in NMDAR encephalitis and further autoantibody-mediated diseases.


Subject(s)
Autoantibodies , Encephalitis , T-Lymphocytes , Animals , Humans , Mice , Autoantibodies/metabolism , Encephalitis/metabolism , Encephalitis/therapy , Receptors, N-Methyl-D-Aspartate , Autoimmune Diseases , Disease Models, Animal
3.
Cell ; 180(5): 878-894.e19, 2020 03 05.
Article in English | MEDLINE | ID: mdl-32059783

ABSTRACT

Pathogenic autoantibodies arise in many autoimmune diseases, but it is not understood how the cells making them evade immune checkpoints. Here, single-cell multi-omics analysis demonstrates a shared mechanism with lymphoid malignancy in the formation of public rheumatoid factor autoantibodies responsible for mixed cryoglobulinemic vasculitis. By combining single-cell DNA and RNA sequencing with serum antibody peptide sequencing and antibody synthesis, rare circulating B lymphocytes making pathogenic autoantibodies were found to comprise clonal trees accumulating mutations. Lymphoma driver mutations in genes regulating B cell proliferation and V(D)J mutation (CARD11, TNFAIP3, CCND3, ID3, BTG2, and KLHL6) were present in rogue B cells producing the pathogenic autoantibody. Antibody V(D)J mutations conferred pathogenicity by causing the antigen-bound autoantibodies to undergo phase transition to insoluble aggregates at lower temperatures. These results reveal a pre-neoplastic stage in human lymphomagenesis and a cascade of somatic mutations leading to an iconic pathogenic autoantibody.


Subject(s)
Autoantibodies/genetics , Autoimmune Diseases/genetics , B-Lymphocytes/immunology , Lymphoma/genetics , Animals , Autoantibodies/immunology , Autoimmune Diseases/immunology , Autoimmune Diseases/pathology , B-Lymphocytes/pathology , CARD Signaling Adaptor Proteins/genetics , Carrier Proteins/genetics , Clonal Evolution/genetics , Clonal Evolution/immunology , Cyclin D3/genetics , Guanylate Cyclase/genetics , Humans , Immediate-Early Proteins/genetics , Immunoglobulin Variable Region/genetics , Immunoglobulin Variable Region/immunology , Inhibitor of Differentiation Proteins/genetics , Lymphoma/immunology , Lymphoma/pathology , Mice , Mutation/genetics , Mutation/immunology , Neoplasm Proteins/genetics , Sequence Analysis, DNA/methods , Sequence Analysis, RNA/methods , Single-Cell Analysis/methods , Tumor Necrosis Factor alpha-Induced Protein 3/genetics , Tumor Suppressor Proteins/genetics , V(D)J Recombination/genetics
4.
Cell ; 183(7): 1867-1883.e26, 2020 12 23.
Article in English | MEDLINE | ID: mdl-33248023

ABSTRACT

Biliary atresia (BA) is a severe cholangiopathy that leads to liver failure in infants, but its pathogenesis remains to be fully characterized. By single-cell RNA profiling, we observed macrophage hypo-inflammation, Kupffer cell scavenger function defects, cytotoxic T cell expansion, and deficiency of CX3CR1+effector T and natural killer (NK) cells in infants with BA. More importantly, we discovered that hepatic B cell lymphopoiesis did not cease after birth and that tolerance defects contributed to immunoglobulin G (IgG)-autoantibody accumulation in BA. In a rhesus-rotavirus induced BA model, depleting B cells or blocking antigen presentation ameliorated liver damage. In a pilot clinical study, we demonstrated that rituximab was effective in depleting hepatic B cells and restoring the functions of macrophages, Kupffer cells, and T cells to levels comparable to those of control subjects. In summary, our comprehensive immune profiling in infants with BA had educed that B-cell-modifying therapies may alleviate liver pathology.


Subject(s)
Biliary Atresia/immunology , Biliary Atresia/therapy , Liver/immunology , Animals , Antigens, CD20/metabolism , B-Lymphocytes/immunology , Biliary Atresia/blood , Biliary Atresia/drug therapy , Biopsy , CX3C Chemokine Receptor 1/metabolism , Cell Death , Cell Line , Cell Proliferation , Cell Transdifferentiation , Child , Child, Preschool , Cohort Studies , Cytotoxicity, Immunologic , Disease Models, Animal , Female , Humans , Immunoglobulin G/metabolism , Infant , Inflammation/pathology , Killer Cells, Natural/immunology , Kupffer Cells/pathology , Liver/pathology , Liver Cirrhosis/blood , Liver Cirrhosis/complications , Liver Cirrhosis/immunology , Liver Cirrhosis/pathology , Lymphocyte Depletion , Lymphopoiesis , Male , Mice, Inbred BALB C , Phagocytosis , RNA/metabolism , Rituximab/administration & dosage , Rituximab/pharmacology , Rituximab/therapeutic use , Rotavirus/physiology , Single-Cell Analysis , Th1 Cells/immunology , Th17 Cells/immunology
5.
Proc Natl Acad Sci U S A ; 121(7): e2311049121, 2024 Feb 13.
Article in English | MEDLINE | ID: mdl-38319973

ABSTRACT

Intrathecal synthesis of central nervous system (CNS)-reactive autoantibodies is observed across patients with autoimmune encephalitis (AE), who show multiple residual neurobehavioral deficits and relapses despite immunotherapies. We leveraged two common forms of AE, mediated by leucine-rich glioma inactivated-1 (LGI1) and contactin-associated protein-like 2 (CASPR2) antibodies, as human models to comprehensively reconstruct and profile cerebrospinal fluid (CSF) B cell receptor (BCR) characteristics. We hypothesized that the resultant observations would both inform the observed therapeutic gap and determine the contribution of intrathecal maturation to pathogenic B cell lineages. From the CSF of three patients, 381 cognate-paired IgG BCRs were isolated by cell sorting and scRNA-seq, and 166 expressed as monoclonal antibodies (mAbs). Sixty-two percent of mAbs from singleton BCRs reacted with either LGI1 or CASPR2 and, strikingly, this rose to 100% of cells in clonal groups with ≥4 members. These autoantigen-reactivities were more concentrated within antibody-secreting cells (ASCs) versus B cells (P < 0.0001), and both these cell types were more differentiated than LGI1- and CASPR2-unreactive counterparts. Despite greater differentiation, autoantigen-reactive cells had acquired few mutations intrathecally and showed minimal variation in autoantigen affinities within clonal expansions. Also, limited CSF T cell receptor clonality was observed. In contrast, a comparison of germline-encoded BCRs versus the founder intrathecal clone revealed marked gains in both affinity and mutational distances (P = 0.004 and P < 0.0001, respectively). Taken together, in patients with LGI1 and CASPR2 antibody encephalitis, our results identify CSF as a compartment with a remarkably high frequency of clonally expanded autoantigen-reactive ASCs whose BCR maturity appears dominantly acquired outside the CNS.


Subject(s)
Autoimmune Diseases of the Nervous System , Encephalitis , Glioma , Hashimoto Disease , Humans , Leucine , Intracellular Signaling Peptides and Proteins , Neoplasm Recurrence, Local , Autoantibodies , Autoantigens
6.
EMBO Rep ; 25(3): 1623-1649, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38253690

ABSTRACT

Psychiatric and neurological symptoms, as well as cognitive deficits, represent a prominent phenotype associated with variable forms of autoimmune encephalitis, regardless of the neurotransmitter receptor targeted by autoantibodies. The mechanistic underpinnings of these shared major neuropsychiatric symptoms remain however unclear. Here, we investigate the impacts of patient-derived monoclonal autoantibodies against the glutamatergic NMDAR (NMDAR mAb) and inhibitory GABAaR (GABAaR mAb) signalling in the hippocampal network. Unexpectedly, both excitatory and inhibitory synaptic receptor membrane dynamics, content and transmissions are altered by NMDAR or GABAaR mAb, irrespective of the affinity or antagonistic effect of the autoantibodies. The effect of NMDAR mAb on inhibitory synapses and GABAaR mAb on excitatory synapses requires neuronal activity and involves protein kinase signalling. At the cell level, both autoantibodies increase the excitation/inhibition balance of principal cell inputs. Furthermore, NMDAR or GABAaR mAb leads to hyperactivation of hippocampal networks through distinct alterations of principal cell and interneuron properties. Thus, autoantibodies targeting excitatory NMDAR or inhibitory GABAaR trigger convergent network dysfunctions through a combination of shared and distinct mechanisms.


Subject(s)
Autoimmune Diseases of the Nervous System , Encephalitis , Hashimoto Disease , Humans , Receptors, GABA-A/metabolism , Autoantibodies/metabolism , Receptors, N-Methyl-D-Aspartate/metabolism
7.
Mol Cell Proteomics ; 23(6): 100783, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38729610

ABSTRACT

High myopia is a leading cause of blindness worldwide, among which pathologic myopia, characterized by typical myopic macular degeneration, is the most detrimental. However, its pathogenesis remains largely unknown. Here, using a HuProt array, we first initiated a serological autoantibody profiling of high myopia and identified 18 potential autoantibodies, of which anti-LIMS1 autoantibody was validated by a customized focused microarray. Further subgroup analysis revealed its actual relevance to pathologic myopia, rather than simple high myopia without myopic macular degeneration. Mechanistically, anti-LIMS1 autoantibody predominantly belonged to IgG1/IgG2/IgG3 subclasses. Serum IgG obtained from patients with pathologic myopia could disrupt the barrier function of retinal pigment epithelial cells via cytoskeleton disorganization and tight junction component reduction, and also trigger a pro-inflammatory mediator cascade in retinal pigment epithelial cells, which were all attenuated by depletion of anti-LIMS1 autoantibody. Together, these data uncover a previously unrecognized autoimmune etiology of myopic macular degeneration in pathologic myopia.


Subject(s)
Autoantibodies , Autoimmunity , Retinal Pigment Epithelium , Humans , Autoantibodies/immunology , Autoantibodies/blood , Retinal Pigment Epithelium/pathology , Retinal Pigment Epithelium/metabolism , Male , Female , Immunoglobulin G/immunology , Immunoglobulin G/blood , Middle Aged , Myopia, Degenerative/immunology , Myopia/immunology , Adult
8.
Mol Cell Proteomics ; 23(5): 100749, 2024 May.
Article in English | MEDLINE | ID: mdl-38513890

ABSTRACT

Chemoimmunotherapy has evolved as a standard treatment for advanced non-small cell lung cancer (aNSCLC). However, inevitable drug resistance has limited its efficacy, highlighting the urgent need for biomarkers of chemoimmunotherapy. A three-phase strategy to discover, verify, and validate longitudinal predictive autoantibodies (AAbs) for aNSCLC before and after chemoimmunotherapy was employed. A total of 528 plasma samples from 267 aNSCLC patients before and after anti-PD1 immunotherapy were collected, plus 30 independent formalin-fixed paraffin-embedded samples. Candidate AAbs were firstly selected using a HuProt high-density microarray containing 21,000 proteins in the discovery phase, followed by validation using an aNSCLC-focused microarray. Longitudinal predictive AAbs were chosen for ELISA based on responders versus non-responders comparison and progression-free survival (PFS) survival analysis. Prognostic markers were also validated using immunohistochemistry and publicly available immunotherapy datasets. We identified and validated a panel of two AAbs (MAX and DHX29) as pre-treatment biomarkers and another panel of two AAbs (MAX and TAPBP) as on-treatment predictive markers in aNSCLC patients undergoing chemoimmunotherapy. All three AAbs exhibited a positive correlation with early responses and PFS (p < 0.05). The kinetics of MAX AAb showed an increasing trend in responders (p < 0.05) and a tendency to initially increase and then decrease in non-responders (p < 0.05). Importantly, MAX protein and mRNA levels effectively discriminated PFS (p < 0.05) in aNSCLC patients treated with immunotherapy. Our results present a longitudinal analysis of changes in prognostic AAbs in aNSCLC patients undergoing chemoimmunotherapy.


Subject(s)
Autoantibodies , Carcinoma, Non-Small-Cell Lung , Immunotherapy , Lung Neoplasms , Humans , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/pathology , Lung Neoplasms/drug therapy , Lung Neoplasms/pathology , Female , Male , Autoantibodies/blood , Middle Aged , Aged , Prognosis , Biomarkers, Tumor , Adult
9.
Proc Natl Acad Sci U S A ; 120(50): e2310666120, 2023 Dec 12.
Article in English | MEDLINE | ID: mdl-38048459

ABSTRACT

Autoantibodies directed against complement component C1q are commonly associated with autoimmune diseases, especially systemic lupus erythematosus. Importantly, these anti-C1q autoantibodies are specific for ligand-bound, solid-phase C1q and do not bind to fluid-phase C1q. In patients with anti-C1q, C1q levels are in the normal range, and the autoantibodies are thus not depleting. To study these human anti-C1q autoantibodies at the molecular level, we isolated C1q-reactive B cells and recombinantly produced nine monoclonal antibodies (mAbs) from four different healthy individuals. The isolated mAbs were of the IgG isotype, contained extensively mutated variable domains, and showed high affinity to the collagen-like region of C1q. The anti-C1q mAbs exclusively bound solid-phase C1q in complex with its natural ligands, including immobilized or antigen-bound IgG, IgM or CRP, and necrotic cells. Competition experiments reveal that at least 2 epitopes, also targeted by anti-C1q antibodies in sera from SLE patients, are recognized. Electron microscopy with hexameric IgG-C1q immune complexes demonstrated that multiple mAbs can interact with a single C1q molecule and identified the region of C1q targeted by these mAbs. The opsonization of immune complexes with anti-C1q greatly enhanced Fc-receptor-mediated phagocytosis but did not increase complement activation. We conclude that human anti-C1q autoantibodies specifically bind neo-epitopes on solid-phase C1q, which results in an increase in Fc-receptor-mediated effector functions that may potentially contribute to autoimmune disease immunopathology.


Subject(s)
Autoimmune Diseases , Lupus Erythematosus, Systemic , Humans , Autoantibodies , Complement C1q , Antigen-Antibody Complex , Complement Activation , Phagocytosis , Epitopes , Immunoglobulin G
10.
Gastroenterology ; 167(2): 250-263, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38552723

ABSTRACT

BACKGROUND & AIMS: The treatment of celiac disease (CeD) with gluten-free diet (GFD) normalizes gut inflammation and disease-specific antibodies. CeD patients have HLA-restricted, gluten-specific T cells persisting in the blood and gut even after decades of GFD, which are reactivated and disease driving upon gluten exposure. Our aim was to examine the transition of activated gluten-specific T cells into a pool of persisting memory T cells concurrent with normalization of clinically relevant biomarkers during the first year of treatment. METHODS: We followed 17 CeD patients during their initial GFD year, leading to disease remission. We assessed activation and frequency of gluten-specific CD4+ blood and gut T cells with HLA-DQ2.5:gluten tetramers and flow cytometry, disease-specific serology, histology, and symptom scores. We assessed gluten-specific blood T cells within the first 3 weeks of GFD in 6 patients and serology in an additional 9 patients. RESULTS: Gluten-specific CD4+ T cells peaked in blood at day 14 while up-regulating Bcl-2 and down-regulating Ki-67 and then decreased in frequency within 10 weeks of GFD. CD38, ICOS, HLA-DR, and Ki-67 decreased in gluten-specific cells within 3 days. PD-1, CD39, and OX40 expression persisted even after 12 months. IgA-transglutaminase 2 decreased significantly within 4 weeks. CONCLUSIONS: GFD induces rapid changes in the phenotype and number of gluten-specific CD4+ blood T cells, including a peak of nonproliferating, nonapoptotic cells at day 14. Subsequent alterations in T-cell phenotype associate with the quiescent but chronic nature of treated CeD. The rapid changes affecting gluten-specific T cells and disease-specific antibodies offer opportunities for clinical trials aiming at developing nondietary treatments for patients with newly diagnosed CeD.


Subject(s)
CD4-Positive T-Lymphocytes , Celiac Disease , Diet, Gluten-Free , Glutens , Phenotype , Protein Glutamine gamma Glutamyltransferase 2 , Humans , Celiac Disease/diet therapy , Celiac Disease/immunology , Glutens/immunology , Glutens/administration & dosage , Male , Female , Adult , Middle Aged , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/metabolism , HLA-DQ Antigens/immunology , GTP-Binding Proteins/immunology , GTP-Binding Proteins/metabolism , Lymphocyte Activation , Transglutaminases/immunology , Biomarkers/blood , Biomarkers/metabolism , Proto-Oncogene Proteins c-bcl-2/metabolism , Memory T Cells/immunology , Memory T Cells/metabolism , Time Factors , Young Adult , Treatment Outcome , Intestinal Mucosa/immunology , Intestinal Mucosa/pathology , Intestinal Mucosa/metabolism
11.
Brain ; 2024 May 17.
Article in English | MEDLINE | ID: mdl-38758090

ABSTRACT

Autoantibodies directed against the N-methyl-D-aspartate receptor (NMDAR-Ab) are pathogenic immunoglobulins detected in patients suffering from NMDAR encephalitis. NMDAR-Ab alter the receptor membrane trafficking, synaptic transmission and neuronal network properties, leading to patients' neurological and psychiatric symptoms. Patients often have very little neuronal damage but rapid and massive (treatment-responsive) brain dysfunctions related to unknown early mechanism of NMDAR-Ab. Our understanding of this early molecular cascade remains surprisingly fragmented. Here, we used a combination of single molecule-based imaging of membrane proteins to unveil the spatio-temporal action of NMDAR-Ab onto live hippocampal neurons. We first demonstrate that different clones of NMDAR-Ab primarily affect extrasynaptic -and not synaptic- NMDAR. In the first minutes, NMDAR-Ab increase extrasynaptic NMDAR membrane dynamics, de-clustering its surface interactome. NMDAR-Ab also rapidly reshuffle all membrane proteins located at the extrasynaptic compartment. Consistent with this alteration of multiple proteins, NMDAR-Ab effects were not mediated through the sole interaction between NMDAR and EphB2 receptor. At the long-term, NMDAR-Ab reduce NMDAR synaptic pool by slowing down receptor membrane dynamics in a cross-linking independent manner. Remarkably, exposing only extrasynaptic NMDAR to NMDAR-Ab was sufficient to produce their full-blown effect on synaptic receptors. Collectively, we demonstrate that NMDAR-Ab first impair extrasynaptic proteins, and then the synaptic ones. These data shed thus new, and unsuspected, lights on the mode of action of NMDAR-Ab and likely to our understanding of (extra)synaptopathies.

12.
Cereb Cortex ; 34(13): 50-62, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38696596

ABSTRACT

Associations between maternal immune dysregulation (including autoimmunity and skewed cytokine/chemokine profiles) and offspring neurodevelopmental disorders such as autism have been reported. In maternal autoantibody-related autism, specific maternally derived autoantibodies can access the fetal compartment to target eight proteins critical for neurodevelopment. We examined the relationship between maternal autoantibodies to the eight maternal autoantibody-related autism proteins and cytokine/chemokine profiles in the second trimester of pregnancy in mothers of children later diagnosed with autism and their neonates' cytokine/chemokine profiles. Using banked maternal serum samples from 15 to 19 weeks of gestation from the Early Markers for Autism Study and corresponding banked newborn bloodspots, we identified three maternal/offspring groups based on maternal autoantibody status: (1) mothers with autoantibodies to one or more of the eight maternal autoantibody-related autismassociated proteins but not a maternal autoantibody-related autism-specific pattern, (2) mothers with a known maternal autoantibody-related autism pattern, and (3) mothers without autoantibodies to any of the eight maternal autoantibody-related autism proteins. Using a multiplex platform, we measured maternal second trimester and neonatal cytokine/chemokine levels. This combined analysis aimed to determine potential associations between maternal autoantibodies and the maternal and neonatal cytokine/chemokine profiles, each of which has been shown to have implications on offspring neurodevelopment independently.


Subject(s)
Autistic Disorder , Autoantibodies , Chemokines , Cytokines , Humans , Female , Autoantibodies/blood , Autoantibodies/immunology , Pregnancy , Cytokines/blood , Infant, Newborn , Autistic Disorder/immunology , Autistic Disorder/blood , Adult , Chemokines/blood , Chemokines/immunology , Male , Pregnancy Trimester, Second/immunology , Pregnancy Trimester, Second/blood
13.
Article in English | MEDLINE | ID: mdl-38385694

ABSTRACT

RATIONALE: Sarcoidosis is a systemic granulomatous disorder associated with hypergammaglobulinemia and the presence of autoantibodies. The specific antigens initiating granulomatous inflammation in sarcoidosis are unknown and there is no specific test available to diagnose sarcoidosis. To discover novel sarcoidosis antigens, we developed a high-throughput T7 phage display library derived from the sarcoidosis cDNA and identified numerous clones differentiating sarcoidosis from other respiratory diseases. After clone sequencing and homology search, we identified two epitopes (Cofilinµ and Chain A) that specifically bind to serum IgGs of sarcoidosis patients. OBJECTIVES: To develop and validate an epitope-specific IgG-based immunoassay specific for sarcoidosis. METHODS: We chemically synthesized both immunoepitopes (Cofilinµ and Chain A), and generated rabbit polyclonal antibodies against both neoantigens. After extensive standardization, we developed a direct peptide ELISA and measured epitope-specific IgG in sera of 386 subjects including, healthy controls (n=100), three sarcoidosis cohorts (n=186), pulmonary tuberculosis (n=70) and lung cancer (n=30). MEASUREMENTS AND MAIN RESULTS: To develop a model to classify sarcoidosis from other groups, data were analyzed using five-fold cross-validation when adjusting for confounders. The Cofilinµ IgGs model yielded a mean sensitivity, specificity, and positive and negative predictive value (PPV, NPV) of 0.97, 0.9, 0.9 and 0.96, respectively. Those same measures for Chain A IgG antibody were 0.9, 0.83, 0.84 and 0.9 respectively. Combining both biomarkers improved AUC, sensitivity, specificity, PPV and NPV. CONCLUSIONS: These results provide a novel immunoassay for sarcoidosis. The discovery of two neoantigens facilitates the development of biospecific drug discovery and the sarcoidosis-specific model.

14.
J Allergy Clin Immunol ; 153(5): 1445-1455, 2024 May.
Article in English | MEDLINE | ID: mdl-38128835

ABSTRACT

BACKGROUND: Autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED, also called APS-1) is an inborn error of immunity with clear signs of B-cell autoimmunity such as neutralizing anti-IFN antibodies. In APECED, mutations in the AIRE gene impair thymic negative selection of T cells. The resulting T-cell alterations may then cause dysregulation of B-cell responses. However, no analysis of interactions of T and B cells in the germinal centers (GCs) in patients' secondary lymphatic tissues has been reported. OBJECTIVE: This study examined the relationship between B cells and follicular T helper cells (TfH) in peripheral blood and lymph node (LN) GCs in patients with APECED. METHODS: Immunophenotyping of peripheral blood B cells and TfH was performed for 24 patients with APECED. Highly multiplexed fluorescent immunohistochemical staining was performed on 7 LN biopsy samples from the patients to study spatial interactions of lymphocytes in the GCs at the single-cell level. RESULTS: The patients' peripheral B-cell phenotype revealed skewing toward a mature B-cell phenotype with marked loss of transitional and naive B cells. The frequency of circulating TfH cells was diminished in the patients, while in the LNs the TfH population was expanded. In LNs the overall frequency of Treg cells and interactions of Treg cells with nonfollicular T cells were reduced, suggesting that aberrant Treg cell function might fail to restrain TfH differentiation. CONCLUSIONS: GC reactions are disrupted in APECED as a result of defective T-cell control.


Subject(s)
B-Lymphocytes , Germinal Center , Lymph Nodes , Polyendocrinopathies, Autoimmune , T Follicular Helper Cells , Humans , Polyendocrinopathies, Autoimmune/immunology , Polyendocrinopathies, Autoimmune/genetics , Germinal Center/immunology , Female , Male , B-Lymphocytes/immunology , Lymph Nodes/immunology , Lymph Nodes/pathology , Adult , T Follicular Helper Cells/immunology , Adolescent , Child , Young Adult , Middle Aged , Immunophenotyping , AIRE Protein , T-Lymphocytes, Helper-Inducer/immunology
15.
J Allergy Clin Immunol ; 153(6): 1736-1742, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38395084

ABSTRACT

BACKGROUND: Inborn errors of immunity offer important insights into mucosal immunity. In autoimmune polyendocrine syndrome type-1 (APS-1), chronic mucocutaneous candidiasis has been ascribed to neutralizing IL-17 autoantibodies. Recent evidence implicates excessive T-cell IFN-γ secretion and ensuing epithelial barrier disruption in predisposition to candidiasis, but these results remain to be replicated. Whether IL-17 paucity, increased type I inflammation, or their combination underlies susceptibility to chronic mucocutaneus candidiasis in APS-1 is debated. OBJECTIVE: Our aim was to characterize the immunologic features in the cervicovaginal mucosa of females with APS-1. METHODS: Vaginal fluid was collected with a flocked swab from 17 females with APS-1 and 18 controls, and cytokine composition was analyzed using Luminex (Luminex Corporation, Austin, Tex). Cervical cell samples were obtained with a cervix brush from 6 patients and 6 healthy controls and subjected to transcriptome analysis. RESULTS: The vaginal fluid samples from patients with APS-1 had IFN-γ concentrations comparable to those of the controls (2.6 vs 2.4 pg/mL) but high concentrations of the TH1 chemokines CXCL9 and CXCL10 (1094 vs 110 pg/mL [P < .001] and 4033 vs 273 pg/mL [P = .001], respectively), whereas the IL-17 levels in the samples from the 2 groups were comparable (28 vs 8.8 pg/mL). RNA sequencing of the cervical cells revealed upregulation of pathways related to mucosal inflammation and cell death in the patients with APS-1. CONCLUSION: Excessive TH1 cell response appears to underlie disruption of the mucosal immune responses in the genital tract of patients with APS-1 and may contribute to susceptibility to candidiasis in the genital tract as well.


Subject(s)
Cervix Uteri , Polyendocrinopathies, Autoimmune , Vagina , Humans , Female , Vagina/immunology , Polyendocrinopathies, Autoimmune/immunology , Adult , Cervix Uteri/immunology , Cervix Uteri/pathology , Middle Aged , Cytokines/metabolism , Cytokines/immunology , Inflammation/immunology , Interleukin-17/immunology , Interleukin-17/metabolism , Chemokine CXCL9/immunology , Chemokine CXCL9/metabolism , Young Adult , Interferon-gamma/immunology , Interferon-gamma/metabolism , Candidiasis, Chronic Mucocutaneous/immunology , Candidiasis, Chronic Mucocutaneous/genetics , Mucous Membrane/immunology
16.
J Biol Chem ; 299(4): 103072, 2023 04.
Article in English | MEDLINE | ID: mdl-36849007

ABSTRACT

Proteinase 3 (PR3) is the main target antigen of antineutrophil cytoplasmic antibodies (ANCAs) in PR3-ANCA-associated vasculitis. A small fraction of PR3 is constitutively exposed on the surface of quiescent blood neutrophils in a proteolytically inactive form. When activated, neutrophils expose an induced form of membrane-bound PR3 (PR3mb) on their surface as well, which is enzymatically less active than unbound PR3 in solution due to its altered conformation. In this work, our objective was to understand the respective role of constitutive and induced PR3mb in the immune activation of neutrophils triggered by murine anti-PR3 mAbs and human PR3-ANCA. We quantified immune activation of neutrophils by the measurement of the production of superoxide anions and secreted protease activity in the cell supernatant before and after treatment of the cells by alpha-1 protease inhibitor that clears induced PR3mb from the cell surface. Incubation of TNFα-primed neutrophils with anti-PR3 antibodies resulted in a significant increase in superoxide anion production, membrane activation marker exposition, and secreted protease activity. When primed neutrophils were first treated with alpha-1 protease inhibitor, we observed a partial reduction in antibody-induced neutrophil activation, suggesting that constitutive PR3mb is sufficient to activate neutrophils. The pretreatment of primed neutrophils with purified antigen-binding fragments used as competitor significantly reduced cell activation by whole antibodies. This led us to the conclusion that PR3mb promoted immune activation of neutrophils. We propose that blocking and/or elimination of PR3mb offers a new therapeutic strategy to attenuate neutrophil activation in patients with PR3-ANCA-associated vasculitis.


Subject(s)
Anti-Neutrophil Cytoplasmic Antibody-Associated Vasculitis , Antibodies, Antineutrophil Cytoplasmic , Myeloblastin , Animals , Humans , Mice , Anti-Neutrophil Cytoplasmic Antibody-Associated Vasculitis/metabolism , Myeloblastin/immunology , Myeloblastin/metabolism , Neutrophils/metabolism , Protease Inhibitors/metabolism , Superoxides/metabolism
17.
Circulation ; 148(6): 487-498, 2023 08 08.
Article in English | MEDLINE | ID: mdl-37401487

ABSTRACT

BACKGROUND: Atrial fibrillation (AF) is by far the most common cardiac arrhythmia. In about 3% of individuals, AF develops as a primary disorder without any identifiable trigger (idiopathic or historically termed lone AF). In line with the emerging field of autoantibody-related cardiac arrhythmias, the objective of this study was to explore whether autoantibodies targeting cardiac ion channels can underlie unexplained AF. METHODS: Peptide microarray was used to screen patient samples for autoantibodies. We compared patients with unexplained AF (n=37 pre-existent AF; n=14 incident AF on follow-up) to age- and sex-matched controls (n=37). Electrophysiological properties of the identified autoantibody were then tested in vitro with the patch clamp technique and in vivo with an experimental mouse model of immunization. RESULTS: A common autoantibody response against Kir3.4 protein was detected in patients with AF and even before the development of clinically apparent AF. Kir3.4 protein forms a heterotetramer that underlies the cardiac acetylcholine-activated inwardly rectifying K+ current, IKACh. Functional studies on human induced pluripotent stem cell-derived atrial cardiomyocytes showed that anti-Kir3.4 IgG purified from patients with AF shortened action potentials and enhanced the constitutive form of IKACh, both key mediators of AF. To establish a causal relationship, we developed a mouse model of Kir3.4 autoimmunity. Electrophysiological study in Kir3.4-immunized mice showed that Kir3.4 autoantibodies significantly reduced atrial effective refractory period and predisposed animals to a 2.8-fold increased susceptibility to AF. CONCLUSIONS: To our knowledge, this is the first report of an autoimmune pathogenesis of AF with direct evidence of Kir3.4 autoantibody-mediated AF.


Subject(s)
Atrial Fibrillation , Induced Pluripotent Stem Cells , Humans , Animals , Mice , G Protein-Coupled Inwardly-Rectifying Potassium Channels/metabolism , Induced Pluripotent Stem Cells/metabolism , Heart Atria , Autoantibodies
18.
Clin Infect Dis ; 78(4): 1033-1042, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-37947190

ABSTRACT

BACKGROUND: Currently, there is no effective treatment for adult-onset immunodeficiency (AOID) syndrome with anti-interferon-gamma autoantibodies (anti-IFN-γ-auto-Abs). This study aimed to investigate the effectiveness of bortezomib (BTZ) for decreasing anti-IFN-γ-auto-Abs. METHODS: A pre- and post-intervention study was conducted from February 2017 through June 2019 at Siriraj Hospital (Bangkok, Thailand). Five patients were invited to receive once-weekly BTZ (1.3 mg/m2 body surface area) subcutaneously for 8 weeks followed by oral cyclophosphamide (1 mg/kg/d) for 4 months. The primary outcomes were the difference in antibody level at 8 and 48 weeks compared with baseline and the incidence of serious adverse events (AEs). The secondary outcome was the occurrence of opportunistic infections (OIs) during the 72 weeks after starting BTZ. RESULTS: The median patient age was 46 years (range, 34-53). All patients had 3-5 OIs prior to enrollment. All patients were receiving antimycobacterial agents for treatment of nontuberculous mycobacterial infection at enrollment. There was no significant difference in the mean optical density of auto-Abs at 8 weeks (3.73 ± 0.72) or 48 weeks (3.74 ± 0.53) compared with baseline (3.84 ± 0.49; P = .336 and P = .555, respectively). However, after serum dilution, the antibody titer nonsignificantly decreased 8-16 weeks after BTZ initiation (P = .345). Ten OIs were observed 24-72 weeks after BTZ initiation. CONCLUSIONS: Treatment with BTZ followed by cyclophosphamide yielded no significant decrease in antibody titer levels, and 10 OIs were observed during 24-72 weeks of BTZ treatment. No serious AEs were observed. Combining rituximab with BTZ is likely necessary to prevent generation of new autoantibody-producing plasma cells. Clinical Trials Registration. NCT03103555.


Subject(s)
Autoantibodies , Immunologic Deficiency Syndromes , Adult , Humans , Middle Aged , Bortezomib/adverse effects , Thailand , Interferon-gamma , Immunologic Deficiency Syndromes/drug therapy , Immunologic Deficiency Syndromes/complications , Cyclophosphamide/therapeutic use
19.
Curr Issues Mol Biol ; 46(6): 6267-6283, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38921045

ABSTRACT

Autoantibodies against apolipoprotein A-I (ApoA-I) are associated with cardiovascular disease risks. We aimed to examine the 4-hydroxy-2-nonenal (HNE) modification of ApoA-I in coronary artery disease (CAD) and evaluate the potential risk of autoantibodies against their unmodified and HNE-modified peptides. We assessed plasma levels of ApoA-I, HNE-protein adducts, and autoantibodies against unmodified and HNE-peptide adducts, and significant correlations and odds ratios (ORs) were examined. Two novel CAD-specific HNE-peptide adducts, ApoA-I251-262 and ApoA-I70-83, were identified. Notably, immunoglobulin G (IgG) anti-ApoA-I251-262 HNE, IgM anti-ApoA-I70-83 HNE, IgG anti-ApoA-I251-262, IgG anti-ApoA-I70-83, and HNE-protein adducts were significantly correlated with triglycerides, creatinine, or high-density lipoprotein in CAD with various degrees of stenosis (<30% or >70%). The HNE-protein adduct (OR = 2.208-fold, p = 0.020) and IgM anti-ApoA-I251-262 HNE (2.046-fold, p = 0.035) showed an increased risk of progression from >30% stenosis in CAD. HNE-protein adducts and IgM anti-ApoA-I251-262 HNE may increase the severity of CAD at high and low levels, respectively.

20.
Cancer Sci ; 115(1): 70-82, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37964506

ABSTRACT

To evaluate the potential of zinc finger protein 1 (ZPR1) as a diagnostic biomarker and explore the underlying role for esophageal squamous cell carcinoma (ESCC). A human proteome microarray was customized to identify anti-ZPR1 autoantibody, and enzyme-linked immunosorbent assay (ELISA) was adopted to assess the diagnostic performance of anti-ZPR1 autoantibody in 294 patients with ESCC and 294 normal controls. The expression of ZPR1 protein was measured by immunohistochemistry. The effect of ZPR1 on the proliferation, migration, and invasion of ESCC cells was investigated through CCK-8, wound healing, and Transwell assays. The expression level of anti-ZPR1 autoantibody (fold change = 2.77) in ESCC patients was higher than that in normal controls. The receiver operating characteristic (ROC) analysis manifested anti-ZPR1 autoantibody achieved area under the ROC curve (AUC) of 0.726 and 0.734 to distinguish ESCC from normal controls with sensitivity of 50.0% and 42.3%, and specificity of 91.0% and 92.0% in the test group and validation group, respectively. The positive rate of ZPR1 protein was significantly higher in ESCC tissues (75.5%, 80/106) than paracancerous tissues (9.4%, 5/53). Compared with the human normal esophageal cell line, the expression level of ZPR1 mRNA and protein in ESCC lines (KYSE150, Eca109, and TE1) had an increased trend. The knockdown or overexpression of ZPR1 reduced and enhanced the proliferation, migration, and invasion of ESCC cell, respectively. ZPR1 was a potential immunodiagnostic biomarker for noninvasive detection and could be a promotional factor in tumor progression of ESCC.


Subject(s)
Carcinoma, Squamous Cell , Esophageal Neoplasms , Esophageal Squamous Cell Carcinoma , Humans , Esophageal Squamous Cell Carcinoma/genetics , Esophageal Neoplasms/genetics , Carcinoma, Squamous Cell/pathology , Biomarkers , Autoantibodies/metabolism , Cell Line, Tumor , Cell Proliferation , Cell Movement , Gene Expression Regulation, Neoplastic
SELECTION OF CITATIONS
SEARCH DETAIL