Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
Mol Med Rep ; 29(5)2024 05.
Article in English | MEDLINE | ID: mdl-38516767

ABSTRACT

Acute lung injury (ALI) is an acute inflammatory lung disease associated with both innate and adaptive immune responses. Hexokinase 2 (HK2) is specifically highly expressed in numerous types of inflammation­related diseases and models. In the present study in vitro and in vivo effects of targeted degradation of HK2 on ALI were explored. The degradation of HK2 by the targeting peptide TAT (transactivator of transcription protein of HIV­1)­ataxin 1 (ATXN1)­chaperone­mediated autophagy­targeting motif (CTM) was demonstrated by ELISA and western blotting in vitro and in vivo. The inhibitory effects of TAT­ATXN1­CTM on lipopolysaccharide (LPS)­induced inflammatory responses were examined using ELISAs. The therapeutic effects of TAT­ATXN1­CTM on LPS­induced ALI were examined via histological examination and ELISAs in mice. 10 µM TAT­ATXN1­CTM administration decreased HK2 protein expression and the secretion of proinflammatory cytokines (TNF­α and IL­1ß) without altering HK2 mRNA expression in LPS­treated both in vitro and in vivo, while pathological lung tissue damage and the accumulation of leukocytes, neutrophils, macrophages and lymphocytes in ALI were also significantly suppressed by 10 µM TAT­ATXN1­CTM treatment. TAT­ATXN1­CTM exhibited anti­inflammatory activity in vitro and decreased the severity of ALI in vivo. HK2 degradation may represent a novel therapeutic approach for ALI.


Subject(s)
Acute Lung Injury , Hexokinase , Animals , Mice , Acute Lung Injury/drug therapy , Acute Lung Injury/pathology , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Hexokinase/antagonists & inhibitors , Hexokinase/metabolism , Lipopolysaccharides/adverse effects , Lung/pathology
2.
Autophagy ; 19(11): 3026-3028, 2023 11.
Article in English | MEDLINE | ID: mdl-37115099

ABSTRACT

ABBREVIATIONS: AMPK, AMP-activated protein kinase; BioID, biotinylation identification; CBFB, core-binding factor subunit beta; HCQ, hydroxychloroquine; HNRNPK, heterogeneous nuclear ribonucleoprotein K; PDX, patient-derived xenograft; PIK3CA, phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha; TUFM, Tu translation elongation factor, mitochondrial; ETC, electron transport chain.


Subject(s)
Autophagy , Breast Neoplasms , Humans , Female , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Mitochondria/metabolism , Core Binding Factor beta Subunit/metabolism
3.
Expert Opin Drug Discov ; 18(4): 467-483, 2023 04.
Article in English | MEDLINE | ID: mdl-36895136

ABSTRACT

INTRODUCTION: Target protein degradation (TPD) provides a novel therapeutic modality, other than inhibition, through the direct depletion of target proteins. Two primary human protein homeostasis mechanisms are exploited: the ubiquitin-proteasome system (UPS) and the lysosomal system. TPD technologies based on these two systems are progressing at an impressive pace. AREAS COVERED: This review focuses on the TPD strategies based on UPS and lysosomal system, mainly classified into three types: Molecular Glue (MG), PROteolysis Targeting Chimera (PROTAC), and lysosome-mediated TPD. Starting with a brief background introduction of each strategy, exciting examples and perspectives on these novel approaches are provided. EXPERT OPINION: MGs and PROTACs are two major UPS-based TPD strategies that have been extensively investigated in the past decade. Despite some clinical trials, several critical issues remain, among which is emphasized by the limitation of targets. Recently developed lysosomal system-based approaches provide alternative solutions for TPD beyond UPS' capability. The newly emerging novel approaches may partially address issues that have long plagued researchers, such as low potency, poor cell permeability, on-/off-target toxicity, and delivery efficiency. Comprehensive considerations for the rational design of protein degraders and continuous efforts to seek effective solutions are imperative to advance these strategies into clinical medications.


Subject(s)
Drug Discovery , Proteolysis Targeting Chimera , Humans , Proteolysis , Permeability , Research Personnel
4.
Autophagy ; 19(11): 2997-3013, 2023 11.
Article in English | MEDLINE | ID: mdl-37424101

ABSTRACT

Proteolysis-targeting chimeras (PROTACs) based on the ubiquitin-proteasome system have made great progress in the field of drug discovery. There is mounting evidence that the accumulation of aggregation-prone proteins or malfunctioning organelles is associated with the occurrence of various age-related neurodegenerative disorders and cancers. However, PROTACs are inefficient for the degradation of such large targets due to the narrow entrance channel of the proteasome. Macroautophagy (hereafter referred to as autophagy) is known as a self-degradative process involved in the degradation of bulk cytoplasmic components or specific cargoes that are sequestered into autophagosomes. In the present study, we report the development of a generalizable strategy for the targeted degradation of large targets. Our results suggested that tethering large target models to phagophore-associated ATG16L1 or LC3 induced targeted autophagic degradation of the large target models. Furthermore, we successfully applied this autophagy-targeting degradation strategy to the targeted degradation of HTT65Q aggregates and mitochondria. Specifically, chimeras consisting of polyQ-binding peptide 1 (QBP) and ATG16L1-binding peptide (ABP) or LC3-interacting region (LIR) induced targeted autophagic degradation of pathogenic HTT65Q aggregates; and the chimeras consisting of mitochondria-targeting sequence (MTS) and ABP or LIR promoted targeted autophagic degradation of dysfunctional mitochondria, hence ameliorating mitochondrial dysfunction in a Parkinson disease cell model and protecting cells from apoptosis induced by the mitochondrial stress agent FCCP. Therefore, this study provides a new strategy for the selective proteolysis of large targets and enrich the toolkit for autophagy-targeting degradation.Abbreviations: ABP: ATG16L1-binding peptide; ATG16L1: autophagy related 16 like 1; ATTEC: autophagy-tethering compound; AUTAC: autophagy-targeting chimera; AUTOTAC: autophagy-targeting chimera; Baf A1: bafilomycin A1; BCL2: BCL2 apoptosis regulator; CALCOCO2/NDP52: calcium binding and coiled-coil domain 2; CASP3: caspase 3; CPP: cell-penetrating peptide; CQ: chloroquine phosphate; DAPI: 4',6-diamidino-2-phenylindole; DCM: dichloromethane; DMF: N,N-dimethylformamide; DMSO: dimethyl sulfoxide; EBSS: Earle's balanced salt solution; FCCP: carbonyl cyanide 4-(trifluoromethoxy)phenylhydrazone; FITC: fluorescein-5-isothiocyanate; GAPDH: glyceraldehyde-3-phosphate dehydrogenase; GFP: green fluorescent protein; HEK293: human embryonic kidney 293; HEK293T: human embryonic kidney 293T; HPLC: high-performance liquid chromatography; HRP: horseradish peroxidase; HTT: huntingtin; LIR: LC3-interacting region; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MFF: mitochondrial fission factor; MTS: mitochondria-targeting sequence; NBR1: NBR1 autophagy cargo receptor; NLRX1: NLR family member X1; OPTN: optineurin; P2A: self-cleaving 2A peptide; PB1: Phox and Bem1p; PBS: phosphate-buffered saline; PE: phosphatidylethanolamine; PINK1: PTEN induced kinase 1; PRKN: parkin RBR E3 ubiquitin protein ligase; PROTACs: proteolysis-targeting chimeras; QBP: polyQ-binding peptide 1; SBP: streptavidin-binding peptide; SDS-PAGE: sodium dodecyl sulfate-polyacrylamide gel electrophoresis; SPATA33: spermatogenesis associated 33; TIMM23: translocase of inner mitochondrial membrane 23; TMEM59: transmembrane protein 59; TOMM20: translocase of outer mitochondrial membrane 20; UBA: ubiquitin-associated; WT: wild type.


Subject(s)
Autophagy , Protein Aggregates , Humans , Male , Autophagy-Related Proteins/metabolism , Carbonyl Cyanide p-Trifluoromethoxyphenylhydrazone , HEK293 Cells , Mitochondria/metabolism , Mitochondrial Proteins/metabolism , Proteasome Endopeptidase Complex/metabolism , Proto-Oncogene Proteins c-bcl-2/metabolism , Ubiquitins/metabolism
5.
Methods Enzymol ; 686: 235-265, 2023.
Article in English | MEDLINE | ID: mdl-37532402

ABSTRACT

In the Arg/N-degron pathway, single N-terminal (Nt) residues function as N-degrons recognized by UBR box-containing N-recognins that induce substrate ubiquitination and proteasomal degradation. Recent studies led to the discovery of the autophagic Arg/N-degron pathway, in which the autophagic receptor p62/SQSTM1/Sequestosome-1 acts as an N-recognin that binds the Nt-Arg and other destabilizing residues as N-degrons. Upon binding to Nt-Arg, p62 undergoes self-polymerization associated with its cargoes, accelerating the macroautophagic delivery of p62-cargo complexes to autophagosomes leading to degradation by lysosomal hydrolases. This autophagic mechanism is emerging as an important pathway that modulates the lysosomal degradation of various biomaterial ranging from protein aggregates and subcellular organelles to invading pathogens. Chemical mimics of the physiological N-degrons were developed to exert therapeutic efficacy in pathophysiological processes associated with neurodegeneration and other related diseases. Here, we describe the methods to monitor the activities of p62 in a dual role as an N-recognin and an autophagic receptor. The topic includes self-polymerization (for cargo condensation), its interaction with LC3 on autophagic membranes (for cargo targeting), and the degradation of p62-cargo complexes by lysosomal hydrolases. We also discuss the development and use of small molecule mimics of N-degrons that modulate p62-dependent macroautophagy in biological and pathophysiological processes.


Subject(s)
Autophagy , Hydrolases , Sequestosome-1 Protein/genetics , Sequestosome-1 Protein/metabolism , Proteolysis , Autophagy/physiology , Hydrolases/metabolism
6.
Antioxidants (Basel) ; 11(8)2022 Aug 14.
Article in English | MEDLINE | ID: mdl-36009290

ABSTRACT

Intervertebral disc degeneration (IVDD) is a prevalent cause of low back pain. IVDD is characterized by abnormal expression of extracellular matrix components such as collagen and aggrecan. In addition, it results in dysfunctional growth, senescence, and death of intervertebral cells. The biological pathways involved in the development and progression of IVDD are not fully understood. Therefore, a better understanding of the molecular mechanisms underlying IVDD could aid in the development of strategies for prevention and treatment. Autophagy is a cellular process that removes damaged proteins and dysfunctional organelles, and its dysfunction is linked to a variety of diseases, including IVDD and osteoarthritis. In this review, we describe recent research findings on the role of autophagy in IVDD pathogenesis and highlight autophagy-targeting molecules which can be exploited to treat IVDD. Many studies exhibit that autophagy protects against and postpones disc degeneration. Further research is needed to determine whether autophagy is required for cell integrity in intervertebral discs and to establish autophagy as a viable therapeutic target for IVDD.

7.
Acta Pharm Sin B ; 11(10): 3015-3034, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34729301

ABSTRACT

Parkinson's disease (PD), known as one of the most universal neurodegenerative diseases, is a serious threat to the health of the elderly. The current treatment has been demonstrated to relieve symptoms, and the discovery of new small-molecule compounds has been regarded as a promising strategy. Of note, the homeostasis of the autolysosome pathway (ALP) is closely associated with PD, and impaired autophagy may cause the death of neurons and thereby accelerating the progress of PD. Thus, pharmacological targeting autophagy with small-molecule compounds has been drawn a rising attention so far. In this review, we focus on summarizing several autophagy-associated targets, such as AMPK, mTORC1, ULK1, IMPase, LRRK2, beclin-1, TFEB, GCase, ERRα, C-Abelson, and as well as their relevant small-molecule compounds in PD models, which will shed light on a clue on exploiting more potential targeted small-molecule drugs tracking PD treatment in the near future.

8.
Expert Opin Drug Discov ; 15(9): 1045-1064, 2020 09.
Article in English | MEDLINE | ID: mdl-32543957

ABSTRACT

INTRODUCTION: Small molecules targeting autophagy have been highly implicated as new therapeutic agents to treat diseases of interest. With the increasing demand for autophagy-targeting drugs, this review attempts to provide an efficient strategy to explore major autophagy-based human disease interventions with newly explored mechanisms using small molecules and promising therapeutic approaches. AREAS COVERED: Introduced in this review are direct links and applications among autophagy pathways, their modulators, and phenotypic diseases, along with recent approaches. Autophagy-related diseases, machinery, and compounds are introduced to guide the appropriate investigation of autophagy in the pharmaceutical industry. The authors then provide their expert perspectives on the subject. EXPERT OPINION: The self-catabolic intracellular process autophagy occurs in organisms throughout their lifetime, supporting its critical role in organismal health across life stages. Because of the detrimental influence of dysfunctional cells to an organism and their etiology in numerous diseases, maintaining cellular quality control by recycling components through autophagy is essential to prevent health decline.


Subject(s)
Autophagy/drug effects , Drug Development , Drug Discovery , Animals , Humans , Molecular Targeted Therapy
9.
Ann Clin Lab Sci ; 47(3): 243-252, 2017 May.
Article in English | MEDLINE | ID: mdl-28667023

ABSTRACT

Aging of the population contributes to the increasing prevalence of heart failure. Autophagy is an evolutionarily conserved process aiming to degrade both long-lived proteins and damaged or excessive cyto-organelles via the lysosomal-mediated pathway. Although autophagy is involved in the normal homeostasis of cardiovascular cells, upregulation of autophagy and its abnormal modulation by inflammation may lead to cardiovascular functional decline and heart failure. Despite major improvements in the prevention, diagnosis, and treatment of cardiovascular diseases, heart failure remains one of the major diagnostic and therapeutic challenges. Here, we review the cardiovascular autophagy and its interplay with inflammation which may lead to heart failure exploring some potential treatment options.


Subject(s)
Autophagy/physiology , Heart Failure/pathology , Inflammasomes/metabolism , Animals , Heart Failure/metabolism , Humans , Metabolic Networks and Pathways , Mitophagy/physiology , Proteolysis
SELECTION OF CITATIONS
SEARCH DETAIL