Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.817
Filter
1.
Cell ; 185(13): 2370-2386.e18, 2022 06 23.
Article in English | MEDLINE | ID: mdl-35597242

ABSTRACT

2',3'-cAMP is a positional isomer of the well-established second messenger 3',5'-cAMP, but little is known about the biology of this noncanonical cyclic nucleotide monophosphate (cNMP). Toll/interleukin-1 receptor (TIR) domains of nucleotide-binding leucine-rich repeat (NLR) immune receptors have the NADase function necessary but insufficient to activate plant immune responses. Here, we show that plant TIR proteins, besides being NADases, act as 2',3'-cAMP/cGMP synthetases by hydrolyzing RNA/DNA. Structural data show that a TIR domain adopts distinct oligomers with mutually exclusive NADase and synthetase activity. Mutations specifically disrupting the synthetase activity abrogate TIR-mediated cell death in Nicotiana benthamiana (Nb), supporting an important role for these cNMPs in TIR signaling. Furthermore, the Arabidopsis negative regulator of TIR-NLR signaling, NUDT7, displays 2',3'-cAMP/cGMP but not 3',5'-cAMP/cGMP phosphodiesterase activity and suppresses cell death activity of TIRs in Nb. Our study identifies a family of 2',3'-cAMP/cGMP synthetases and establishes a critical role for them in plant immune responses.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis/genetics , Arabidopsis Proteins/metabolism , Cell Death/genetics , Cyclic AMP/biosynthesis , Cyclic GMP/biosynthesis , Ligases/metabolism , NAD+ Nucleosidase/metabolism , Plant Diseases , Plant Immunity/physiology , Plant Proteins/metabolism , Receptors, Immunologic/metabolism , Receptors, Interleukin-1/metabolism , Nicotiana/genetics , Nicotiana/metabolism
2.
Annu Rev Biochem ; 90: 31-55, 2021 06 20.
Article in English | MEDLINE | ID: mdl-34153217

ABSTRACT

My graduate and postdoctoral training in metabolism and enzymology eventually led me to study the short- and long-term regulation of glucose and lipid metabolism. In the early phase of my career, my trainees and I identified, purified, and characterized a variety of phosphofructokinase enzymes from mammalian tissues. These studies led us to discover fructose 2,6-P2, the most potent activator of phosphofructokinase and glycolysis. The discovery of fructose 2,6-P2 led to the identification and characterization of the tissue-specific bifunctional enzyme 6-phosphofructo-2-kinase:fructose 2,6-bisphosphatase. We discovered a glucose signaling mechanism by which the liver maintains glucose homeostasis by regulating the activities of this bifunctional enzyme. With a rise in glucose, a signaling metabolite, xylulose 5-phosphate, triggers rapid activation of a specific protein phosphatase (PP2ABδC), which dephosphorylates the bifunctional enzyme, thereby increasing fructose 2,6-P2 levels and upregulating glycolysis. These endeavors paved the way for us to initiate the later phase of my career in which we discovered a new transcription factor termed the carbohydrate response element binding protein (ChREBP). Now ChREBP is recognized as the masterregulator controlling conversion of excess carbohydrates to storage of fat in the liver. ChREBP functions as a central metabolic coordinator that responds to nutrients independently of insulin. The ChREBP transcription factor facilitates metabolic adaptation to excess glucose, leading to obesity and its associated diseases.


Subject(s)
Basic Helix-Loop-Helix Leucine Zipper Transcription Factors , Biochemistry/history , Fructosediphosphates/metabolism , Phosphofructokinase-2/metabolism , Animals , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/chemistry , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/genetics , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/metabolism , Gluconeogenesis/physiology , Glucose/metabolism , Glycolysis , History, 20th Century , History, 21st Century , Humans , Male , Mice , Phosphofructokinase-2/chemistry , Phosphofructokinases/chemistry , Phosphofructokinases/metabolism , Phosphorylation , United States
3.
Cell ; 174(3): 564-575.e18, 2018 07 26.
Article in English | MEDLINE | ID: mdl-30033362

ABSTRACT

The prostate cancer (PCa) risk-associated SNP rs11672691 is positively associated with aggressive disease at diagnosis. We showed that rs11672691 maps to the promoter of a short isoform of long noncoding RNA PCAT19 (PCAT19-short), which is in the third intron of the long isoform (PCAT19-long). The risk variant is associated with decreased and increased levels of PCAT19-short and PCAT19-long, respectively. Mechanistically, the risk SNP region is bifunctional with both promoter and enhancer activity. The risk variants of rs11672691 and its LD SNP rs887391 decrease binding of transcription factors NKX3.1 and YY1 to the promoter of PCAT19-short, resulting in weaker promoter but stronger enhancer activity that subsequently activates PCAT19-long. PCAT19-long interacts with HNRNPAB to activate a subset of cell-cycle genes associated with PCa progression, thereby promoting PCa tumor growth and metastasis. Taken together, these findings reveal a risk SNP-mediated promoter-enhancer switching mechanism underlying both initiation and progression of aggressive PCa.


Subject(s)
Prostatic Neoplasms/genetics , RNA, Long Noncoding/genetics , Alleles , Cell Line, Tumor , Enhancer Elements, Genetic/genetics , Gene Expression Regulation, Neoplastic/genetics , Gene Frequency/genetics , Genetic Predisposition to Disease/genetics , Homeodomain Proteins/metabolism , Humans , Male , Polymorphism, Single Nucleotide/genetics , Promoter Regions, Genetic/genetics , Protein Binding , RNA Isoforms/genetics , Risk Factors , Transcription Factors/metabolism , YY1 Transcription Factor/metabolism
4.
Trends Biochem Sci ; 48(12): 1035-1043, 2023 12.
Article in English | MEDLINE | ID: mdl-37777390

ABSTRACT

RNAs are commonly categorized as being either protein-coding mRNAs or noncoding RNAs. However, an increasing number of transcripts, in organisms ranging from bacteria to humans, are being found to have both coding and noncoding functions. In some cases, the sequences encoding the protein and the regulatory RNA functions are separated, while in other cases the sequences overlap. The protein and RNA can regulate similar or distinct pathways. Here we describe examples illustrating how these dual-function (also denoted bifunctional or dual-component) RNAs are identified and their mechanisms of action and cellular roles. We also discuss the synergy or competition between coding and RNA activity and how these regulators evolved, as well as how more dual-function RNAs might be discovered and exploited.


Subject(s)
RNA, Long Noncoding , RNA , Humans , RNA, Untranslated , RNA, Messenger/genetics , RNA, Messenger/metabolism , Bacteria/metabolism , RNA, Long Noncoding/genetics
5.
Proc Natl Acad Sci U S A ; 120(6): e2216933120, 2023 Feb 07.
Article in English | MEDLINE | ID: mdl-36716361

ABSTRACT

Sluggish CO2 reduction reaction (CO2RR) and evolution reaction (CO2ER) kinetics at cathodes seriously hamper the applications of Li-CO2 batteries, which have attracted vast attention as one kind of promising carbon-neutral technology. Two-dimensional transition metal dichalcogenides (TMDs) have shown great potential as the bidirectional catalysts for CO2 redox, but how to achieve a high exposure of dual active sites of TMDs with CO2RR/CO2ER activities remains a challenge. Herein, a bidirectional catalyst that vertically growing MoS2 on Co9S8 supported by carbon paper (V-MoS2/Co9S8@CP) has been designed with abundant edge as active sites for both CO2RR and CO2ER, improves the interfacial conductivity, and modulates the electron transportation pathway along the basal planes. As evidenced by the outstanding energy efficiency of 81.2% and ultra-small voltage gap of 0.68 V at 20 µA cm-2, Li-CO2 batteries with V-MoS2/Co9S8@CP show superior performance compared with horizontally growing MoS2 on Co9S8 (H-MoS2/Co9S8@CP), MoS2@CP, and Co9S8@CP. Density functional theory calculations help reveal the relationship between performance and structure and demonstrate the synergistic effect between MoS2 edge sites and Co9S8. This work provides an avenue to understand and realize rationally designed electronic contact of TMDs with specified crystal facets, but more importantly, provides a feasible guide for the design of high-performance cathodic catalyst materials in Li-CO2 batteries.

6.
Trends Immunol ; 43(9): 741-756, 2022 09.
Article in English | MEDLINE | ID: mdl-35965152

ABSTRACT

Next-generation sequencing (NGS) technologies have greatly expanded the size of the known transcriptome. Many newly discovered transcripts are classified as long noncoding RNAs (lncRNAs) which are assumed to affect phenotype through sequence and structure and not via translated protein products despite the vast majority of them harboring short open reading frames (sORFs). Recent advances have demonstrated that the noncoding designation is incorrect in many cases and that sORF-encoded peptides (SEPs) translated from these transcripts are important contributors to diverse biological processes. Interest in SEPs is at an early stage and there is evidence for the existence of thousands of SEPs that are yet unstudied. We hope to pique interest in investigating this unexplored proteome by providing a discussion of SEP characterization generally and describing specific discoveries in innate immunity.


Subject(s)
Peptides , RNA, Long Noncoding , Immunity, Innate , Open Reading Frames , Transcriptome
7.
J Biol Chem ; 299(4): 104603, 2023 04.
Article in English | MEDLINE | ID: mdl-36907437

ABSTRACT

Phytosphingosine (PHS) is a sphingolipid component present mainly in epithelial tissues, including the epidermis and those lining the digestive tract. DEGS2 is a bifunctional enzyme that produces ceramides (CERs) containing PHS (PHS-CERs) via hydroxylation and sphingosine-CERs via desaturation, using dihydrosphingosine-CERs as substrates. Until now, the role of DEGS2 in permeability barrier functioning, its contribution to PHS-CER production, and the mechanism that differentiates between these two activities have been unknown. Here, we analyzed the barrier functioning of the epidermis, esophagus, and anterior stomach of Degs2 KO mice and found that there were no differences between Degs2 KO and WT mice, indicating normal permeability barriers in the KO mice. In the epidermis, esophagus, and anterior stomach of Degs2 KO mice, PHS-CER levels were greatly reduced relative to WT mice, but PHS-CERs were still present. We obtained similar results for DEGS2 KO human keratinocytes. These results indicate that although DEGS2 plays a major role in PHS-CER production, another synthesis pathway exists as well. Next, we examined the fatty acid (FA) composition of PHS-CERs in various mouse tissues and found that PHS-CER species containing very-long-chain FAs (≥C21) were more abundant than those containing long-chain FAs (C11-C20). A cell-based assay system revealed that the desaturase and hydroxylase activities of DEGS2 toward substrates with different FA chain lengths differed and that its hydroxylase activity was higher toward substrates containing very-long-chain FAs. Collectively, our findings contribute to the elucidation of the molecular mechanism of PHS-CER production.


Subject(s)
Ceramides , Fatty Acid Desaturases , Fatty Acids , Animals , Humans , Mice , Cell Line, Tumor , Ceramides/metabolism , Epidermis/metabolism , Fatty Acid Desaturases/metabolism , Fatty Acids/metabolism , Gene Knockout Techniques , HEK293 Cells , Keratinocytes/metabolism , Mice, Inbred C57BL , Mice, Knockout , Mixed Function Oxygenases/genetics
8.
Mol Biol Evol ; 40(4)2023 04 04.
Article in English | MEDLINE | ID: mdl-36952281

ABSTRACT

Bifunctional stop codons that have both translation and termination functions in the same species are important for understanding the evolution and function of genetic codes in living organisms. Considering the high frequency of bifunctional codons but limited number of available genomes in ciliates, we de novo sequenced seven representative ciliate genomes to explore the evolutionary history of stop codons. We further propose a stop codon reassignment quantification method (stopCR) that can identify bifunctional codons and measure their frequencies in various eukaryotic organisms. Using our newly developed method, we found two previously undescribed genetic codes, illustrating the prevalence of bifunctional stop codons in ciliates. Overall, evolutionary genomic analyses suggest that gain or loss of reassigned stop codons in ciliates is shaped by their living environment, the eukaryotic release factor 1, and suppressor tRNAs. This study provides novel clues about the functional diversity and evolutionary history of stop codons in eukaryotic organisms.


Subject(s)
Ciliophora , Peptide Termination Factors , Codon, Terminator , Peptide Termination Factors/genetics , Ciliophora/genetics , Genetic Code , Base Sequence
9.
Small ; 20(28): e2309476, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38348999

ABSTRACT

Complex wound repair due to tumor recurrence and infection following tumor resection presents significant clinical challenges. In this study, a bifunctional nanocomposite immune hydrogel dressing, SerMA-LJC, is developed to address the issues associated with repairing infected damaged tissues and preventing tumor recurrence. Specifically, the immune dressing is composed of methacrylic anhydride-modified sericin (SerMA) and self-assembled nanoparticles (LJC) containing lonidamine (Lon), JQ1, and chlorine e6 (Ce6). In vitro and in vivo experiments demonstrate that the nanocomposite hydrogel dressing can trigger immunogenic cell death (ICD) and has a potent anti-tumor effect. Moreover, this dressing can mitigate the acidic microenvironment of tumor cells and suppress the overexpression of PD-L1 on the tumor cell surface, thereby altering the immunosuppressive tumor microenvironment and augmenting the anti-tumor immune response. Further, the RNA sequencing analysis revealed that the hydrogel dressing significantly impacts pathways associated with positive regulation of immune response, apoptotic process, and other relevant pathways, thus triggering a potent anti-tumor immune response. More importantly, the dressing generates a substantial amount of reactive oxygen species (ROS), which can effectively kill Staphylococcus aureus and promote infectious wound healing. In conclusion, this dual-function nanocomposite immune hydrogel dressing exhibits promise in preventing tumor recurrence and promoting infectious wound healing.


Subject(s)
Nanocomposites , Nanocomposites/chemistry , Animals , Neoplasm Recurrence, Local/prevention & control , Mice , Hydrogels/chemistry , Bandages , Melanoma/pathology , Cell Line, Tumor , Staphylococcus aureus/drug effects , Humans , Injections , Tumor Microenvironment/drug effects , Reactive Oxygen Species/metabolism
10.
Small ; 20(6): e2305062, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37803476

ABSTRACT

PtIr-based nanostructures are fascinating materials for application in bifunctional oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) catalysis. However, the fabrication of PtIr nanocatalysts with clear geometric features and structural configurations, which are crucial for enhancing the bifunctionality, remains challenging. Herein, PtCo@PtIr nanoparticles are precisely designed and fabricated with a quasi-octahedral PtCo nanocrystal as a highly atomically ordered core and an ultrathin PtIr atomic layer as a compressively strained shell. Owing to their geometric and core-shell features, the PtCo@PtIr nanoparticles deliver approximately six and eight times higher mass and specific activities, respectively, as an ORR catalyst than a commercial Pt/C catalyst. The half-wave potential of PtCo@PtIr exhibits a negligible decrease by 9 mV after 10 000 cycles, indicating extraordinary ORR durability because of the ordered arrangement of Pt and Co atoms. When evaluated using the ORR-OER dual reaction upon the introduction of Ir, PtCo@PtIr exhibits a small ORR-OER overpotential gap of 679 mV, demonstrating its great potential as a bifunctional electrocatalyst for fabricating fuel cells. The findings pave the way for designing precise intermetallic core-shell nanocrystals as highly functional catalysts.

11.
Small ; 20(15): e2307164, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37997555

ABSTRACT

Nowadays, highly active and stable alkaline bifunctional electrocatalysts toward water electrolysis that can work at high current density (≥1000 mA cm-2) are urgently needed. Herein, Mn-doped RuO2 (MnxRu1-xO2) nanofibers (NFs) are constructed to achieve this object, presenting wonderful hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) performances with the overpotentials of only 269 and 461 mV at 1 A cm-2 in 1 m KOH solution, and remarkably stability under industrial demand with 1 A cm-2, significantly better than the benchmark Pt/C and commercial RuO2 electrocatalysts, respectively. More importantly, the assembled Mn0.05Ru0.95O2 NFs||Mn0.05Ru0.95O2 NFs electrolyzer toward overall water splitting reaches the current density of 10 mA cm-2 with a cell voltage of 1.52 V and also delivers an outstanding stability over 150 h of continuous operation, far surpassing commercial Pt/C||commercial RuO2, RuO2 NFs||RuO2 NFs and most previously reported exceptional electrolyzers. Theoretical calculations indicate that Mn-doping into RuO2 can significantly optimize the electronic structure and weaken the strength of O─H bond to achieve the near-zero hydrogen adsorption free energy (ΔGH*) value for HER, and can also effectively weaken the adsorption strength of intermediate O* at the relevant sites, achieving the higher OER catalytic activity, since the overlapping center of p-d orbitals is closer to the Fermi level.

12.
Small ; : e2401730, 2024 Jul 22.
Article in English | MEDLINE | ID: mdl-39036843

ABSTRACT

Stable, efficient, and economical bifunctional electrocatalysts for oxygen evolution reaction (OER) and oxygen reduction reaction (ORR) are needed for rechargeable Zn-air batteries. In this study, a directional electron transfer pathway is exploited in a spatial heterojunction of CoyNix@Fe─N─C heterogeneous catalyst for effective bifunctional electrolysis (OER/ORR). Thereinto, the Co/Ni alloy is strongly coupled to the Fe─N─C support through Co/Ni─N bonds. DFT calculations and experimental findings confirm that Co/Ni─N bonds play a bridging role in the directional electron transfer from Co/Ni alloy to the Fe─N─C support, increasing the content of pyridinic nitrogen in the ORR-active support. In addition, the discovered directional electron transfer mechanism enhances both the ORR/OER activity and the durability of the catalyst. The Co0.66Ni0.34@Fe─N─C with the optimal Ni/Co ratio exhibits satisfying bifunctional electrocatalytic performance, requiring an ORR half-wave potential of 0.90 V and an OER overpotential of 317 mV at 10 mA cm-2 in alkaline electrolytes. The assembled rechargeable zinc-air batteries (ZABs) incorporating Co0.66Ni0.34@Fe─N─C cathode exhibits a charge-discharge voltage gap comparable to the Pt/C||IrO2 assembly and high robustness for over 60 h at 20 mA cm-2.

13.
Small ; : e2402527, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38888122

ABSTRACT

Aqueous zinc-iodine batteries are promising candidates for large-scale energy storage due to their high energy density and low cost. However, their development is hindered by several drawbacks, including zinc dendrites, anode corrosion, and the shuttle of polyiodides. Here, the design of 2D-shaped tungsten boride nanosheets with abundant borophene subunits-based active sites is reported to guide the (002) plane-dominated deposition of zinc while suppressing side reactions, which facilitates interfacial nucleation and uniform growth of zinc. Meanwhile, the interfacial d-band orbits of tungsten sites can further enhance the anchoring of polyiodides on the surface, to promote the electrocatalytic redox conversion of iodine. The resulting tungsten boride-based I2 cathodes in zinc-iodine cells exhibit impressive cyclic stability after 5000 cycles at 50 C, which accelerates the practical applications of zinc-iodine batteries.

14.
Small ; : e2402104, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38949416

ABSTRACT

To meet increasing requirement for innovative energy storage and conversion technology, it is urgent to prepare effective, affordable, and long-term stable oxygen electrocatalysts to replace precious metal-based counterparts. Herein, a two-step pyrolysis strategy is developed for controlled synthesis of Fe2O3 and Mn3O4 anchored on carbon nanotubes/nanosheets (Fe2O3-Mn3O4-CNTs/NSs). The typical catalyst has a high half-wave potential (E1/2 = 0.87 V) for oxygen reduction reaction (ORR), accompanied with a smaller overpotential (η10 = 290 mV) for oxygen evolution reaction (OER), showing substantial improvement in the ORR and OER performances. As well, density functional theory calculations are performed to illustrate the catalytic mechanism, where the in situ generated Fe2O3 directly correlates to the reduced energy barrier, rather than Mn3O4. The Fe2O3-Mn3O4-CNTs/NSs-based Zn-air battery exhibits a high-power density (153 mW cm-2) and satisfyingly long durability (1650 charge/discharge cycles/550 h). This work provides a new reference for preparation of highly reversible oxygen conversion catalysts.

15.
Small ; : e2402761, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38953299

ABSTRACT

Flexible rechargeable Zn-air batteries (FZABs) exhibit high energy density, ultra-thin, lightweight, green, and safe features, and are considered as one of the ideal power sources for flexible wearable electronics. However, the slow and high overpotential oxygen reaction at the air cathode has become one of the key factors restricting the development of FZABs. The improvement of activity and stability of bifunctional catalysts has become a top priority. At the same time, FZABs should maintain the battery performance under different bending and twisting conditions, and the design of the overall structure of FZABs is also important. Based on the understanding of the three typical configurations and working principles of FZABs, this work highlights two common strategies for applying bifunctional catalysts to FZABs: 1) powder-based flexible air cathode and 2) flexible self-supported air cathode. It summarizes the recent advances in bifunctional oxygen electrocatalysts and explores the various types of catalyst structures as well as the related mechanistic understanding. Based on the latest catalyst research advances, this paper introduces and discusses various structure modulation strategies and expects to guide the synthesis and preparation of efficient bifunctional catalysts. Finally, the current status and challenges of bifunctional catalyst research in FZABs are summarized.

16.
Small ; 20(29): e2311763, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38348916

ABSTRACT

Advanced bifunctional electrocatalysts are essential for propelling overall water splitting (OWS) progress. Herein, relying on the obvious difference in the work function of Ir (5.44 eV) and CoMoO4 (4.03 eV) and the constructed built-in electric field (BEF), an Ir/CoMoO4/NF heterogeneous catalyst, with ultrafine Ir nanoclusters (1.8 ± 0.2 nm) embedded in CoMoO4 nanosheet arrays on the surface of nickel foam skeleton, is reported. Impressively, the Ir/CoMoO4/NF shows remarkable electrocatalytic bifunctionality toward hydrogen evolution reaction (HER) and oxygen evolution reaction (OER), especially at large current densities, requiring only 13 and 166 mV to deliver 10 and 1000 mA cm-2 for HER and 196 and 318 mV for OER. Furthermore, the Ir/CoMoO4/NF||Ir/CoMoO4/NF electrolyzer demands only 1.43 and 1.81 V to drive 10 and 1000 mA cm-2 for OWS. Systematical theoretical calculations and tests show that the formed BEF not only optimizes interfacial charge distribution and the Fermi level of both Ir and CoMoO4, but also reduces the Gibbs free energy (ΔGH*, from 0.25 to 0.03 eV) and activation energy (from 13.6 to 8.9 kJ mol-1) of HER, the energy barrier (from 3.47 to 1.56 eV) and activation energy (from 21.1 to 13.9 kJ mol-1) of OER, thereby contributing to the glorious electrocatalytic bifunctionality.

17.
Small ; : e2406431, 2024 Aug 08.
Article in English | MEDLINE | ID: mdl-39115348

ABSTRACT

This work illustrates the practicality and economic benefits of employing a hetero-interfaced electrocatalyst (CoS2@CoFe-LDH), containing cobalt sulphide and iron-cobalt double-layer hydroxide for large-scale hydrogen generation. Here, the rational synthesis and detailed characterization of the CoS2@CoFe-LDH material to unravel its unique heterostructure are essayed. The CoS2@CoFe-LDH operates as a bifunctional electrocatalyst to trigger both the hydrogen evolution reaction (HER) and the oxygen evolution reaction (OER) in alkaline seawater (pH 14.0) while showcasing low overpotential requirement for HER (311 mV) and OER (450 mV) at 100 mA cm- 2 current density. The identical CoS2@CoFe-LDH on either electrode in an H-cell setup results in simultaneous H2 and O2 production from seawater with a ≈98% Faradaic efficiency with an applied potential of 1.96V@100 mA cm- 2. Next, this CoS2@CoFe-LDH catalyst is deployed on both sides of a membrane electrode assembly in a one-stack electrolyzer, which retains the intrinsic bifunctional reactivity of the catalyst to generate H2 and O2 in tandem from alkaline seawater with an impeccable energy efficiency (50 kWh kg-1-of-H2). This electrolyzer assembly can be directly linked with a Si-solar cell to produce truly green hydrogen with a solar-to-hydrogen generation efficiency of 15.88%, highlighting the potential of this converting seawater to hydrogen under solar irradiation.

18.
Small ; 20(17): e2305434, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38126941

ABSTRACT

MAX phase combines both ceramic and metallic properties, which exhibits widespread application prospects. 2D MAX nanosheets have more abundant surface-active sites, being anticipated to improve the performance of surface-related applications. Herein, for the first time, 2D Nb2AlC nanosheets (NSs) as novel supports anchored with Ru catalysts for overall water splitting are developed. The optimized catalyst of Ru@Nb2AlC NSs exhibit Pt-comparable kinetics and superior catalytic activity toward hydrogen evolution reaction (HER) (low overpotentials of 61 and 169 mV at 10 and 100 mA cm-2, respectively) with excellent durability (5000 cycles or 80 h) in alkaline media. In particular, Ru@Nb2AlC NSs achieve a mass activity of ≈4.8 times larger than the commercial Pt/C (20 wt.%) catalyst. The post-oxidation resultant catalyst of RuO2@Nb2AlC NSs also exhibit boosting HER and oxygen evolution reaction activities and ≈100% Faraday efficiency for overall water splitting with a cell voltage of 1.61 V to achieve 10 mA cm-2. Therefore, the novel category of 2D MAX supports anchored with Ru nanocrystals offers a novel strategy for designing a wide range of MAX-supported metal catalysts for the renewable energy field.

19.
Small ; : e2402355, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38751066

ABSTRACT

Engineering the intermetallic nanostructures as an effective bifunctional electrocatalyst for hydrogen and oxygen evolution reactions (HER and OER) is of great interest in green hydrogen production. However, a few non-noble metals act as bifunctional electrocatalysts, exhibiting terrific HER and OER processes reported to date. Herein the intermetallic nickel-antimonide (Ni─Sb) dendritic nanostructure via cost-effective electro-co-deposition method is designed and their bifunctional electrocatalytic property toward HER and OER is unrevealed. The designed Ni─Sb delivers a superior bifunctional activity in 1 m KOH electrolyte, with a shallow overpotential of ≈119 mV at -10 mA for HER and ≈200 mV at 50 mA for OER. The mechanism behind the excellent bifunctional property of Ni─Sb is discussed via "interfacial descriptor" with the aid of Kelvin probe force microscopy (KPFM). This study reveals the rate of electrocatalytic reaction depends on the energy required for electron and proton transfer from the catalyst's surface. It is noteworthy that the assembled Ni─Sb-90 electrolyzer requires only a minuscule cell voltage of ≈1.46 V for water splitting, which is far superior to the art of commercial catalysts.

20.
Small ; : e2400830, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38778739

ABSTRACT

Catalysts for zinc-air batteries (ZABs) must be stable over long-term charging-discharging cycles and exhibit bifunctional catalytic activity. In this study, by doping nitrogen-doped carbon (NC) materials with three metal atoms (Fe, Ni, and Cu), a single-atom-distributed FeNiCu-NC bifunctional catalyst is prepared. The catalyst includes Fe(Ni-doped)-N4 for the oxygen evolution reaction (OER), Fe(Cu-doped)-N4 for the oxygen reduction reaction (ORR), and the NiCu-NC catalytic structure for the oxygen reduction reaction (ORR) in the nitrogen-doped carbon nanoparticles. This single-atom distribution catalyst structure enhances the bifunctional catalytic activity. If a trimetallic single-atom catalyst is designed, it will surpass the typical bimetallic single-atom catcalyst. FeNiCu-NC exhibits outstanding performance as an electrocatalyst, with a half-wave potential (E1/2) of 0.876 V versus RHE, overpotential (Ej = 10) of 253 mV versus RHE at 10 mA cm-2, and a small potential gap (ΔE = 0.61 V). As the anode in a ZAB, FeNiCu-NC can undergo continuous charge-discharged cycles for 575 h without significant attenuation. This study presents a new method for achieving high-performance, low-cost ZABs via trimetallic single-atom doping.

SELECTION OF CITATIONS
SEARCH DETAIL