Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.573
Filter
Add more filters

Publication year range
1.
J Virol ; 98(1): e0110223, 2024 Jan 23.
Article in English | MEDLINE | ID: mdl-38169294

ABSTRACT

Mayaro virus (MAYV) is an emerging arbovirus member of the Togaviridae family and Alphavirus genus. MAYV infection causes an acute febrile illness accompanied by persistent polyarthralgia and myalgia. Understanding the mechanisms involved in arthritis caused by alphaviruses is necessary to develop specific therapies. In this work, we investigated the role of the CCL2/CCR2 axis in the pathogenesis of MAYV-induced disease. For this, wild-type (WT) C57BL/6J and CCR2-/- mice were infected with MAYV subcutaneously and evaluated for disease development. MAYV infection induced an acute inflammatory disease in WT mice. The immune response profile was characterized by an increase in the production of inflammatory mediators, such as IL-6, TNF, and CCL2. Higher levels of CCL2 at the local and systemic levels were followed by the significant recruitment of CCR2+ macrophages and a cellular response orchestrated by these cells. CCR2-/- mice showed an increase in CXCL-1 levels, followed by a replacement of the macrophage inflammatory infiltrate by neutrophils. Additionally, the absence of the CCR2 receptor protected mice from bone loss induced by MAYV. Accordingly, the silencing of CCL2 chemokine expression in vivo and the pharmacological blockade of CCR2 promoted a partial improvement in disease. Cell culture data support the mechanism underlying the bone pathology of MAYV, in which MAYV infection promotes a pro-osteoclastogenic microenvironment mediated by CCL2, IL-6, and TNF, which induces the migration and differentiation of osteoclast precursor cells. Overall, these data contribute to the understanding of the pathophysiology of MAYV infection and the identification future of specific therapeutic targets in MAYV-induced disease.IMPORTANCEThis work demonstrates the role of the CCL2/CCR2 axis in MAYV-induced disease. The infection of wild-type (WT) C57BL/6J and CCR2-/- mice was associated with high levels of CCL2, an important chemoattractant involved in the recruitment of macrophages, the main precursor of osteoclasts. In the absence of the CCR2 receptor, there is a mitigation of macrophage migration to the target organs of infection and protection of these mice against bone loss induced by MAYV infection. Much evidence has shown that host immune response factors contribute significantly to the tissue damage associated with alphavirus infections. Thus, this work highlights molecular and cellular targets involved in the pathogenesis of arthritis triggered by MAYV and identifies novel therapeutic possibilities directed to the host inflammatory response unleashed by MAYV.


Subject(s)
Alphavirus Infections , Arthritis , Chemokine CCL2 , Receptors, CCR2 , Animals , Mice , Alphavirus , Alphavirus Infections/immunology , Arthritis/immunology , Arthritis/virology , Chemokine CCL2/immunology , Interleukin-6/immunology , Mice, Inbred C57BL , Receptors, CCR2/immunology , Mice, Knockout , Male , Bone Diseases/virology
2.
FASEB J ; 38(9): e23642, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38690719

ABSTRACT

Alterations to the human organism that are brought about by aging are comprehensive and detrimental. Of these, an imbalance in bone homeostasis is a major outward manifestation of aging. In older adults, the decreased osteogenic activity of bone marrow mesenchymal stem cells and the inhibition of bone marrow mesenchymal stem cell differentiation lead to decreased bone mass, increased risk of fracture, and impaired bone injury healing. In the past decades, numerous studies have reported the epigenetic alterations that occur during aging, such as decreased core histones, altered DNA methylation patterns, and abnormalities in noncoding RNAs, which ultimately lead to genomic abnormalities and affect the expression of downstream signaling osteoporosis treatment and promoter of fracture healing in older adults. The current review summarizes the impact of epigenetic regulation mechanisms on age-related bone homeostasis imbalance.


Subject(s)
Aging , Bone and Bones , Epigenesis, Genetic , Homeostasis , Humans , Aging/genetics , Aging/physiology , Animals , Bone and Bones/metabolism , DNA Methylation , Osteoporosis/genetics , Osteoporosis/metabolism , Mesenchymal Stem Cells/metabolism , Osteogenesis/genetics , Osteogenesis/physiology , Histones/metabolism
3.
Cell Mol Life Sci ; 81(1): 314, 2024 Jul 27.
Article in English | MEDLINE | ID: mdl-39066814

ABSTRACT

This study examines the interplay between ambient temperature, brown adipose tissue (BAT) function, and bone metabolism, emphasizing the effects of cold exposure and BAT mitochondrial activity on bone health. Utilizing ovariectomized (OVX) mice to model primary osteoporosis and BAT-specific mitochondrial dysfunction (BKO) mice, we evaluated the impact of housing temperature on bone density, immune modulation in bone marrow, and the protective role of BAT against bone loss. Cold exposure was found to universally reduce bone mass, enhance osteoclastogenesis, and alter bone marrow T-cell populations, implicating the immune system in bone remodeling under cold stress. The thermogenic function of BAT, driven by mitochondrial oxidative phosphorylation, was crucial in protecting against bone loss. Impaired BAT function, through surgical removal or mitochondrial dysfunction, exacerbated bone loss in cold environments, highlighting BAT's metabolic role in maintaining bone health. Furthermore, cold-induced changes in BAT function led to systemic metabolic shifts, including elevated long-chain fatty acids, which influenced osteoclast differentiation and activity. These findings suggest a systemic mechanism connecting environmental temperature and BAT metabolism with bone physiology, providing new insights into the metabolic and environmental determinants of bone health. Future research could lead to novel bone disease therapies targeting these pathways.


Subject(s)
Adipose Tissue, Brown , Cold Temperature , Mitochondria , Osteoporosis , Animals , Adipose Tissue, Brown/metabolism , Female , Mice , Mitochondria/metabolism , Osteoporosis/metabolism , Osteoporosis/pathology , Osteoclasts/metabolism , Mice, Inbred C57BL , Bone Density , Thermogenesis , Ovariectomy/adverse effects , Bone and Bones/metabolism , Bone and Bones/pathology , Osteogenesis
4.
Genomics ; 116(1): 110769, 2024 01.
Article in English | MEDLINE | ID: mdl-38141931

ABSTRACT

Estrogen receptor α (ESR1) is involved in E2 signaling and plays a major role in postmenopausal bone loss. However, the molecular network underlying ESR1 has not been explored. We used systems genetics and bioinformatics to identify important genes associated with Esr1 in postmenopausal bone loss. We identified ~2300 Esr1-coexpressed genes in female BXD bone femur, functional analysis of which revealed 'osteoblast signaling' as the most enriched pathway. PPI network led to the identification of 25 'female bone candidates'. The gene-regulatory analysis revealed RUNX2 as a key TF. ANKRD1 and RUNX2 were significantly different between osteoporosis patients and healthy controls. Sp7, Col1a1 and Pth1r correlated with multiple femur bone phenotypes in BXD mice. miR-3121-3p targeted Csf1, Ankrd1, Sp7 and Runx2. ß-estradiol treatment markedly increased the expression of these candidates in mouse osteoblast. Our study revealed that Esr1-correlated genes Ankrd1, Runx2, Csf1 and Sp7 may play important roles in female bone development.


Subject(s)
Osteoporosis, Postmenopausal , Osteoporosis , Humans , Female , Mice , Animals , Osteoporosis, Postmenopausal/genetics , Core Binding Factor Alpha 1 Subunit/genetics , Core Binding Factor Alpha 1 Subunit/metabolism , Bone and Bones/metabolism , Osteoporosis/genetics , Bone Development/genetics , Cell Differentiation
5.
Med Res Rev ; 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-39234932

ABSTRACT

Postmenopausal osteoporosis (PMO) is a common disease associated with aging, and estrogen deficiency is considered to be the main cause of PMO. Recently, however, osteoimmunology has been revealed to be closely related to PMO. On the one hand, estrogen deficiency directly affects the activity of bone cells (osteoblasts, osteoclasts, osteocytes). On the other hand, estrogen deficiency-mediated osteoimmunity also plays a crucial role in bone loss in PMO. In this review, we systematically describe the progress of the mechanisms of bone loss in PMO, estrogen deficiency-mediated osteoimmunity, the differences between PMO patients and postmenopausal populations without osteoporosis, and estrogen deficiency-mediated immune cells (T cells, B cells, macrophages, neutrophils, dendritic cells, and mast cells) activity. The comprehensive summary of this paper provides a clear knowledge context for future research on the mechanism of PMO bone loss.

6.
J Cell Mol Med ; 28(17): e70035, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39245790

ABSTRACT

Diabetes-related bone loss represents a significant complication that persistently jeopardizes the bone health of individuals with diabetes. Primary cilia proteins have been reported to play a vital role in regulating osteoblast differentiation in diabetes-related bone loss. However, the specific contribution of KIAA0753, a primary cilia protein, in bone loss induced by diabetes remains unclear. In this investigation, we elucidated the pivotal role of KIAA0753 as a promoter of osteoblast differentiation in diabetes. RNA sequencing demonstrated a marked downregulation of KIAA0753 expression in pro-bone MC3T3 cells exposed to a high glucose environment. Diabetes mouse models further validated the downregulation of KIAA0753 protein in the femur. Diabetes was observed to inhibit osteoblast differentiation in vitro, evidenced by downregulating the protein expression of OCN, OPN and ALP, decreasing primary cilia biosynthesis, and suppressing the Hedgehog signalling pathway. Knocking down KIAA0753 using shRNA methods was found to shorten primary cilia. Conversely, overexpression KIAA0753 rescued these changes. Additional insights indicated that KIAA0753 effectively restored osteoblast differentiation by directly interacting with SHH, OCN and Gli2, thereby activating the Hedgehog signalling pathway and mitigating the ubiquitination of Gli2 in diabetes. In summary, we report a negative regulatory relationship between KIAA0753 and diabetes-related bone loss. The clarification of KIAA0753's role offers valuable insights into the intricate mechanisms underlying diabetic bone complications.


Subject(s)
Cell Differentiation , Microtubule-Associated Proteins , Osteoblasts , Signal Transduction , Animals , Humans , Male , Mice , Cell Line , Cilia/metabolism , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Experimental/pathology , Diabetes Mellitus, Experimental/genetics , Hedgehog Proteins/metabolism , Hedgehog Proteins/genetics , Mice, Inbred C57BL , Osteoblasts/metabolism , Osteogenesis/genetics , Microtubule-Associated Proteins/metabolism
7.
J Physiol ; 2024 Aug 09.
Article in English | MEDLINE | ID: mdl-39119811

ABSTRACT

Until recently, research on the pathogenesis and treatment of osteoporosis and sarcopenia has primarily focused on local and systemic humoral mechanisms, often overlooking neuronal mechanisms. However, there is a growing body of literature on the neuronal regulation of bone and skeletal muscle structure and function, which may provide insights into the pathogenesis of osteosarcopenia. This review aims to integrate these neuronal regulatory mechanisms to form a comprehensive understanding and inspire future research that could uncover novel strategies for preventing and treating osteosarcopenia. Specifically, the review explores the functional adaptation of weight-bearing bone to mechanical loading throughout evolutionary development, from Wolff's law and Frost's mechanostat theory to the mosaic hypothesis, which emphasizes neuronal regulation. The recently introduced bone osteoregulation reflex points to the importance of the osteocytic mechanoreceptive network as a receptor in this neuronal regulation mechanism. Finally, the review focuses on the bone myoregulation reflex, which is known as a mechanism by which bone loading regulates muscle functions neuronally. Considering the ageing-related regressive changes in the nerve fibres that provide both structural and functional regulation in bone and skeletal muscle tissue and the bone and muscle tissues they innervate, it is suggested that neuronal mechanisms might play a central role in explaining osteosarcopenia in older adults.

8.
Mol Med ; 30(1): 10, 2024 Jan 12.
Article in English | MEDLINE | ID: mdl-38216878

ABSTRACT

BACKGROUND: Increased oxidative stress contributes to enhanced osteoclastogenesis and age-related bone loss. Melatonin (MT) is an endogenous antioxidant and declines with aging. However, it was unclear whether the decline of MT was involved in the enhanced osteoclastogenesis during the aging process. METHODS: The plasma level of MT, oxidative stress status, bone mass, the number of bone marrow-derived monocytes (BMMs) and its osteoclastogenesis were analyzed in young (3-month old) and old (18-month old) mice (n = 6 per group). In vitro, BMMs isolated from aged mice were treated with or without MT, followed by detecting the change of osteoclastogenesis and intracellular reactive oxygen species (ROS) level. Furthermore, old mice were treated with MT for 2 months to investigate the therapeutic effect. RESULTS: The plasma level of MT was markedly lower in aged mice compared with young mice. Age-related decline in MT was accompanied by enhanced oxidative stress, osteoclastogenic potential and bone loss. MT intervention significantly suppressed the receptor activator of nuclear factor-κB ligand (RANKL)-induced osteoclastogenesis, decreased intracellular ROS and enhanced antioxidant capacity of BMMs from aged mice. MT supplementation significantly attenuated oxidative stress, osteoclastogenesis, bone loss and deterioration of bone microstructure in aged mice. CONCLUSIONS: These results suggest that age-related decline of MT enhanced osteoclastogenesis via disruption of redox homeostasis. MT may serve as a key regulator in osteoclastogenesis and bone homeostasis, thereby highlighting its potential as a preventive agent for age-related bone loss.


Subject(s)
Melatonin , Osteoporosis , Animals , Mice , Osteogenesis , Osteoclasts/metabolism , Melatonin/pharmacology , Reactive Oxygen Species , Antioxidants/pharmacology , Oxidation-Reduction , Homeostasis , Cell Differentiation , NF-kappa B/metabolism
9.
Am J Physiol Heart Circ Physiol ; 326(3): H845-H856, 2024 03 01.
Article in English | MEDLINE | ID: mdl-38305753

ABSTRACT

Myocardial infarction (MI) and osteoporotic fracture (Fx) are two of the leading causes of mortality and morbidity worldwide. Although these traumatic injuries are treated as if they are independent, there is epidemiological evidence linking the incidence of Fx and MI, thus raising the question of whether each of these events can actively influence the risk of the other. Atherosclerotic cardiovascular disease and osteoporosis, the chronic conditions leading to MI and Fx, are known to have shared pathoetiology. Furthermore, sustained systemic inflammation after traumas such as MI and Fx has been shown to exacerbate both underlying chronic conditions. However, the effects of MI and Fx outside their own system have not been well studied. The sympathetic nervous system (SNS) and the complement system initiate a systemic response after MI that could lead to subsequent changes in bone remodeling through osteoclasts. Similarly, SNS and complement system activation following fracture could lead to heart tissue damage and exacerbate atherosclerosis. To determine whether damaging bone-heart cross talk may be important comorbidity following Fx or MI, this review details the current understanding of bone loss after MI, cardiovascular damage after Fx, and possible shared underlying mechanisms of these processes.


Subject(s)
Atherosclerosis , Myocardial Infarction , Osteoporotic Fractures , Humans , Osteoporotic Fractures/epidemiology , Heart , Chronic Disease
10.
Breast Cancer Res Treat ; 206(1): 57-65, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38561578

ABSTRACT

PURPOSE: We aimed to provide long-term bone mineral density (BMD) data on early breast cancer patients of the BREX (Breast Cancer and Exercise) study. The effects of exercise and adjuvant endocrine treatment 10 years after randomization were analyzed, with special emphasis on aromatase inhibitor (AI) therapy discontinuation at 5 years. METHODS: The BREX study randomized 573 pre- and postmenopausal breast cancer patients into a 1-year supervised exercise program or a control group. 372 patients were included into the current follow-up analysis. BMD (g/cm2) was measured by dual-energy X-ray absorptiometry at lumbar spine (LS), left femoral neck (FN), and the total hip. Separate groups were displayed according to baseline menopausal status, and whether the patient had discontinued AI therapy at 5 years or not. RESULTS: The BMD change from 5 to 10 years did not significantly differ between the two randomized arms. AI discontinuation at 5 years had statistically significant BMD effects. The FN BMD continued to decrease in patients who discontinued AI therapy during the first 5-year off-treatment, but the decrease was three-fold less than in patients without AI withdrawal (- 1.4% v. - 3.8%). The LS BMD increased (+ 2.6%) in patients with AI withdrawal during the first 5 years following treatment discontinuation, while a BMD decrease (-1.3%) was seen in patients without AI withdrawal. CONCLUSION: This study is to our knowledge the first to quantify the long-term impact of AI withdrawal on BMD. Bone loss associated with AI therapy seems partially reversible after stopping treatment. TRIAL REGISTRATION: http://www. CLINICALTRIALS: gov/ (Identifier Number NCT00639210).


Subject(s)
Aromatase Inhibitors , Bone Density , Breast Neoplasms , Humans , Female , Bone Density/drug effects , Breast Neoplasms/drug therapy , Aromatase Inhibitors/adverse effects , Aromatase Inhibitors/therapeutic use , Middle Aged , Follow-Up Studies , Adult , Aged , Absorptiometry, Photon , Postmenopause
11.
J Transl Med ; 22(1): 811, 2024 Sep 02.
Article in English | MEDLINE | ID: mdl-39223648

ABSTRACT

BACKGROUND: Mechanical unloading-induced bone loss threatens prolonged spaceflight and human health. Recent studies have confirmed that osteoporosis is associated with a significant reduction in bone microvessels, but the relationship between them and the underlying mechanism under mechanical unloading are still unclear. METHODS: We established a 2D clinostat and hindlimb-unloaded (HLU) mouse model to simulate unloading in vitro and in vivo. Micro-CT scanning was performed to assess changes in the bone microstructure and mass of the tibia. The levels of CD31, Endomucin (EMCN) and histone deacetylase 6 (HDAC6) in tibial microvessels were detected by immunofluorescence (IF) staining. In addition, we established a coculture system of microvascular endothelial cells (MVECs) and osteoblasts, and qRT‒PCR or western blotting was used to detect RNA and protein expression; cell proliferation was detected by CCK‒8 and EdU assays. ChIP was used to detect whether HDAC6 binds to the miRNA promoter region. RESULTS: Bone mass and bone microvessels were simultaneously significantly reduced in HLU mice. Furthermore, MVECs effectively promoted the proliferation and differentiation of osteoblasts under coculture conditions in vitro. Mechanistically, we found that the HDAC6 content was significantly reduced in the bone microvessels of HLU mice and that HDAC6 inhibited the expression of miR-375-3p by reducing histone acetylation in the miR-375 promoter region in MVECs. miR-375-3p was upregulated under unloading and it could inhibit MVEC proliferation by directly targeting low-density lipoprotein-related receptor 5 (LRP5) expression. In addition, silencing HDAC6 promoted the miR-375-3p/LRP5 pathway to suppress MVEC proliferation under mechanical unloading, and regulation of HDAC6/miR-375-3p axis in MVECs could affect osteoblast proliferation under coculture conditions. CONCLUSION: Our study revealed that disuse-induced bone loss may be closely related to a reduction in the number of bone microvessels and that the modulation of MVEC function could improve bone loss induced by unloading. Mechanistically, the HDAC6/miR-375-3p/LRP5 pathway in MVECs might be a promising strategy for the clinical treatment of unloading-induced bone loss.


Subject(s)
Cell Proliferation , Endothelial Cells , Epigenesis, Genetic , Hindlimb Suspension , Histone Deacetylase 6 , MicroRNAs , Microvessels , Osteoblasts , Animals , MicroRNAs/metabolism , MicroRNAs/genetics , Endothelial Cells/metabolism , Histone Deacetylase 6/metabolism , Histone Deacetylase 6/genetics , Microvessels/pathology , Osteoblasts/metabolism , Mice, Inbred C57BL , Mice , Coculture Techniques , Cell Differentiation , Male , Bone Resorption/pathology , Base Sequence , Histone Deacetylase Inhibitors/pharmacology
12.
Microb Pathog ; 194: 106825, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39074517

ABSTRACT

Short beak and dwarfism syndrome (SBDS) is attributed to Novel Goose Parvovirus (NGPV), which has inflicted significant economic losses on farming in China. Despite its significant impact, limited research has been conducted on the pathogenesis of this disease. The SD strain, a parvovirus variant isolated from ducks in Shandong province, was identified and characterized in our study. Phylogenetic analysis and sequence comparisons confirmed the classification of the SD strain as a member of NGPV. Based on this information, we established an animal model of SBDS by inoculating Cherry Valley ducks with the SD strain. Our findings indicate that infection with the SD strain leads to a reduction in body weight, beak length, width, and tibia length. Notably, significant histopathological alterations were observed in the thymus, spleen, and intestine of the infected ducks. Furthermore, the SD strain induces bone disorders and inflammatory responses. To evaluate the impact of NGPV on intestinal homeostasis, we performed 16S rDNA sequencing and gas chromatography to analyze the composition of intestinal flora and levels of short-chain fatty acids (SCFAs) in the cecal contents. Our findings revealed that SD strain infection induces dysbiosis in cecal microbial and a decrease in SCFAs production. Subsequent analysis revealed a significant correlation between bacterial genera and the clinical symptoms in NGPV SD infected ducks. Our research providing novel insights into clinical pathology of NGPV in ducks and providing a foundation for the research of NGPV treatment targeting gut microbiota.


Subject(s)
Ducks , Parvoviridae Infections , Phylogeny , Poultry Diseases , Animals , Ducks/virology , Parvoviridae Infections/veterinary , Parvoviridae Infections/virology , Parvoviridae Infections/pathology , Poultry Diseases/virology , Poultry Diseases/pathology , China , Parvovirinae/genetics , Parvovirinae/isolation & purification , Parvovirinae/pathogenicity , Gastrointestinal Microbiome , Intestines/pathology , Intestines/virology , RNA, Ribosomal, 16S/genetics , Disease Models, Animal , Dysbiosis/virology , Dysbiosis/veterinary , Fatty Acids, Volatile/metabolism , Geese/virology , Spleen/pathology , Spleen/virology , Beak/virology , Beak/pathology
13.
Calcif Tissue Int ; 114(3): 276-285, 2024 03.
Article in English | MEDLINE | ID: mdl-38261009

ABSTRACT

Hypertension and osteoporosis are common geriatric diseases, sharing similar risk factors. This study aims to investigate this association and explore relatively mixed variables. Our study included 12,787 eligible participants from the National Health and Nutrition Examination Survey (NHANES) 2005-2018. Included participants had valid data on hypertension and osteoporosis, without tumors, liver diseases, gout or thyroid diseases. We explored the association between hypertension and osteoporosis by logistic regression and examined blood pressure and BMD/BMC by linear and non-linear regression. Moreover, we used machine learning models to predict the importance of various factors in the occurrence of osteoporosis and evaluated causality by mendelian randomization. Our study found that osteoporosis is significantly associated with hypertension [OR 2.072 (95% CI 2.067-2.077), p < 0.001]. After adjusting for co-variances, the association remained significant [OR 1.223 (95% CI 1.220-1.227), p < 0.001]. Our study showed that osteoporosis is positively associated with hypertension in the US population. A variety of factors influence this relationship. Specific regulatory mechanisms and confounding factors need to be further investigated.


Subject(s)
Hypertension , Osteoporosis , Adult , Humans , Aged , Bone Density/physiology , Blood Pressure , Nutrition Surveys , Cross-Sectional Studies , Osteoporosis/epidemiology , Hypertension/epidemiology
14.
Calcif Tissue Int ; 115(1): 14-22, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38744723

ABSTRACT

Increased ß-adrenergic receptor activity has been hypothesized to cause bone loss in those with dementia. We investigated the effect of long-term ß-blocker use on rate of bone loss in older adults with dementia. We used a linear mixed-effects model to estimate the relationship between long-term ß-blocker use and rate of bone loss in participants from the Health Aging and Body Composition study. Records of 1198 participants were analyzed, 44.7% were men. Among the men, 25.2% had dementia and 20.2% were on ß-blockers, while in the women, 22.5% had dementia and 16.6% received ß-blockers. In the 135 men with dementia, 23 were taking ß-blockers, while 15 of 149 women with dementia were using ß-blockers. In men with dementia, ß-blocker users had 0.00491 g/cm2 less bone mineral density (BMD) loss per year at the femoral neck (i.e., 0.63% less loss per year) than non-users (p < 0.05). No differences were detected in women with or without dementia and men without dementia. ß-blockers may be protective by slowing down bone loss in older men with dementia.


Subject(s)
Adrenergic beta-Antagonists , Bone Density , Dementia , Humans , Male , Female , Adrenergic beta-Antagonists/therapeutic use , Adrenergic beta-Antagonists/pharmacology , Aged , Bone Density/drug effects , Dementia/drug therapy , Aged, 80 and over , Osteoporosis/drug therapy , Bone and Bones/drug effects , Bone and Bones/metabolism
15.
Clin Sci (Lond) ; 138(12): 725-739, 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38840496

ABSTRACT

OBJECTIVES: Clinical studies have confirmed that galectin-3 (Gal-3) levels are significantly elevated in periodontitis patients. The present study aimed to explore the effects of Gal-3 inhibition on periodontal inflammation in vitro and in vivo. METHODS: Human gingival fibroblasts (HGFs) with or without Gal-3 knockdown were stimulated by lipopolysaccharide (LPS), and a ligation-induced mouse periodontitis model treated with a Gal-3 inhibitor was established. Hematoxylin-eosin (H&E) and immunohistochemistry (IHC) staining were used to evaluate Gal-3 levels in gingival tissues. Quantitative real-time polymerase chain reaction (qRT-PCR) and enzyme-linked immunosorbent assay (ELISA) were used to detect Gal-3, interleukin (IL)-6, IL-8, and C-C motif ligand 2 (CCL2) expression. Immunofluorescence and western blotting were used to detect NF-κB and ERK signaling pathway activation. Micro-computed tomography was used to analyse the degree of bone loss. RESULTS: Gal-3 was significantly up-regulated in inflamed gingival tissues and LPS-induced HGFs. Gal-3 knockdown markedly decreased LPS-induced IL-6, IL-8, and CCL2 expression and blocked NF-κB and ERK signaling pathway activation in HGFs. In the mouse periodontitis model, Gal-3 inhibition significantly alleviated IL-1ß and IL-6 infiltration in gingival tissue and mitigated periodontal bone loss. CONCLUSIONS: Gal-3 inhibition notably alleviated periodontal inflammation partly through blocking NF-κB and ERK signaling pathway activation.


Subject(s)
Fibroblasts , Galectin 3 , Gingiva , Lipopolysaccharides , Periodontitis , Animals , Humans , Male , Mice , Cells, Cultured , Disease Models, Animal , Fibroblasts/metabolism , Fibroblasts/drug effects , Galectin 3/metabolism , Galectin 3/antagonists & inhibitors , Galectin 3/genetics , Gingiva/metabolism , Gingiva/pathology , Mice, Inbred C57BL , NF-kappa B/metabolism , Periodontitis/metabolism , Periodontitis/drug therapy , Signal Transduction/drug effects
16.
J Bone Miner Metab ; 42(3): 290-301, 2024 May.
Article in English | MEDLINE | ID: mdl-38796648

ABSTRACT

INTRODUCTION: Osteoporosis is a significant health concern characterized by weak and porous bones, particularly affecting menopausal women aged 50 and above, leading to increased risk of hip fractures and associated morbidity and mortality. MATERIALS AND METHODS: We conducted a study to assess the efficacy of single-strain versus mixed-strain probiotic supplementation on bone health using an ovariectomy (OVX) rat model of induced bone loss. The probiotics evaluated were Lactobacillus helveticus (L. helveticus), Bifidobacterium longum (B. longum), and a combination of both. Rats were divided into five groups: SHAM (Control negative), OVX (Control positive), OVX +L. helveticus, OVX + B. longum, and OVX + mixed L. helveticus and B. longum. Daily oral administration of probiotics at 10^8-10^9 CFU/mL began two weeks post-surgery and continued for 16 weeks. RESULTS: Both single-strain and mixed-strain probiotic supplementation upregulated expression of osteoblastic genes (BMP- 2, RUNX-2, OSX), increased serum osteocalcin (OC) levels, and improved bone formation parameters. Serum C-terminal telopeptide (CTX) levels and bone resorption parameters were reduced. However, the single-strain supplementation demonstrated superior efficacy compared to the mixed-strain approach. CONCLUSION: Supplementation with B. longum and L. helveticus significantly reduces bone resorption and improves bone health in OVX rats, with single-strain supplementation showing greater efficacy compared to a mixed-strain combination. These findings highlight the potential of probiotics as a therapeutic intervention for osteoporosis, warranting further investigation in human studies.


Subject(s)
Bone Density , Femur , Lactobacillus helveticus , Osteoblasts , Ovariectomy , Probiotics , RNA, Messenger , Animals , Probiotics/pharmacology , Probiotics/administration & dosage , Female , Rats , Osteoblasts/metabolism , Femur/metabolism , RNA, Messenger/metabolism , RNA, Messenger/genetics , Dietary Supplements , Rats, Sprague-Dawley , Bifidobacterium longum , Osteoporosis/metabolism , Osteocalcin/blood , Osteocalcin/metabolism , Gene Expression Regulation , Core Binding Factor Alpha 1 Subunit/metabolism , Core Binding Factor Alpha 1 Subunit/genetics
17.
J Pathol ; 260(2): 137-147, 2023 06.
Article in English | MEDLINE | ID: mdl-36811349

ABSTRACT

Wnt signaling is a positive regulator of bone formation through the induction of osteoblast differentiation and down-regulation of osteoclast differentiation. We previously reported that muramyl dipeptide (MDP) increases bone volume by increasing osteoblast activity and attenuating osteoclast activity in receptor activator of nuclear factor-κB ligand (RANKL)-induced osteoporotic model mice. In this study, we investigated whether MDP could alleviate post-menopausal osteoporosis through Wnt signaling regulation in an ovariectomy (OVX)-induced mouse osteoporosis model. MDP-administered OVX mice exhibited higher bone volume and bone mineral density than mice of the control group. MDP significantly increased P1NP in the serum of OVX mice, implying increased bone formation. The expression of pGSK3ß and ß-catenin in the distal femur of OVX mice was lower than that in the distal femur of sham-operated mice. Yet, the expression of pGSK3ß and ß-catenin was increased in MDP-administered OVX mice compared with OVX mice. In addition, MDP increased the expression and transcriptional activity of ß-catenin in osteoblasts. MDP inhibited the proteasomal degradation of ß-catenin via the down-regulation of its ubiquitination by GSK3ß inactivation. When osteoblasts were pretreated with Wnt signaling inhibitors, DKK1 or IWP-2, the induction of pAKT, pGSK3ß, and ß-catenin was not observed. In addition, nucleotide oligomerization domain-containing protein 2-deficient osteoblasts were not sensitive to MDP. MDP-administered OVX mice exhibited fewer tartrate-resistant acid phosphatase (TRAP)-positive cells than did OVX mice, attributed to a decrease in the RANKL/OPG ratio. In conclusion, MDP alleviates estrogen deficiency-induced osteoporosis through canonical Wnt signaling and could be an effective therapeutic for the treatment of post-menopausal bone loss. © 2023 The Pathological Society of Great Britain and Ireland.


Subject(s)
Osteoporosis, Postmenopausal , Osteoporosis , Humans , Female , Mice , Animals , Wnt Signaling Pathway , Acetylmuramyl-Alanyl-Isoglutamine/metabolism , Acetylmuramyl-Alanyl-Isoglutamine/pharmacology , Acetylmuramyl-Alanyl-Isoglutamine/therapeutic use , Osteoporosis/drug therapy , Osteoporosis/etiology , Osteoporosis/prevention & control , Bone Density , Osteoporosis, Postmenopausal/drug therapy , Osteoporosis, Postmenopausal/prevention & control , Osteoporosis, Postmenopausal/metabolism , Cell Differentiation , Osteoclasts/metabolism , Osteoblasts/pathology , Estrogens/metabolism
18.
J Periodontal Res ; 59(2): 280-288, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38226427

ABSTRACT

OBJECTIVE: The objective of the study was to evaluate the expression of oxytocin receptors in normal and inflamed gingiva, as well as the effects of systemic administration of oxytocin in bone loss and gum inflammatory mediators in a rat model of experimental periodontitis. BACKGROUND DATA: Current evidence supports the hypothesis of a disbalance between the oral microbiota and the host's immune response in the pathogenesis of periodontitis. Increased complexity of the microbial biofilm present in the periodontal pocket leads to local production of nitrogen and oxygen-reactive species, cytokines, chemokines, and other proinflammatory mediators which contribute to periodontal tissue destruction and bone loss. Oxytocin has been suggested to participate in the modulation of immune and inflammatory processes. We have previously shown that oxytocin, nitric oxide, and endocannabinoid system interact providing a mechanism of regulation for systemic inflammation. Here, we aimed at investigating not only the presence and levels of expression of oxytocin receptors on healthy and inflamed gingiva, but also the effects of oxytocin treatment on alveolar bone loss, and systemic and gum expression of inflammatory mediators involved in periodontal tissue damage using ligature-induced periodontitis. Therefore, anti-inflammatory strategies oriented at modulating the host's immune response could be valuable adjuvants to the main treatment of periodontal disease. METHODS: We used an animal model of ligature-induced periodontitis involving the placement of a linen thread (Barbour flax 100% linen suture, No. 50; size 2/0) ligature around the neck of first lower molars of adult male rats. The ligature was left in place during the entire experiment (7 days) until euthanasia. Animals with periodontitis received daily treatment with oxytocin (OXT, 1000 µg/kg, sc.) or vehicle and/or atosiban (3 mg/kg, sc.), an antagonist of oxytocin receptors. The distance between the cement-enamel junction and the alveolar bone crest was measured in stained hemimandibles in the long axis of both buccal and lingual surfaces of both inferior first molars using a caliper. TNF-α levels in plasma were determined using specific rat enzyme-linked immunosorbent assays (ELISA). OXT receptors, IL-6, IL-1ß, and TNF-α expression were determined in gingival tissues by semiquantitative or real-time PCR. RESULTS: We show that oxytocin receptors are expressed in normal and inflamed gingival tissues in male rats. We also show that the systemic administration of oxytocin prevents the experimental periodontitis-induced increased gum expression of oxytocin receptors, TNF-α, IL-6, and IL-1ß (p < .05). Furthermore, we observed a reduction in bone loss in rats treated with oxytocin in our model. CONCLUSIONS: Our results demonstrate that oxytocin is a novel and potent modulator of the gingival inflammatory process together with bone loss preventing effects in an experimental model of ligature-induced periodontitis.


Subject(s)
Alveolar Bone Loss , Periodontitis , Rats , Male , Animals , Oxytocin/therapeutic use , Oxytocin/metabolism , Tumor Necrosis Factor-alpha/metabolism , Receptors, Oxytocin/metabolism , Disease Models, Animal , Periodontitis/metabolism , Gingiva/metabolism , Alveolar Bone Loss/drug therapy , Alveolar Bone Loss/prevention & control , Alveolar Bone Loss/etiology , Alveolar Process/metabolism , Inflammation Mediators/metabolism
19.
J Periodontal Res ; 59(1): 195-203, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37947141

ABSTRACT

OBJECTIVE: To investigate, in vivo, the effect of local application of Resolvin E1 (RvE1) on the bone regeneration of critical-size defects (CSDs) in Wistar rats utilizing gene expression and micro-computed tomographic (micro-CT) analysis. BACKGROUND: The inflammation-resolving actions of RvE1 are well established. The molecular mechanism of its bone-regenerative actions has been of significant interest in recent years; however, there is limited information regarding the same. MATERIALS AND METHODS: Thirty Wistar rats with a 5 mm induced critical-size calvarial defect were randomly allocated into four groups: no treatment/negative control (n = 5), treatment using bovine bone grafts/positive control (n = 5), treatment using local delivery of RvE1 (n = 11) and treatment using RvE1 mixed with bovine bone graft (n = 9). After 4 weeks, RNA isolation, complementary DNA synthesis and real-time polymerase chain reaction were used for genetic expression of alkaline phosphatase (ALP), osteocalcin (OCN) and osteopontin (OPN). The rats were sacrificed after 12 weeks and micro-CT imaging was performed to analyse the characteristics of the newly formed bone (NFB). The data were analysed using ANOVA and the least significant difference tests (α ≤ .05). RESULTS: The RvE1 + bovine graft group had statistically highest mean NFB (20.75 ± 2.67 mm3 ) compared to other groups (p < .001). Similarly, RvE1 + bovine graft group also demonstrated statistically highest mean genetic expression of ALP (31.71 ± 2.97; p = .008) and OPN (34.78 ± 3.62; p < .001) compared to negative control and RvE1 groups. CONCLUSION: Resolvin E1 with adjunct bovine bone graft demonstrated an enhanced bone regeneration compared to RvE1 or bovine graft alone in the calvarial defect of Wistar rats.


Subject(s)
Bone Regeneration , Eicosapentaenoic Acid , Eicosapentaenoic Acid/analogs & derivatives , Rats , Animals , Cattle , Rats, Wistar , X-Ray Microtomography , Bone Regeneration/genetics , Eicosapentaenoic Acid/pharmacology , Gene Expression
20.
J Periodontal Res ; 2024 Mar 24.
Article in English | MEDLINE | ID: mdl-38523058

ABSTRACT

OBJECTIVE: This study aimed to investigate the responses of periodontal environment to hormone replacement therapy (HRT) in postmenopausal women with or without periodontitis. BACKGROUND: HRT is a common and effective strategy for controlling menopausal symptoms, while the changes of periodontal environment under it, particularly in postmenopausal women with periodontitis, remain unclear. METHODS: As a prospective cohort study, a total of 97 postmenopausal women receiving HRT were screened, including 47 with and 50 without periodontitis. Correspondingly, 97 women did not receiving HRT were screened as controls during the same period. The full-mouth sulcus bleeding index (SBI), bleeding on probing (BOP), probing pocket depth (PPD), and clinical attachment level (CAL) were measured using periodontal probes. The levels of interleukin-6 (IL-6) and tumor necrosis factor α (TNF-α) in the gingival crevicular fluid were measured using enzyme-linked immunosorbent assay. In addition, cone beam computed tomography was performed to measure the alveolar bone height (ABH) and bone mineral density (BMD). RESULTS: In postmenopausal women without periodontitis, no significantly changes on periodontal parameters were observed after HRT. In women with stage II periodontitis, SBI, BOP, IL-6, and TNF-α were significant decreased after one year and two years of HRT. Compared to the controls, women with stage II periodontitis who underwent HRT had significantly lower CAL and ABH and higher BMD in the second year. The incidence of at least one site with CAL increase ≥1 mm between baseline and 2 years was significantly lower in the HRT group than in the control group in women with stage II periodontitis. In addition, HRT was significantly associated with a decrease in SBI, BOP, IL-6, and TNF-α in the first year and with a decrease in CAL, SBI, BOP, IL-6, and ABH and an increase in BMD in the second year. CONCLUSIONS: In postmenopausal women with stage II periodontitis, HRT is associated with the alleviation of inflammation within two years and the remission of alveolar bone loss in the second year. HRT appears to decrease the incidence of CAL increase ≥1 mm within 2 years in women with periodontitis by inhibiting inflammation and alveolar bone loss.

SELECTION OF CITATIONS
SEARCH DETAIL