Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 376
Filter
1.
EMBO Rep ; 25(4): 1962-1986, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38548973

ABSTRACT

Oncogenic intercellular signaling is regulated by extracellular vesicles (EVs), but the underlying mechanisms remain mostly unclear. Since TCTP (translationally controlled tumor protein) is an EV component, we investigated whether it has a role in genotoxic stress signaling and malignant transformation. By generating a Tctp-inducible knockout mouse model (Tctp-/f-), we report that Tctp is required for genotoxic stress-induced apoptosis signaling via small EVs (sEVs). Human breast cancer cells knocked-down for TCTP show impaired spontaneous EV secretion, thereby reducing sEV-dependent malignant growth. Since Trp53-/- mice are prone to tumor formation, we derived tumor cells from Trp53-/-;Tctp-/f- double mutant mice and describe a drastic decrease in tumori-genicity with concomitant decrease in sEV secretion and content. Remarkably, Trp53-/-;Tctp-/f- mice show highly prolonged survival. Treatment of Trp53-/- mice with sertraline, which inhibits TCTP function, increases their survival. Mechanistically, TCTP binds DDX3, recruiting RNAs, including miRNAs, to sEVs. Our findings establish TCTP as an essential protagonist in the regulation of sEV-signaling in the context of apoptosis and tumorigenicity.


Subject(s)
Biomarkers, Tumor , Neoplasms , Mice , Humans , Animals , Biomarkers, Tumor/metabolism , Neoplasms/pathology , Apoptosis , Signal Transduction
2.
J Cell Mol Med ; 28(4): e18145, 2024 02.
Article in English | MEDLINE | ID: mdl-38332517

ABSTRACT

Base editors are emerging as powerful tools to correct single-nucleotide variants and treat genetic diseases. In particular, the adenine base editors (ABEs) exhibit robust and accurate adenine-to-guanidine editing capacity and have entered the clinical stage for cardiovascular therapy. Despite the tremendous progress using ABEs to treat heart diseases, a standard technical route toward successful ABE-based therapy remains to be fully established. In this study, we harnessed adeno-associated virus (AAV) and a mouse model carrying the cardiomyopathy-causing Lmna c.1621C > T mutation to demonstrate key steps and concerns in designing a cardiac ABE experiment in vivo. We found DeepABE as a reliable deep-learning-based model to predict ABE editing outcomes in the heart. Screening of sgRNAs for a Cas9 mutant with relieved protospacer adjacent motif (PAM) allowed the reduction of bystander editing. The ABE editing efficiency can be significantly enhanced by modifying the TadA and Cas9 variants, which are core components of ABEs. The ABE systems can be delivered into the heart via either dual AAV or all-in-one AAV vectors. Together, this study showcased crucial technical considerations in designing an ABE system for the heart and pointed out major challenges in further improvement of this new technology for gene therapy.


Subject(s)
Adenine , Gene Editing , Animals , Mice , Genetic Therapy , Mutation/genetics , RNA, Guide, CRISPR-Cas Systems
3.
Biochem Biophys Res Commun ; 695: 149425, 2024 02 05.
Article in English | MEDLINE | ID: mdl-38211533

ABSTRACT

OBJECTIVES: Head and neck tumor patients may develop post-radiotherapy diseases after radiotherapy treatment. And radiotherapy can elicit radiation-induced bystander effect, wherein extracellular vesicles (EVs) play a crucial role. For normal parts of the body that have not been directly irradiated, the effect of EVs on them needs to be further explored. This study aims to investigate the functions of plasma-derived EVs in regulating normal osteoblasts during radiation-induced bystander effects. METHODS AND MATERIALS: Rat plasma-derived EVs were isolated and identified firstly, followed by an evaluation of their intracellular biological effects on normal osteoblasts in vitro. Transcriptome sequencing analysis and confirmations were performed to identify potential mechanisms. RESULTS: Irradiated plasma-derived EVs were found to enhance osteoblast proliferation, migration, and cell cycle progression, concurrently suppressing the expression of osteogenesis-related genes and proteins. Furthermore, these EVs attenuated the expression of osteogenesis and oxidative stress resistance related genes, while upregulating the PI3K-AKT pathway and intracellular reactive oxygen species in osteoblasts. CONCLUSIONS: Irradiated plasma-derived EVs could alter the biological effects in osteoblasts, which is closely associated with the levels of GPX1 and the PI3K-AKT signaling pathway. This suggests that plasma-derived EVs serve as a crucial factor contributing to radiation-induced bystander effect in osteoblasts.


Subject(s)
Bystander Effect , Extracellular Vesicles , Humans , Rats , Animals , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Osteoblasts/metabolism , Extracellular Vesicles/metabolism
4.
J Theor Biol ; 594: 111928, 2024 Nov 07.
Article in English | MEDLINE | ID: mdl-39168369

ABSTRACT

Viral coinfections are responsible for a significant portion of cases of patients hospitalized with influenza-like illness. As our awareness of viral coinfections has increased, researchers have started to experimentally examine some of the virus-virus interactions underlying these infections. One mechanism of interaction between viruses is through the innate immune response. This seems to occur primarily through the interferon response, which generates an antiviral state in nearby uninfected cells, a phenomenon know as the bystander effect. Here, we develop a mathematical model of two viruses interacting through the bystander effect. We find that when the rate of removal of cells to the protected state is high, growth of the first virus is suppressed, while the second virus enjoys sole access to the protected cells, enhancing its growth. Conversely, growth of the second virus can be fully suppressed if its ability to infect the protected cells is limited.


Subject(s)
Bystander Effect , Coinfection , Humans , Coinfection/immunology , Coinfection/virology , Virus Diseases/immunology , Models, Biological , Immunity, Innate , Influenza, Human/immunology , Influenza, Human/virology
5.
J Oncol Pharm Pract ; 30(5): 907-918, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38651308

ABSTRACT

OBJECTIVE: There are currently 11 antibody-drug conjugates (ADC) that are FDA approved for use in oncologic disease states, with many more in the pipeline. The authors aim to review the pharmacokinetic profiles of the components of ADCs to engage pharmacist practitioners in practical considerations in the care of patients. This article provides an overview on the use of ADCs in the setting of organ dysfunction, drug-drug interactions, and management of on- and off-target adverse effects. DATA SOURCES: A systematic search of the literature on ADCs through September 2023 was conducted. Clinical trials as well as articles on ADC design and functional components, adverse effects, and pharmacokinetics were reviewed. Reviewed literature included prescribing information as well as tertiary sources and primary literature. DATA SUMMARY: A total of 11 ADCs were reviewed for the purpose of this article. A description of the mechanism of action and structure of ADCs is outlined, and a table containing description of each currently FDA-approved ADC is included. Various mechanisms of ADC toxicity are reviewed, including how ADC structure may be implicated. CONCLUSION: It is imperative that pharmacist clinicians understand the design and function of each component of an ADC to continue to assess new approvals for use in oncology patients. Understanding the design of the ADC can help a pharmacy practitioner compare and contrast adverse effect profiles to support their multidisciplinary teams and to engage patients in education and management of their care.


Subject(s)
Immunoconjugates , Pharmacists , Humans , Immunoconjugates/therapeutic use , Immunoconjugates/adverse effects , Immunoconjugates/pharmacokinetics , Drug Interactions , Neoplasms/drug therapy , Antineoplastic Agents/adverse effects , Antineoplastic Agents/therapeutic use , Drug Design
6.
Radiat Environ Biophys ; 63(3): 337-350, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39115696

ABSTRACT

Little is known regarding radiation-induced matrikines and the possible degradation of extracellular matrix following therapeutic irradiation. The goal of this study was to determine if irradiation can cut collagen proteins at specific sites, inducing potentially biologically active peptides against cartilage cells. Chondrocytes cultured as 3D models were evaluated for extracellular matrix production. Bystander molecules were analyzed in vitro in the conditioned medium of X-irradiated chondrocytes. Preferential breakage sites were analyzed in collagen polypeptide by mass spectrometry and resulting peptides were tested against chondrocytes. 3D models of chondrocytes displayed a light extracellular matrix able to maintain the structure. Irradiated and bystander chondrocytes showed a surprising radiation sensitivity at low doses, characteristic of the presence of bystander factors, particularly following 0.1 Gy. The glycine-proline peptidic bond was observed as a preferential cleavage site and a possible weakness of the collagen polypeptide after irradiation. From the 46 collagen peptides analyzed against chondrocytes culture, 20 peptides induced a reduction of viability and 5 peptides induced an increase of viability at the highest concentration between 0.1 and 1 µg/ml. We conclude that irradiation promoted a site-specific degradation of collagen. The potentially resulting peptides induce negative or positive regulations of chondrocyte growth. Taken together, these results suggest that ionizing radiation causes a degradation of cartilage proteins, leading to a functional unbalance of cartilage homeostasis after exposure, contributing to cartilage dysfunction.


Subject(s)
Chondrocytes , Collagen , Chondrocytes/radiation effects , Chondrocytes/metabolism , Animals , Extracellular Matrix/metabolism , Extracellular Matrix/radiation effects , Pilot Projects , Cell Survival/radiation effects , Peptides , Cattle , Cells, Cultured
7.
Mol Ther ; 30(9): 2933-2941, 2022 09 07.
Article in English | MEDLINE | ID: mdl-35821638

ABSTRACT

Adenine base editors (ABEs) are novel genome-editing tools, and their activity has been greatly enhanced by eight additional mutations, thus named ABE8e. However, elevated catalytic activity was concomitant with frequent generation of bystander mutations. This bystander effect precludes its safe applications required in human gene therapy. To develop next-generation ABEs that are both catalytically efficient and positionally precise, we performed combinatorial engineering of NG-ABE8e. We identify a novel variant (NG-ABE9e), which harbors nine mutations. NG-ABE9e exhibits robust and precise base-editing activity in human cells, with more than 7-fold bystander editing reduction at some sites, compared with NG-ABE8e. To demonstrate its practical utility, we used NG-ABE9e to correct the frequent T17M mutation in Rhodopsin for autosomal dominant retinitis pigmentosa. It reduces bystander editing by ∼4-fold while maintaining comparable efficiency. NG-ABE9e possesses substantially higher activity than NG-ABEmax and significantly lower bystander editing than NG-ABE8e in rice. Therefore, this study provides a versatile and improved adenine base editor for genome editing.


Subject(s)
Adenine , Gene Editing , CRISPR-Cas Systems , Humans , Mutation
8.
Surg Today ; 53(5): 545-553, 2023 May.
Article in English | MEDLINE | ID: mdl-35576018

ABSTRACT

The "bystander effect" is a transmission phenomenon mediating communication from target to non-target cells, as well as cell-to-cell interactions between neighboring and distantly located cells. In this narrative review, we describe the fundamental and clinical significance of the bystander effect with respect to cell-to-cell interactions in carcinogenesis, therapeutic response, and tissue regeneration. In carcinogenesis, the bystander effect mediates communications between tumor microenvironments and non-malignant epithelial cells and has been suggested to impact heterogeneous tumorigenic cells in tumors and cancerized fields. In therapeutic response, the bystander effect mediates communications between drug-sensitive and drug-resistant cells and may transmit both drug efficacy and resistance. Therefore, control of therapeutic response transmission via the bystander effect might offer a promising future cancer treatment. Finally, in tissue regeneration, circulating cells and stromal cells may differentiate into various cells for the purpose of tissue regeneration under direction of the bystander effect arising from surrounding cells in a defective space. We hope that the findings we present will promote the development of innovative cancer therapies and tissue regeneration methodologies from the viewpoint of cell-to-cell interactions through the bystander effect.


Subject(s)
Bystander Effect , Neoplasms , Humans , Neoplasms/therapy , Cell Communication , Carcinogenesis , Tumor Microenvironment
9.
Int J Mol Sci ; 24(6)2023 Mar 07.
Article in English | MEDLINE | ID: mdl-36982199

ABSTRACT

The purpose of this review is to critically evaluate the effects of different stress factors on higher plants, with particular attention given to the typical and unique dose-dependent responses that are essential for plant growth and development. Specifically, this review highlights the impact of stress on genome instability, including DNA damage and the molecular, physiological, and biochemical mechanisms that generate these effects. We provide an overview of the current understanding of predictable and unique dose-dependent trends in plant survival when exposed to low or high doses of stress. Understanding both the negative and positive impacts of stress responses, including genome instability, can provide insights into how plants react to different levels of stress, yielding more accurate predictions of their behavior in the natural environment. Applying the acquired knowledge can lead to improved crop productivity and potential development of more resilient plant varieties, ensuring a sustainable food source for the rapidly growing global population.


Subject(s)
Plant Development , Plants , Plants/genetics , Food , Genomic Instability , Stress, Physiological/genetics
10.
Int J Mol Sci ; 24(4)2023 Feb 10.
Article in English | MEDLINE | ID: mdl-36835001

ABSTRACT

Radiation resistance and radiation-related side effects warrant research into alternative strategies in the application of this modality to cancer treatment. Designed in silico to improve the pharmacokinetics and anti-cancer properties of 2-methoxyestradiol, 2-ethyl-3-O-sulfamoyl-estra-1,3,5(10)16-tetraene (ESE-16) disrupts microtubule dynamics and induces apoptosis. Here, we investigated whether pre-exposure of breast cancer cells to low-dose ESE-16 would affect radiation-induced deoxyribonucleic acid (DNA) damage and the consequent repair pathways. MCF-7, MDA-MB-231, and BT-20 cells were exposed to sub-lethal doses of ESE-16 for 24 h before 8 Gy radiation. Flow cytometric quantification of Annexin V, clonogenic studies, micronuclei quantification, assessment of histone H2AX phosphorylation and Ku70 expression were performed to assess cell viability, DNA damage, and repair pathways, in both directly irradiated cells and cells treated with conditioned medium. A small increase in apoptosis was observed as an early consequence, with significant repercussions on long-term cell survival. Overall, a greater degree of DNA damage was detected. Moreover, initiation of the DNA-damage repair response was delayed, with a subsequent sustained elevation. Radiation-induced bystander effects induced similar pathways and were initiated via intercellular signaling. These results justify further investigation of ESE-16 as a radiation-sensitizing agent since pre-exposure appears to augment the response of tumor cells to radiation.


Subject(s)
Breast Neoplasms , DNA Damage , DNA Repair , Estrenes , Female , Humans , 2-Methoxyestradiol/analogs & derivatives , 2-Methoxyestradiol/pharmacology , Apoptosis , Breast Neoplasms/drug therapy , Breast Neoplasms/radiotherapy , Cell Line, Tumor , DNA Damage/drug effects , DNA Damage/radiation effects , DNA Repair/drug effects , DNA Repair/radiation effects , Estrenes/pharmacology , Estrenes/therapeutic use , Sulfonamides/pharmacology , Sulfonamides/therapeutic use
11.
Int J Mol Sci ; 24(22)2023 Nov 17.
Article in English | MEDLINE | ID: mdl-38003655

ABSTRACT

It is well established that cells, tissues, and organisms exposed to low doses of ionizing radiation can induce effects in non-irradiated neighbors (non-targeted effects or NTE), but the mechanisms remain unclear. This is especially true of the initial steps leading to the release of signaling molecules contained in exosomes. Voltage-gated ion channels, photon emissions, and calcium fluxes are all involved but the precise sequence of events is not yet known. We identified what may be a quantum entanglement type of effect and this prompted us to consider whether aspects of quantum biology such as tunneling and entanglement may underlie the initial events leading to NTE. We review the field where it may be relevant to ionizing radiation processes. These include NTE, low-dose hyper-radiosensitivity, hormesis, and the adaptive response. Finally, we present a possible quantum biological-based model for NTE.


Subject(s)
Bystander Effect , Signal Transduction , Bystander Effect/radiation effects , Radiation Tolerance , Radiation, Ionizing , Biology
12.
Zhongguo Zhong Yao Za Zhi ; 48(24): 6740-6748, 2023 Dec.
Article in Zh | MEDLINE | ID: mdl-38212034

ABSTRACT

This study observed the effects of Guiqi Yiyuan Ointment(GQYY) on the left lung subjecting to bystander effect of right lung injury induced by ~(12)C~(6+) beam in rats and decipher the underlying mechanism from NOD-like receptor protein 3(NLRP3)/apoptosis-associated speck-like protein containing a CARD(ASC)/cysteinyl aspartate specific proteinase-1(caspase-1) pathway. Wistar rats were randomized into 7 groups: blank, model, inhibitor [200 mg·kg~(-1), N-acetylcysteine(NAC)], western drug [140 mg·kg~(-1) amifostine(AMI)], and high-, medium-, and low-dose(4.8, 2.4, and 1.2 g·kg~(-1), respectively) GQYY groups. The model of bystander effect damage was established by 4 Gy ~(12)C~(6+) beam irradiation of the right lung(with the other part shielded by a lead plate). The pathological changes in the lung tissue, the level of reactive oxygen species(ROS) in the lung tissue, and the levels of superoxide dismutase(SOD) and malondialdehyde(MDA) in the serum were observed and measured in each group. Furthermore, the mRNA and protein levels of NLRP3, ASC, caspase-1, and phosphorylated nuclear factor-κB p65(p-NF-κB p65)/nuclear factor-κB p65(NF-κB p65) were determined. Compared with the blank group, the model group showed thickened alveolar wall, narrowed alveolar cavity, and presence of massive red blood cells and inflammatory infiltration in the alveolar wall and alveolar cavity. In addition, the model group showed elevated ROS levels in both left and right lungs, elevated MDA level, lowered SOD level, and up-regulated mRNA and protein levels of NLRP3, ASC, caspase-1, and p-NF-κB p65/NF-κB p65. Compared with the model group, the drug administration in all the groups reduced inflammatory cell infiltration in the lung tissue. The inhibitor group and the western drug group showed enlarged alveolar cavity, thinned interstitium, and reduced inflammation. There was a small amount of alveolar wall rupture in the high-and medium-dose GQYY groups and reduced inflammatory cell infiltration in the low dose GQYY group. Compared with the model group, drug administration lowered level of ROS in the left and right lungs, lowered the MDA level, elevated the SOD level, and down-regulated the mRNA and protein levels of NLRP3, ASC, caspase-1, and p-NF-κB p65/NF-κB p65. GQYY can effectively reduce the damage caused by radiation and bystander effect, which may be associated with the ROS-mediated NLRP3 inflammasome activation.


Subject(s)
Lung Injury , NLR Family, Pyrin Domain-Containing 3 Protein , Rats , Animals , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , NF-kappa B/genetics , NF-kappa B/metabolism , Inflammasomes/metabolism , Lung Injury/etiology , Lung Injury/genetics , Reactive Oxygen Species/metabolism , Bystander Effect , Ointments , Rats, Wistar , Lung/metabolism , Caspase 1/metabolism , RNA, Messenger , Superoxide Dismutase
13.
Apoptosis ; 27(3-4): 184-205, 2022 04.
Article in English | MEDLINE | ID: mdl-35076828

ABSTRACT

Although radiation-induced bystander effects have been broadly explored in various biological systems, the molecular mechanisms and the consequences of different regulatory factors (dose, time, cell type) on bystander responses are not clearly understood. This study investigates the effects of irradiated cell-conditioned media (ICCM) collected at different times post-irradiation on bystander cancer cells regarding DNA damage and apoptosis induction. Human hepatocellular carcinoma HepG2 cells were exposed to γ-ray doses of 2 Gy, 5 Gy, and 8 Gy. In the early and late stages (1 h, 2 h, and 24 h) after irradiation, the ICCM was collected and transferred to unirradiated cells. Compared to control, bystander cells showed an increased level of H2AX phosphorylation, mitochondrial membrane depolarization, and elevation of intrinsic apoptotic pathway mediators such as p53, Bax, cas9, cas-3, and PARP cleavage. These results were confirmed by phosphatidylserine (PS) externalization and scanning electron microscopic observations, suggesting a rise in bystander HepG2 cell apoptosis. Anti-apoptotic Bcl2-level and viability were lower in bystander cells compared to control. The highest effects were observed in 8 Gy γ radiation-induced bystander cells. Even though the bystander effect was persistent at all time points of the study, ICCM at the early time points (1 or 2 h) had the most significant impact on the apoptosis markers in bystander cells. Nevertheless, 24 h ICCM induced the highest increase in H2AX and p53 phosphorylation and Bax levels. The effects of ICCM of irradiated HepG2 cells were additionally studied in normal liver cells BRL-3A to simulate actual radiotherapy conditions. The outcomes suggest that the expression of the signaling mediators in bystander cells is highly dynamic. A cross-talk between those signaling mediators regulates bystander responses depending on the radiation dose and time of incubation post-irradiation.


Subject(s)
Caspases , Tumor Suppressor Protein p53 , Apoptosis , Bystander Effect/physiology , Bystander Effect/radiation effects , Caspases/genetics , Caspases/metabolism , Culture Media, Conditioned/pharmacology , Culture Media, Conditioned/radiation effects , DNA Damage , Gamma Rays , Hep G2 Cells , Humans , Proto-Oncogene Proteins c-bcl-2/genetics , Proto-Oncogene Proteins c-bcl-2/metabolism , Radiation Dosage , Tumor Suppressor Protein p53/genetics , bcl-2-Associated X Protein/genetics , bcl-2-Associated X Protein/metabolism
14.
Arch Biochem Biophys ; 725: 109302, 2022 08 15.
Article in English | MEDLINE | ID: mdl-35643336

ABSTRACT

Oxidative stress is associated with the induction of a plethora of effects on cellular macromolecules and signaling cascades. The onset of oxidative imbalance characterizes irradiated cells. The present study investigates the effects of ionizing radiation on oxidative stress induction in bystander cells and their interactions with critical cell signaling mediators. The effect of irradiated cell-conditioned medium (ICCM) from γ-irradiated hepatocellular carcinoma (HepG2) cells were studied in bystander HepG2 and normal liver (BRL-3A) cells at early (1 h, 2 h) and later (24 h) time points post-irradiation. Although ROS generation and lipid peroxidation showed the highest effects in both bystander cell groups at the early time points, antioxidant enzymes superoxide dismutase and catalase showed the lowest activity. Oxidative stress was persistent up to 24 h, but the highest level was seen in 1 h ICCM treated 8By cells. Although the levels of all pro-survival signaling factors (p-PI3K, p-Akt, p-p38MAPK, p-JNK, and p-NFκB) increased in bystander HepG2 cells, they showed a significant decrease in bystander BRL-3A cells. JAK2-STAT3 activation, however, was reduced only in BRL-3A cells, with no effect in HepG2 cells. However, in both bystander cell groups, activation of DNA damage sensors ATM, ATR, and cell cycle inhibitor p21 increased. Elevated ROS levels down-regulated the activation of PI3K, Akt, JNK, and NF-κB in BRL-3A cells but enhanced the activation of ATM and p21. In contrast, in HepG2 cells, increased ROS level elevated the activation of PI3K, JNK, p38MAPK, NF-κB with no effect on p-ATM or p21. ROS differentially influenced the interactions between the signaling mediators in the bystander cells. p-ATR levels, although increased in both bystander cell groups, showed no association with other factors. ICCM from the same HepG2 cells differently affected signaling factors in two groups of cells, highlighting the critical significance of the study in the field of radiation biology.


Subject(s)
NF-kappa B , Proto-Oncogene Proteins c-akt , Bystander Effect/physiology , Bystander Effect/radiation effects , Culture Media, Conditioned , DNA Damage , NF-kappa B/metabolism , Oxidative Stress , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Reactive Oxygen Species/metabolism
15.
Cell Commun Signal ; 20(1): 171, 2022 10 31.
Article in English | MEDLINE | ID: mdl-36316715

ABSTRACT

Presently, more than half of cancer patients receive radiotherapy to cure localized cancer, palliate symptoms, or control the progression of cancer. However, radioresistance and radiation-induced bystander effects (RIBEs) are still challenging problems in cancer treatment. Exosomes, as a kind of extracellular vesicle, have a significant function in mediating and regulating intercellular signaling pathways. An increasing number of studies have shown that radiotherapy can increase exosome secretion and alter exosome cargo. Furthermore, radiation-induced exosomes are involved in the mechanism of radioresistance and RIBEs. Therefore, exosomes hold great promise for clinical application in radiotherapy. In this review, we not only focus on the influence of radiation on exosome biogenesis, secretion and cargoes but also on the mechanism of radiation-induced exosomes in radioresistance and RIBEs, which may expand our insight into the cooperative function of exosomes in radiotherapy. Video abstract.


Subject(s)
Exosomes , Extracellular Vesicles , Neoplasms , Humans , Exosomes/metabolism , Bystander Effect , Cell Communication , Signal Transduction , Extracellular Vesicles/metabolism , Neoplasms/radiotherapy , Neoplasms/metabolism
16.
Nitric Oxide ; 128: 25-36, 2022 11 01.
Article in English | MEDLINE | ID: mdl-35970264

ABSTRACT

Photodynamic therapy (PDT) is a therapeutic modality based on the simultaneous action of three elements: photosensitizer, light and oxygen. This triad generates singlet oxygen and reactive oxygen species that can reduce the mass of a tumor. PDT is also able to stimulate iNOS, the enzyme that generates nitric oxide (NO). The role of NO in PDT-treated cancer cells has been investigated in several studies. They showed that low iNOS/NO levels stimulate signaling pathways that promote tumor survival, while high iNOS/NO levels arrest tumor growth. There is increasing evidence that ROS/RNS control both proliferation and migration of cells in the vicinity of PDT-treated tumor cells (so-called bystander cells). In this work, we addressed the question of how NO, which is generated by weak PDT, affects bystander cells. We used a conditioned medium: medium of PDT-treated tumor cells containing the stressors produced by the cells was added to untreated cells mimicking the neighboring bystander cells to investigate whether the conditioned medium affects cell proliferation. We found that low-level NO in prostate cancer cells affects the bystander tumor cells in a manner that depends on their malignancy grade.


Subject(s)
Photochemotherapy , Prostatic Neoplasms , Bystander Effect , Cell Line, Tumor , Cell Survival , Culture Media, Conditioned/pharmacology , Humans , Male , Nitric Oxide/metabolism , Photosensitizing Agents/pharmacology , Photosensitizing Agents/therapeutic use , Prostatic Neoplasms/drug therapy , Reactive Oxygen Species/metabolism
17.
Curr Oncol Rep ; 24(7): 809-817, 2022 07.
Article in English | MEDLINE | ID: mdl-35305211

ABSTRACT

PURPOSE OF REVIEW: Summarizing the current preclinical and clinical evidence about bystander effect of antibody-drug conjugates (ADCs) in solid tumors. RECENT FINDINGS: One of the main challenges of treating solid tumors with ADCs is the heterogeneous expression of the target antigen (Ag), which however may be overcome by the so-called bystander killing effect. This unique, but still debated, feature of certain ADCs is represented by the unintentional payload diffusion from Ag-positive tumor cells to adjacent Ag-negative tumor cells. Some pharmacological characteristics, such as a hydrophobic payload or a cleavable linker, seem to play a major role in this effect. Abundant preclinical evidence of the bystander effect has emerged, and the clinical activity of ADCs in tumors with a heterogeneous Ag expression suggests the relevance of this feature. Additional studies are required to investigate if the bystander effect is necessary for achieving a solid activity with ADCs.


Subject(s)
Antineoplastic Agents , Immunoconjugates , Neoplasms , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Bystander Effect , Humans , Immunoconjugates/therapeutic use , Neoplasms/drug therapy
18.
Cell Mol Life Sci ; 78(7): 3087-3103, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33388835

ABSTRACT

Radiotherapy is an effective treatment for breast cancer and other thoracic tumors. However, while high-energy radiotherapy treatment successfully kills cancer cells, radiation exposure of the heart and large arteries cannot always be avoided, resulting in secondary cardiovascular disease in cancer survivors. Radiation-induced changes in the cardiac vasculature may thereby lead to coronary artery atherosclerosis, which is a major cardiovascular complication nowadays in thoracic radiotherapy-treated patients. The underlying biological and molecular mechanisms of radiation-induced atherosclerosis are complex and still not fully understood, resulting in potentially improper radiation protection. Ionizing radiation (IR) exposure may damage the vascular endothelium by inducing DNA damage, oxidative stress, premature cellular senescence, cell death and inflammation, which act to promote the atherosclerotic process. Intercellular communication mediated by connexin (Cx)-based gap junctions and hemichannels may modulate IR-induced responses and thereby the atherosclerotic process. However, the role of endothelial Cxs and their channels in atherosclerotic development after IR exposure is still poorly defined. A better understanding of the underlying biological pathways involved in secondary cardiovascular toxicity after radiotherapy would facilitate the development of effective strategies that prevent or mitigate these adverse effects. Here, we review the possible roles of intercellular Cx driven signaling and communication in radiation-induced atherosclerosis.


Subject(s)
Atherosclerosis/pathology , Cell Communication , Connexins/metabolism , Gap Junctions/physiology , Radiation, Ionizing , Animals , Atherosclerosis/etiology , Atherosclerosis/metabolism , Humans , Signal Transduction
19.
J Oncol Pharm Pract ; 28(1): 237-241, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34233544

ABSTRACT

INTRODUCTION: Metastatic non-small cell lung cancer (NSCLC) is nowadays treated with a multimodal therapeutic approach including immunotherapy, targeted therapy and radiotherapy. Radiation therapy, in addition to immune checkpoint inhibitors, gives rise to a particular radiobiological effect known as "bystander effect" consisting of the radiation-induced damage in nearby unirradiated cells. CASE REPORT: We report a case of a 79-year-old female patient with stage IV NSCLC treated with concomitant immuno-radiotherapy who showed a bystander effect on bone.Management and outcome: Primary tumour biopsy revealed an adenocarcinoma with a PDL1 expression >50%, while staging exams showed a right pulmonary lesion with a partial involvement of the contiguous rib and a single brain metastasis. The patient refused chemotherapy, so that Pembrolizumab 2 mg/Kg was administered every 3 weeks. After two administrations, the single brain metastasis was treated using stereotactic radiosurgery while the site of primitive lung cancer received an 8 Gy-single fraction 3 D-conformal radiotherapy. Three months after irradiation a chest CT showed a radiological remission of about 10% of the GTV and a partial eburnation of the vertebra located nearby the target volume. The CT images of a PET/CT at six months showed a complete vertebral eburnation. At the last follow-up, the patient was free of disease (brain MRI, spinal MRI and PET/CT). DISCUSSION: The present case alerts for unusual side effects provoked by bystander phenomenon in patients treated with a combination of immunotherapy and irradiation. Immune activation exacerbates the bystander effect causing normal tissues toxicities beyond what immunotherapies are causing by themselves.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Aged , Bystander Effect , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/radiotherapy , Female , Humans , Immunotherapy , Lung Neoplasms/drug therapy , Positron Emission Tomography Computed Tomography , Spine
20.
Proc Natl Acad Sci U S A ; 116(28): 13751-13758, 2019 07 09.
Article in English | MEDLINE | ID: mdl-31253709

ABSTRACT

People often coordinate for mutual gain, such as keeping to opposite sides of a stairway, dubbing an object or place with a name, or assembling en masse to protest a regime. Because successful coordination requires complementary choices, these opportunities raise the puzzle of how people attain the common knowledge that facilitates coordination, in which a person knows X, knows that the other knows X, knows that the other knows that he knows, ad infinitum. We show that people are highly sensitive to the distinction between common knowledge and mere private or shared knowledge, and that they deploy this distinction strategically in diverse social situations that have the structure of coordination games, including market cooperation, innuendo, bystander intervention, attributions of charitability, self-conscious emotions, and moral condemnation.


Subject(s)
Bystander Effect/physiology , Emotions/physiology , Social Perception , Theory of Mind , Cooperative Behavior , Female , Humans , Interpersonal Relations , Knowledge , Male , Mentalization
SELECTION OF CITATIONS
SEARCH DETAIL