Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
1.
Traffic ; 21(1): 181-185, 2020 01.
Article in English | MEDLINE | ID: mdl-31448516

ABSTRACT

Caveolae are an abundant, but enigmatic, plasma membrane feature of vertebrate cells. In this brief commentary, the authors attempt to answer some key questions related to the formation and function of caveolae based on round-table discussions at the first EMBO Workshop on Caveolae held in France in May 2019.


Subject(s)
Caveolae , Caveolins , Animals , Cell Membrane
2.
Differentiation ; 94: 21-26, 2017.
Article in English | MEDLINE | ID: mdl-27939834

ABSTRACT

The identification of ancillary biomarkers useful to improve diagnosis is a major challenge for adipocytic liposarcoma (LPS), the most common type among soft tissue sarcomas affecting adulthood. Recent findings have reported the expression of some proteins belonging to Caveolin and Cavin families as a critical hallmark distinctive of the least aggressive, well-differentiated LPS tumors. These proteins are involved in the biogenesis, morphology and function of caveolae, minute bulb-shaped domains of the plasma membrane that play a crucial role in the adipose tissue by controlling hormone-dependent uptake of nutrients and contributing to the maintenance of tissue integrity. In light of this, in this paper we covered different topics, including metabolism, hypoxia and cell mechanoprotection, to outline the rationale for considering a deeper investigation of Caveolin and Cavin protein members in LPS neoplasms as an opportunity to identify pro-differentiating mechanisms that could counteract tumor growth.


Subject(s)
Biomarkers, Tumor/genetics , Caveolin 1/genetics , Liposarcoma/genetics , RNA-Binding Proteins/genetics , Adipose Tissue/growth & development , Adipose Tissue/pathology , Caveolae/metabolism , Caveolae/pathology , Cell Differentiation/genetics , Cell Membrane/genetics , Cell Membrane/pathology , Humans , Liposarcoma/pathology
3.
Biochem Biophys Res Commun ; 493(1): 660-665, 2017 11 04.
Article in English | MEDLINE | ID: mdl-28865960

ABSTRACT

Caveolae are cholesterol enriched invaginations of the plasma membrane involved in a variety of processes, including glucose and fatty acids absorption, cell transduction and mechanoprotection. The biogenesis and function of caveolae depend on the activity of Caveolin (Cav-1, -2 and -3) and Cavin (Cavin-1, -2, -3 and -4) protein families. Since the membrane Cavin-2 protein was reported to play a key role in caveolae formation of adipocytes, in this work we have used a multidisciplinary approach to investigate its expression in liposarcoma (LPS), an adipocytic soft tissue sarcoma affecting adults. Data obtained through an in silico and immunohistochemical analysis suggest that Cavin-2, along with Cavin-1, Cav-1 and Cav-2, is mostly expressed in the least aggressive LPS subtype, namely well-differentiated LPS, while is almost undetectable in the more aggressive myxoid, pleomorphic and dedifferentiated LPS tumors. Accordingly, in vitro analysis confirmed that Cavin-2 expression increases in LPS tumor cell lines during differentiation as compared to proliferation, as detected by immunoblotting and immunofluorescence analysis. Overall, these data suggest that Cavin-2 represents a useful marker for discriminating the degree of differentiation in LPS tumors.


Subject(s)
Biomarkers, Tumor/metabolism , Carrier Proteins/metabolism , Liposarcoma/metabolism , Liposarcoma/pathology , Animals , Cell Line, Tumor , Humans , Mice , Neoplasm Proteins/metabolism , Phosphate-Binding Proteins , Reproducibility of Results , Sensitivity and Specificity , Species Specificity
4.
Front Mol Biosci ; 10: 1242426, 2023.
Article in English | MEDLINE | ID: mdl-37828916

ABSTRACT

Breast cancer has become the most significant malignant tumor threatening women's lives. Caveolae are concave pits formed by invagination of the plasma membrane that participate in many biological functions of the cell membrane, such as endocytosis, cell membrane assembly, and signal transduction. In recent years, Caveolae family-related proteins have been found to be closely related to the occurrence and development of breast cancer. The proteins associated with the Caveolae family-related include Caveolin (Cav) and Cavins. The Cav proteins include Cav-1, Cav-2 and Cav-3, among which Cav-1 has attracted the most attention as a tumor suppressor and promoting factor affecting the proliferation, apoptosis, migration, invasion and metastasis of breast cancer cells. Cav-2 also has dual functions of inhibiting and promoting cancer and can be expressed in combination with Cav-1 or play a regulatory role alone. Cav-3 has been less studied in breast cancer, and the loss of its expression can form an antitumor microenvironment. Cavins include Cavin-1, Cavin-2, Cavin-3 and Cavin-4. Cavin-1 inhibits Cav-1-induced cell membrane tubule formation, and its specific role in breast cancer remains controversial. Cavin-2 acts as a breast cancer suppressor, inhibiting breast cancer progression by blocking the transforming growth factor (TGF-ß) signaling pathway. Cavin-3 plays an anticancer role in breast cancer, but its specific mechanism of action is still unclear. The relationship between Cavin-4 and breast cancer is unclear. In this paper, the role of Caveolae family-related proteins in the occurrence and development of breast cancer and their related mechanisms are discussed in detail to provide evidence supporting the further study of Caveolae family-related proteins as potential targets for the diagnosis and treatment of breast cancer.

5.
Cell Signal ; 97: 110399, 2022 09.
Article in English | MEDLINE | ID: mdl-35820545

ABSTRACT

The caveolae-mediated transport across polarized epithelial cell barriers has been largely deciphered in the last decades and is considered the second essential intracellular transfer mechanism, after the clathrin-dependent endocytosis. The basic cell biology knowledge was supplemented recently, with the molecular mechanisms beyond caveolae generation implying the key contribution of the lipid-binding proteins (the structural protein Caveolin and the adapter protein Cavin), along with the bulb coat stabilizing molecules PACSIN-2 and Eps15 homology domain protein-2. The current attention is focused also on caveolae architecture (such as the bulb coat, the neck, the membrane funnel inside the bulb, and the associated receptors), and their specific tasks during the intracellular transport of various cargoes. Here, we resume the present understanding of the assembly, detachment, and internalization of caveolae from the plasma membrane lipid raft domains, and give an updated view on transcytosis and endocytosis, the two itineraries of cargoes transport via caveolae. The review adds novel data on the signalling molecules regulating caveolae intracellular routes and on the transport dysregulation in diseases. The therapeutic possibilities offered by exploitation of Caveolin-1 expression and caveolae trafficking, and the urgent issues to be uncovered conclude the review.


Subject(s)
Caveolae , Caveolins , Carrier Proteins/metabolism , Caveolae/metabolism , Caveolin 1/metabolism , Caveolins/metabolism , Endocytosis/physiology , Membrane Microdomains/metabolism , Protein Transport , Signal Transduction
6.
Front Oncol ; 11: 703501, 2021.
Article in English | MEDLINE | ID: mdl-34513683

ABSTRACT

Caveolae-related genes, including CAVs that encodes caveolins and CAVINs that encodes caveolae-associated proteins cavins, have been identified for playing significant roles in a variety of biological processes including cholesterol transport and signal transduction, but evidences related to tumorigenesis and cancer progression are not abundant to correlate with clinical characteristics and prognosis of patients with cancer. In this study, we investigated the expression of these genes at transcriptional and translational levels in patients with breast cancer using Oncomine, Gene Expression Profiling Interactive Analysis (GEPIA), cBioPortal databases, and immunohistochemistry of the patients in our hospital. Prognosis of patients with breast cancer based on the expressions of CAVs and CAVINs was summarized using Kaplan-Meier Plotter with their correlation to different subtyping. The relevant molecular pathways of these genes were further analyzed using Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway database and Gene Set Enrichment Analysis (GSEA). Results elucidated that expression levels of CAV1, CAV2, CAVIN1, CAVIN2, and CAVIN3 were significantly lower in breast cancer tissues than in normal samples, while the expression level of CAVIN2 was correlated with advanced tumor stage. Furthermore, investigations on survival of patients with breast cancer indicated outstanding associations between prognosis and CAVIN2 levels, especially for the patients with estrogen receptor positive (ER+) breast cancer. In conclusion, our investigation indicated CAVIN2 is a potential therapeutic target for patients with ER+ breast cancer, which may relate to functions of cancer cell surface receptors and adhesion molecules.

7.
Elife ; 102021 02 16.
Article in English | MEDLINE | ID: mdl-33591275

ABSTRACT

Protein interaction networks are crucial for complex cellular processes. However, the elucidation of protein interactions occurring within highly specialised cells and tissues is challenging. Here, we describe the development, and application, of a new method for proximity-dependent biotin labelling in whole zebrafish. Using a conditionally stabilised GFP-binding nanobody to target a biotin ligase to GFP-labelled proteins of interest, we show tissue-specific proteomic profiling using existing GFP-tagged transgenic zebrafish lines. We demonstrate the applicability of this approach, termed BLITZ (Biotin Labelling In Tagged Zebrafish), in diverse cell types such as neurons and vascular endothelial cells. We applied this methodology to identify interactors of caveolar coat protein, cavins, in skeletal muscle. Using this system, we defined specific interaction networks within in vivo muscle cells for the closely related but functionally distinct Cavin4 and Cavin1 proteins.


Subject(s)
Biotin/pharmacology , Proteomics/methods , Staining and Labeling/methods , Animals , Animals, Genetically Modified , Biotinylation , Caveolins/metabolism , Endothelial Cells/metabolism , Green Fluorescent Proteins , Membrane Proteins/metabolism , Muscle, Skeletal/metabolism , Nanoparticles , Neurons/metabolism , Protein Interaction Mapping , Zebrafish
8.
Nutrients ; 12(9)2020 Sep 02.
Article in English | MEDLINE | ID: mdl-32887376

ABSTRACT

Whether dietary omega-3 (n-3) polyunsaturated fatty acid (PUFA) confers cardiac benefit in cardiometabolic disorders is unclear. We test whether dietary -linolenic acid (ALA) enhances myocardial resistance to ischemia-reperfusion (I-R) and responses to ischemic preconditioning (IPC) in type 2 diabetes (T2D); and involvement of conventional PUFA-dependent mechanisms (caveolins/cavins, kinase signaling, mitochondrial function, and inflammation). Eight-week male C57Bl/6 mice received streptozotocin (75 mg/kg) and 21 weeks high-fat/high-carbohydrate feeding. Half received ALA over six weeks. Responses to I-R/IPC were assessed in perfused hearts. Localization and expression of caveolins/cavins, protein kinase B (AKT), and glycogen synthase kinase-3 ß (GSK3ß); mitochondrial function; and inflammatory mediators were assessed. ALA reduced circulating leptin, without affecting body weight, glycemic dysfunction, or cholesterol. While I-R tolerance was unaltered, paradoxical injury with IPC was reversed to cardioprotection with ALA. However, post-ischemic apoptosis (nucleosome content) appeared unchanged. Benefit was not associated with shifts in localization or expression of caveolins/cavins, p-AKT, p-GSK3ß, or mitochondrial function. Despite mixed inflammatory mediator changes, tumor necrosis factor-a (TNF-a) was markedly reduced. Data collectively reveal a novel impact of ALA on cardioprotective dysfunction in T2D mice, unrelated to caveolins/cavins, mitochondrial, or stress kinase modulation. Although evidence suggests inflammatory involvement, the basis of this "un-conventional" protection remains to be identified.


Subject(s)
Diabetes Mellitus, Experimental/drug therapy , Fatty Acids, Omega-3/pharmacology , Myocardial Reperfusion Injury/prevention & control , alpha-Linolenic Acid/pharmacology , Animals , Caveolins/genetics , Caveolins/metabolism , Diabetes Mellitus, Type 2/drug therapy , Glycogen Synthase Kinase 3 beta/genetics , Glycogen Synthase Kinase 3 beta/metabolism , Ischemic Preconditioning, Myocardial , Male , Mice , Mice, Inbred C57BL , Mitochondria/drug effects , Mitochondria/metabolism , Myocardium/metabolism , Proto-Oncogene Proteins c-akt/genetics , Proto-Oncogene Proteins c-akt/metabolism , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/metabolism
9.
Eur J Cell Biol ; 95(8): 252-64, 2016 Aug.
Article in English | MEDLINE | ID: mdl-27168348

ABSTRACT

Caveolins (Cav-1, -2 and -3) and Cavins (Cavin-1, -2, -3 and -4) are two protein families controlling the biogenesis and function of caveolae, plasma membrane omega-like invaginations representing the primary site of important cellular processes like endocytosis, cholesterol homeostasis and signal transduction. Caveolae are especially abundant in fat tissue, playing a consistent role in a number of processes, such as the insulin-dependent glucose uptake and transmembrane transport of lipids underlying differentiation, maintenance and adaptive hypertrophy of adipocytes. Based on this premise, in this work we have investigated the expression of caveolar protein components in liposarcoma (LPS), an adipocytic soft tissue sarcoma affecting adults categorized in well-differentiated, dedifferentiated, myxoid and pleomorphic histotypes. By performing an extensive microarray data analysis followed by immunohistochemistry on human LPS tumors, we demonstrated that Cav-1, Cav-2 and Cavin-1 always cluster in all the histotypes, reaching the highest expression in well-differentiated LPS, the least aggressive of the malignant forms composed by tumor cells with a morphology resembling mature adipocytes. In vitro experiments carried out using two human LPS cell lines showed that the expression levels of Cav-1, Cav-2 and Cavin-1 proteins were faintly detectable during cell growth, becoming consistently increased during the accumulation of intracellular lipid droplets characterizing the adipogenic differentiation. Moreover, in differentiated LPS cells the three proteins were also found to co-localize and form molecular aggregates at the plasma membrane, as shown via immunofluorescence and immunoprecipitation analysis. Overall, these data indicate that Cav-1, Cav-2 and Cavin-1 may be considered as reliable markers for identification of LPS tumors characterized by consistent adipogenic differentiation.


Subject(s)
Adipogenesis , Caveolin 1/metabolism , Caveolin 2/metabolism , Liposarcoma/genetics , Caveolin 1/genetics , Caveolin 2/genetics , Cell Differentiation , Cell Line, Tumor , Humans
10.
Micron ; 76: 52-61, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26086560

ABSTRACT

BACKGROUND AND AIMS: Caveolin-1 is associated with flat caveolar domains, invaginated smooth plasmalemmal vesicles, and caveolae. Polymerase 1 and transcript release factor (PTRF) (cavin 1) and serum deprivation protein response (SDPR) (cavin 2) are required for the invagination of caveolae, and PRKCDBP (protein kinase C, delta-binding protein; cavin 3) is required for caveolae budding to form caveolar vesicles. To investigate whether cavins are involved in hepatic sinusoidal angiogenesis and remodeling during progression to cirrhosis, normal control liver specimens and early and late cirrhotic liver specimens were studied. MATERIALS AND METHODS: Cavin-1, cavin-2, and cavin-3 proteins and their gene expression were examined using immunohistochemistry (IHC), Western blotting, and laser capture microdissection (LCM)-polymerase chain reaction (PCR) during progression of cirrhosis caused by hepatitis C. According to the perfusion, fixation methods were designed to reevaluate the precise ultrastructural localizations and changes of cavin-1 and cavin-2 expression on liver sinusoidal endothelial cells (LSECs) facing the sinusoidal blood flow. RESULTS: For IHC, cavin-1 and cavin-2 expressions were found to be upregulated in small angiogenic LSECs with collagen deposition in the perisinusoidal space as well as in the vascular endothelial cells of the remarkably proliferated portal venules, hepatic arterioles, and arterial capillaries within the fibrotic septa of late-stage cirrhotic liver. Cavin-3 was mainly localized in large vessels, and it was detected only scantly on the central vein and hepatic sinusoids in the control liver. In late-stage cirrhotic liver, the intensity of cavin-3 was enhanced mainly on proliferative large vessels in regenerated nodules and in the peripheral regions of nodules and fibrous septa. On conducting immunoelectron microscopy, in the control liver tissue, cavin-1 was found to be localized on the caveolae of hepatic arterial and portal venous endothelial cells, but it was scantly localized on hepatic sinusoidal lining cells, and cavin-2 was found mainly on vesicles in LSECs. In the cirrhotic liver tissue, aberrant cavin-1 and cavin-2 expressions were observed on caveolae-like structures in LSECs. Significant overexpressions of cavin-1 at the protein and messenger RNA (mRNA) levels in a cirrhotic liver were demonstrated by Western blotting and LCM-PCR. CONCLUSIONS: Cavin-1 and cavin-2 are strongly expressed within caveolae-like structures and associated vesicles within LSECs of the hepatitis C-related cirrhotic liver. Cavin-1 would play a critical role in regulating aspects of caveolin-1 in LSECs. Moreover, these findings suggest a direct association of cavin-1 and cavin-2 with the process of differentiation and transformation of LSECs inducing hepatic sinusoidal capillarization related to the progression of cirrhosis.


Subject(s)
Carrier Proteins/analysis , Caveolin 1/analysis , Endothelial Cells/chemistry , Intracellular Signaling Peptides and Proteins/analysis , Liver Cirrhosis/pathology , Liver/pathology , RNA-Binding Proteins/analysis , Aged , Aged, 80 and over , Blotting, Western , Carrier Proteins/genetics , Disease Progression , Female , Gene Expression Profiling , Hepatitis C/complications , Humans , Immunohistochemistry , Intracellular Signaling Peptides and Proteins/genetics , Laser Capture Microdissection , Male , Middle Aged , Phosphate-Binding Proteins , Polymerase Chain Reaction , RNA-Binding Proteins/genetics
11.
Cancer Growth Metastasis ; 7: 43-51, 2014.
Article in English | MEDLINE | ID: mdl-25520561

ABSTRACT

Caveolae are specialized cell membrane invaginations known to regulate several cancer cell functions and oncogenic signaling pathways. Among other caveolar proteins, they are characterized by the presence of proteins of the cavin family. In this study, we assessed the impact of cavin-1, cavin-2, and cavin-3 on cell migration in a human HT-1080 fibrosarcoma model. We found that all cavin-1, -2 and -3 transcripts were expressed and that treatment with phorbol 12-myristate 13-acetate (PMA), which is known to prime cell migration and proliferation, specifically upregulated cavin-3 gene and protein expression. PMA also triggered matrix metalloproteinase (MMP)-9 secretion, but reduced the global cell migration index. Overexpression of recombinant forms of the three cavins demonstrated that only cavin-3 was able to reduce basal cell migration, and this anti-migratory effect was potentiated by PMA. Interestingly, cavin-3 overexpression inhibited PMA-induced MMP-9, while cavin-3 gene silencing led to an increase in MMP-9 gene expression and secretion. Furthermore, recombinant cavin-3 significantly prevented PMA-mediated dephosphorylation of AKT, a crucial regulator in MMP-9 transcription. In conclusion, our results demonstrate that cellular cavin-3 expression may repress MMP-9 transcriptional regulation in part through AKT. We suggest that the balance in cavin-3-to-MMP-9 expression regulates the extent of extracellular matrix degradation, confirming the tumor-suppressive role of cavin-3 in controlling the invasive potential of human fibrosarcoma cells.

12.
Front Physiol ; 2: 120, 2012.
Article in English | MEDLINE | ID: mdl-22232608

ABSTRACT

Caveolae are cholesterol and glycosphingolipid-rich flask-shaped invaginations of the plasma membrane which are particularly abundant in vascular endothelium and present in all other cell types of the cardiovascular system, including vascular smooth-muscle cells, macrophages, cardiac myocytes, and fibroblasts. Caveolins and the more recently discovered cavins are the major protein components of caveolae. When caveolae were discovered, their functional role was believed to be limited to transport across the endothelial cell barrier. Since then, however, a large body of evidence has accumulated, suggesting that these microdomains are very important in regulating many other important endothelial cell functions, mostly due to their ability to concentrate and compartmentalize various signaling molecules. Over the course of several years, multiple studies involving knockout mouse and small interfering RNA approaches have considerably enhanced our understanding of the role of caveolae and caveolin-1 in regulating many cardiovascular functions. New findings have been reported implicating other caveolar protein components in endothelial cell signaling and function, such as the understudied caveolin-2 and newly discovered cavin proteins. The aim of this review is to focus primarily on molecular and cellular aspects of the role of caveolae, caveolins, and cavins in endothelial cell signaling and function. In addition, where appropriate, the possible implications for the cardiovascular and pulmonary physiology and pathophysiology will be discussed.

SELECTION OF CITATIONS
SEARCH DETAIL