Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 157
Filter
1.
J Biol Chem ; 300(9): 107703, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39173952

ABSTRACT

Acidithiobacillus ferrooxidans is an acidophilic chemolithoautotroph that plays an important role in biogeochemical iron and sulfur cycling and is a member of the consortia used in industrial hydrometallurgical processing of copper. Metal sulfide bioleaching is catalyzed by the regeneration of ferric iron; however, bioleaching of chalcopyrite, the dominant unmined form of copper on Earth, is inhibited by surface passivation. Here, we report the implementation of CRISPR interference (CRISPRi) using the catalytically inactive Cas12a (dCas12a) in A. ferrooxidans to knock down the expression of genes in the petI and petII operons. These operons encode bc1 complex proteins and knockdown of these genes enabled the manipulation (enhancement or repression) of iron oxidation. The petB2 gene knockdown strain enhanced iron oxidation, leading to enhanced pyrite and chalcopyrite oxidation, which correlated with reduced biofilm formation and decreased surface passivation of the minerals. These findings highlight the utility of CRISPRi/dCas12a technology for engineering A. ferrooxidans while unveiling a new strategy to manipulate and improve bioleaching efficiency.


Subject(s)
Acidithiobacillus , CRISPR-Cas Systems , Copper , Iron , Oxidation-Reduction , Sulfides , Acidithiobacillus/metabolism , Acidithiobacillus/genetics , Sulfides/metabolism , Copper/metabolism , Iron/metabolism , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Gene Knockdown Techniques , Electron Transport , Biofilms/growth & development
2.
Nanotechnology ; 35(29)2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38588661

ABSTRACT

Cathodoluminescence and electron backscatter diffraction have been applied to exactly the same grain boundaries (GBs) in a Cu(In,Ga)S2solar absorber in order to investigate the influence of microstructure on the radiative recombination behaviour at the GBs. Two different types of GB with different microstructure were analysed in detail: random high angle grain boundaries (RHAGBs) and Σ3 GBs. We found that the radiative recombination at all RHAGBs was inhibited to some extent, whereas at Σ3 GBs three different observations were made: unchanged, hindered, or promoted radiative recombination. These distinct behaviours may be linked to atomic-scale grain boundary structural differences. The majority of GBs also exhibited a small spectral shift of about ±10 meV relative to the local grain interior (GI) and a few of them showed spectral shifts of up to ±40 meV. Red and blue shifts were observed with roughly equal frequency.

3.
J Appl Microbiol ; 135(1)2024 Jan 02.
Article in English | MEDLINE | ID: mdl-38126104

ABSTRACT

AIM: To assess the effectiveness of Bacillus subtilis strain LN8B as a biocollector for recovering pyrite (Py) and chalcopyrite (CPy) in both seawater (Sw) and deionized water (Dw), and to explore the underlying adhesion mechanism in these bioflotation experiments. MATERIALS AND METHODS: The bioflotation test utilized B. subtilis strain LN8B as the biocollector through microflotation experiments. Additionally, frother methyl isobutyl carbinol (MIBC) and conventional collector potassium amyl xanthate (PAX) were introduced in some experiments. The zeta potential (ZP) and Fourier-transform infrared spectroscopy (FTIR) was employed to explore the adhesion mechanism of Py and CPy interacting with the biocollector in Sw and Dw. The adaptability of the B. subtilis strain to different water types and salinities was assessed through growth curves measuring optical density. Finally, antibiotic susceptibility tests were conducted to evaluate potential risks of the biocollector. RESULTS: Superior outcomes were observed in Sw where Py and CPy recovery was ∼39.3% ± 7.7% and 41.1% ± 5.8%, respectively, without microorganisms' presence. However, B. subtilis LN8B potentiate Py and CPy recovery, reaching 72.8% ± 4.9% and 84.6% ± 1.5%, respectively. When MIBC was added, only the Py recovery was improved (89.4% ± 3.6%), depicting an adverse effect for CPy (81.8% ± 1.1%). ZP measurements indicated increased mineral surface hydrophobicity when Py and CPy interacted with the biocollector in both Sw and Dw. FTIR revealed the presence of protein-related amide peaks, highlighting the hydrophobic nature of the bacterium. The adaptability of this strain to diverse water types and salinities was assessed, demonstrating remarkable growth versatility. Antibiotic susceptibility tests indicated that B. subtilis LN8B was susceptible to 23 of the 25 antibiotics examined, suggesting it poses minimal environmental risks. CONCLUSIONS: The study substantiates the biotechnological promise of B. subtilis strain LN8B as an efficient sulfide collector for promoting cleaner mineral production. This effectiveness is attributed to its ability to induce mineral surface hydrophobicity, a result of the distinct characteristics of proteins within its cell wall.


Subject(s)
Bacillus subtilis , Copper , Iron , Minerals , Bacillus subtilis/metabolism , Seawater , Sulfides/pharmacology , Sulfides/metabolism , Water/metabolism , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/metabolism
4.
Chemphyschem ; 24(21): e202300029, 2023 Nov 02.
Article in English | MEDLINE | ID: mdl-37547980

ABSTRACT

High-density assemblies or superlattice structures composed of colloidal semiconductor nanocrystals have attracted attention as key materials for next-generation photoelectric conversion devices such as quantum-dot solar cells. In these nanocrystal solids, unique transport and optical phenomena occur due to quantum coupling of localized energy states, charge-carrier hopping, and electromagnetic interactions among closely arranged nanocrystals. In particular, the photoexcited carrier dynamics in nanocrystal solids is important because it significantly affects various device parameters. In this study, we report the photoexcited carrier dynamics in a solid film of CuInS2 nanocrystals, which is one of the potential nontoxic substitutes with Cd- and Pb-free compositions. Meanwhile, these subjects have been extensively studied in nanocrystal solids formed by CdSe and PbS systems. A carrier-hopping mechanism was confirmed using temperature-dependent photoluminescence spectroscopy, which yielded a typical value of the photoexcited carrier-transfer rate of (2.2±0.6)×107  s-1 by suppressing the influence of the excitation-energy transfer.

5.
Chirality ; 34(12): 1526-1537, 2022 12.
Article in English | MEDLINE | ID: mdl-36190759

ABSTRACT

In this work, an ant nest structured porous carbon nanosphere had been developed for the recognition detection of the atropine (ATP) enantiomers D-hyoscyamine (D-HSM) and L-hyoscyamine (L-HSM). Firstly, Fe-based organic framework was used as the substrate, and Cu ions and sulfur ions were separately introduced to obtain CuFeS2 with ant nest structure by hydrothermal incubation. Then CuFeS2 /C porous nanospheres (PNSs) were obtained by high-temperature calcination. The composite-modified electrode exhibited superior electrochemical performance for L-HSM due to the synergistic effect of CuFeS2 cubic crystals and porous carbon, which has the high specific surface area of the ant nest structure. In addition, the molecularly imprinted polymer (MIP) about L-HSM formed with sulfonated-ß-cyclodextrin (S-ß-CD) and L-arginine (L-Arg) by cyclic voltammetry showed strong chiral recognition of D/L-HSM (ATP). Therefore, a novel electrochemical sensor was constructed based on CuFeS2 /C PNSs and MIP to detect L-HSM by differential pulse voltammetry. Under the optimal conditions, the peak current density of L-HSM showed a good linearity in the concentration range of 0.02-4.6 µM with LOD and LOQ of 0.45 and 1.5 nM, respectively. The oxidation peaks of L-HSM and D-HSM were successfully identified from the racemic ATP, and the oxidation peak potential difference (ΔEp ) between them was 0.138 V. In conclusion, the sensor showed excellent reproducibility, repeatability, and stability and had been applied to the determination of L-HSM in human serum, saliva, and ATP sulfate tablets with satisfactory results.


Subject(s)
Ants , Hyoscyamine , Molecular Imprinting , Nanospheres , Animals , Humans , Adenosine Triphosphate , Atropine , Carbon/chemistry , Electrochemical Techniques/methods , Limit of Detection , Molecular Imprinting/methods , Porosity , Reproducibility of Results , Stereoisomerism
6.
Nano Lett ; 20(12): 8556-8562, 2020 Dec 09.
Article in English | MEDLINE | ID: mdl-32960614

ABSTRACT

The metastable and thermodynamically favored phases of CuFeS2 are shown to be alternatively synthesized during partial cation exchange of hexagonal Cu2S using various phosphorus-containing ligands. Transmission electron microscopy and energy dispersive spectroscopy mapping confirm the retention of the particle morphology and the approximate CuFeS2 stoichiometry. Powder X-ray diffraction patterns and refinements indicate that the resulting phase mixtures of metastable wurtzite-like CuFeS2 versus tetragonal chalcopyrite are correlated with the Tolman electronic parameter of the tertiary phosphorus-based ligand used during the cation exchange. Strong L-type donors lead to the chalcopyrite phase and weak donors to the wurtzite-like phase. To our knowledge, this is the first demonstration of phase control in nanoparticle synthesis using solely L-type donors.

7.
Angew Chem Int Ed Engl ; 60(44): 23651-23655, 2021 Oct 25.
Article in English | MEDLINE | ID: mdl-34428331

ABSTRACT

Gathering information on the atomic nature of reactive sites and trap states is key to fine tuning catalysis and suppressing deleterious surface voltage losses in photoelectrochemical technologies. Here, spectroelectrochemical and computational methods were combined to investigate a model photocathode from the promising chalcopyrite family: CuIn0.3 Ga0.7 S2 . We found that voltage losses are linked to traps induced by surface Ga and In vacancies, whereas operando Raman spectroscopy revealed that catalysis occurred at Ga, In, and S sites. This study allows establishing a bridge between the chalcopyrite's performance and its surface's chemistry, where avoiding formation of Ga and In vacancies is crucial for achieving high activity.

8.
Int J Syst Evol Microbiol ; 70(12): 6226-6234, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33112221

ABSTRACT

The genus Acidihalobacter has three validated species, Acidihalobacter ferrooxydans, Acidihalobacter prosperus and Acidihalobacter aeolinanus, all of which were isolated from Vulcano island, Italy. They are obligately chemolithotrophic, aerobic, acidophilic and halophilic in nature and use either ferrous iron or reduced sulphur as electron donors. Recently, a novel strain was isolated from an acidic, saline drain in the Yilgarn region of Western Australia. Strain F5T has an absolute requirement for sodium chloride (>5 mM) and is osmophilic, growing in elevated concentrations (>1 M) of magnesium sulphate. A defining feature of its physiology is its ability to catalyse the oxidative dissolution of the most abundant copper mineral, chalcopyrite, suggesting a potential role in biomining. Originally categorized as a strain of A. prosperus, 16S rRNA gene phylogeny and multiprotein phylogenies derived from clusters of orthologous proteins (COGS) of ribosomal protein families and universal protein families unambiguously demonstrate that strain F5T forms a well-supported separate branch as a sister clade to A. prosperus and is clearly distinguishable from A. ferrooxydans DSM 14175T and A. aeolinanus DSM14174T. Results of comparisons between strain F5T and the other Acidihalobacter species, using genome-based average nucleotide identity, average amino acid identity, correlation indices of tetra-nucleotide signatures (Tetra) and genome-to-genome distance (digital DNA-DNA hybridization), support the contention that strain F5T represents a novel species of the genus Acidihalobacter. It is proposed that strain F5T should be formally reclassified as Acidihalobacter yilgarnenesis F5T (=DSM 105917T=JCM 32255T).


Subject(s)
Ectothiorhodospiraceae/classification , Genome, Bacterial , Phylogeny , Bacterial Typing Techniques , Base Composition , Copper , DNA, Bacterial/genetics , Iron/metabolism , Nucleic Acid Hybridization , Oxidation-Reduction , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Sulfur/metabolism , Western Australia
9.
J Ind Microbiol Biotechnol ; 46(8): 1113-1127, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31165968

ABSTRACT

Extremely thermoacidophilic Crenarchaeota belonging to the order Sulfolobales, such as Metallosphaera sedula, are metabolically versatile and of great relevance in bioleaching. However, the impacts of extreme thermoacidophiles propagated with different energy substrates on subsequent bioleaching of refractory chalcopyrite remain unknown. Transcriptional responses underlying their different bioleaching potentials are still elusive. Here, it was first showed that M. sedula inocula propagated with typical energy substrates have different chalcopyrite bioleaching capabilities. Inoculum propagated heterotrophically with yeast extract was deficient in bioleaching; however, inoculum propagated mixotrophically with chalcopyrite, pyrite or sulfur recovered 79%, 78% and 62% copper, respectively, in 12 days. Compared with heterotrophically propagated inoculum, 937, 859 and 683 differentially expressed genes (DEGs) were identified in inoculum cultured with chalcopyrite, pyrite or sulfur, respectively, including upregulation of genes involved in bioleaching-associated metabolism, e.g., Fe2+ and sulfur oxidation, CO2 fixation. Inoculum propagated with pyrite or sulfur, respectively, shared 480 and 411 DEGs with chalcopyrite-cultured inoculum. Discrepancies on repertories of DEGs that involved in Fe2+ and sulfur oxidation in inocula greatly affected subsequent chalcopyrite bioleaching rates. Novel genes (e.g., Msed_1156, Msed_0549) probably involved in sulfur oxidation were first identified. This study highlights that mixotrophically propagated extreme thermoacidophiles especially with chalcopyrite should be inoculated into chalcopyrite heaps at industrial scale.


Subject(s)
Copper/metabolism , Sulfolobaceae/metabolism , Heterotrophic Processes , Iron/metabolism , Oxidation-Reduction , Sulfides/metabolism , Sulfolobaceae/genetics , Sulfur/metabolism
10.
Rev Argent Microbiol ; 51(1): 56-65, 2019.
Article in English | MEDLINE | ID: mdl-29954620

ABSTRACT

Thermoacidophiles can exist in a state of dormancy both in moderate temperatures and even in cold conditions in heap leaching. Sulphide mineral ores such as chalcopyrite produce sulfuric acid when exposed to the air and water. The produced sulfuric acid leads to the decrease of pH and exothermic reactions in heap leaching causing the temperature to increase up to 55°C and the activation of thermoacidophilic microorganisms. The aim of the present study was to isolate indigenous extreme thermoacidophilic microorganisms at ambient temperature from Sarcheshmeh Copper Complex, to adapt them to the high pulp density of a chalcopyrite concentrate, and to determine their efficiency in chalcopyrite bioleaching in order to recover copper. In this study samples were collected at ambient temperature from Sarcheshmeh Copper Complex in Iran. Mixed samples were inoculated into the culture medium for enrichment of the microorganisms. Pure cultures from these enrichments were obtained by subculture of liquid culture to solid media. Morphological observation was performed under the scanning electron microscope. Isolates were adapted to 30% (w/v) pulp density. For the bioleaching test, the experiments were designed with DX7 software. Bioleaching experiments were carried out in Erlenmeyer flasks and a stirred tank reactor. The highest copper recovery in Erlenmeyer flasks was 39.46% with pulp 15%, inoculums 20%, size particle 90µm and 160rpm. The lowest recovery was 3.81% with pulp 20%, inoculums 20%, size particle 40µm and 140rpm after 28 days. In the reactor, copper recovery was 32.38%. Bioleaching residues were analyzed by the X-ray diffraction (XRD) method. The results showed no jarosite (KFe3(SO4)2(OH)6) had formed in the bioleaching experiments. It seems that the antagonistic reactions among various species and a great number of planktonic cells in Erlenmeyer flasks and the stirred tank reactor are the reasons for the low recovery of copper in our study.


Subject(s)
Bacteria/metabolism , Biotechnology/methods , Copper/metabolism , Hydrogen-Ion Concentration , Iran , Mining , Temperature
11.
Anal Bioanal Chem ; 410(6): 1725-1733, 2018 Feb.
Article in English | MEDLINE | ID: mdl-29270659

ABSTRACT

The bioleaching of two different genetic types of chalcopyrite by the moderate thermophile Sulfobacillus thermosulfidooxidans was investigated by leaching behaviors elucidation and their comparative mineralogical assessment. The leaching experiment showed that the skarn-type chalcopyrite (STC) revealed a much faster leaching rate with 33.34% copper extracted finally, while only 23.53% copper was bioleached for the porphyry-type chalcopyrite (PTC). The mineralogical properties were analyzed by XRD, SEM, XPS, and Fermi energy calculation. XRD indicated that the unit cell volume of STC was a little larger than that of PTC. SEM indicated that the surface of STC had more steps and ridges. XPS spectra showed that Cu(I) was the dominant species of copper on the surfaces of the two chalcopyrite samples, and STC had much more copper with lower Cu 2p3/2 binding energy. Additionally, the Fermi energy of STC was much higher than that of PTC. These mineralogical differences were in good agreement with the bioleaching behaviors of chalcopyrite. This study will provide some new information for evaluating the oxidation kinetics of chalcopyrite.


Subject(s)
Copper/analysis , Sulfolobaceae/metabolism , Copper/metabolism , Crystallization , Minerals/analysis , Minerals/metabolism , Oxidation-Reduction , Sulfolobaceae/chemistry , X-Ray Diffraction
12.
Biotechnol Lett ; 40(1): 63-73, 2018 Jan.
Article in English | MEDLINE | ID: mdl-28940098

ABSTRACT

OBJECTIVES: To develop a bioelectrochemical system (BES) to couple the biooxidation of chalcopyrite (CuFeS2), bioelectrogenesis, and the cathodic Cu2+ reduction, bioanodes of acidophilic (pH < 2) and aerobic chemolithoautotrophic bacteria Acidithiobacillus thiooxidans (sulfur oxidizing) and Leptospirillum sp. (Fe2+ oxidizing) were used. RESULTS: CuFeS2 biooxidation increases the charge transfer from the media due to the bioleaching of Cu and Fe. The biofilm on a graphite bar endows a more electropositive (anodic) character to the bioelectrode. By adding the bioleachate generated by both bacteria into the anodic chamber, the acidic bioleachate provides the faradaic intensity. The maximum current density was 0.86 ± 19 mA cm-2 due to the low potential of the BES of 0.18 ± 0.02 V. Such low potential was sufficient for the cathodic deposit of Cu2+. CONCLUSIONS: This work demonstrates a proof of concept for energy savings for mining industries: bioanodes of A. thiooxidans and Leptospirillum sp. are electroactive during the biooxidation of CuFeS2.


Subject(s)
Acidithiobacillus thiooxidans/metabolism , Bioelectric Energy Sources , Copper/metabolism , Acidithiobacillus thiooxidans/growth & development , Electrodes/microbiology , Oxidation-Reduction
13.
Biotechnol Bioeng ; 114(5): 998-1005, 2017 05.
Article in English | MEDLINE | ID: mdl-27861731

ABSTRACT

Innovative approaches to the separation of minerals and subsequent extraction of metals are imperative owing to the increasing mineralogical complexity of ore deposits that are difficult or even impossible to separate into slurries or solutions containing only the minerals or metals of interest. Low recovery of metal is typical for these complex deposits leading to significant losses to tailings. In addition, the minerals often contain impurities, some toxic, which are difficult and costly to control or manage during the processing of a concentrate or other mineral product. One example of this complex situation is the significant economic and environmental costs associated with diluting and processing copper concentrates containing arsenic (in the form of the mineral enargite, Cu3 AsS4 ) in the production of pure copper. To overcome these separation problems, we have utilized phage display to identify peptides that demonstrate selective recognition of enargite and the arsenic-free copper sulfide, chalcopyrite. Screening of two random peptide phage display libraries resulted in the identification of an enargite-selective peptide with the sequence MHKPTVHIKGPT and a chalcopyrite-selective peptide with the sequence RKKKCKGNCCYTPQ. Mineral-binding selectivity was demonstrated by binding studies, zeta potential determination and immunochemistry. Peptides that have the ability to discriminate between enargite and chalcopyrite provide a greener option for the separation of arsenic containing contaminants from copper concentrates. This represents the first step towards a major advance in the replacement or reduction of toxic collectors as well as reducing the level of arsenic-bearing minerals in the early stages of mineral processing. Biotechnol. Bioeng. 2017;114: 998-1005. © 2016 Wiley Periodicals, Inc.


Subject(s)
Copper/metabolism , Peptides/metabolism , Cell Surface Display Techniques , Copper/chemistry , Copper/classification , Peptides/chemistry , Protein Binding
14.
Arch Microbiol ; 199(5): 757-766, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28260145

ABSTRACT

This study used an artificial microbial community with four known moderately thermophilic acidophiles (three bacteria including Acidithiobacillus caldus S1, Sulfobacillus thermosulfidooxidans ST and Leptospirillum ferriphilum YSK, and one archaea, Ferroplasma thermophilum L1) to explore the variation of microbial community structure, composition, dynamics and function (e.g., copper extraction efficiency) in chalcopyrite bioleaching (C) systems with additions of pyrite (CP) or sphalerite (CS). The community compositions and dynamics in the solution and on the ore surface were investigated by real-time quantitative PCR (qPCR). The results showed that the addition of pyrite or sphalerite changed the microbial community composition and dynamics dramatically during the chalcopyrite bioleaching process. For example, A. caldus (above 60%) was the dominant species at the initial stage in three groups, and at the middle stage, still dominated C group (above 70%), but it was replaced by L. ferriphilum (above 60%) in CP and CS groups; at the final stage, L. ferriphilum dominated C group, while F. thermophilum dominated CP group on the ore surface. Furthermore, the additions of pyrite or sphalerite both made the increase of redox potential (ORP) and the concentrations of Fe3+ and H+, which would affect the microbial community compositions and copper extraction efficiency. Additionally, pyrite could enhance copper extraction efficiency (e.g., improving around 13.2% on day 6) during chalcopyrite bioleaching; on the contrary, sphalerite restrained it.


Subject(s)
Acidithiobacillus/metabolism , Archaea/metabolism , Clostridiales/metabolism , Copper/chemistry , Iron/chemistry , Leptospiraceae/metabolism , Sulfides/chemistry , Zinc Compounds/chemistry , Acidithiobacillus/classification , Archaea/classification , Clostridiales/classification , Leptospiraceae/classification , Microbial Consortia/physiology
15.
Can J Microbiol ; 62(8): 629-42, 2016 Aug.
Article in English | MEDLINE | ID: mdl-27332502

ABSTRACT

The main objective of this study was to investigate the dissolution kinetics of pyrite, pyrrhotite, and chalcopyrite. Crushed minerals were reacted with Acidithiobacillus ferrooxidans (25 °C). The kinetics of dissolution was investigated by monitoring pH and Fe(2+) and Fe(3+) ion concentrations in the leaching solutions. Pyrite, pyrrhotite, and chalcopyrite dissolution by A. ferrooxidans was found to be a chemically controlled process. With bacteria, the dissolution rates of the minerals increased in the order of pyrrhotite, pyrite, and chalcopyrite. The number of cells attached to mineral surfaces increased in the same order. Acidithiobacillus ferrooxidans was found to enhance the dissolution rates of the minerals. The acid-insoluble trait of pyrite and acid-soluble trait of the other 2 minerals affected the pH changes in the leaching solutions.


Subject(s)
Acidithiobacillus/metabolism , Copper/metabolism , Iron/metabolism , Minerals/metabolism , Sulfides/metabolism , Copper/chemistry , Hydrogen-Ion Concentration , Iron/chemistry , Kinetics , Minerals/chemistry , Solubility , Sulfides/chemistry
16.
Bioprocess Biosyst Eng ; 39(7): 1081-104, 2016 Jul.
Article in English | MEDLINE | ID: mdl-27000968

ABSTRACT

In this investigation, copper was bioleached from a low-grade chalcopyrite ore using a chloride-containing lixiviant. In this regard, firstly, the composition of the bacterial culture media was designed to control the cost in commercial application. The bacterial culture used in this process was acclimated to the presence of chloride in the lixiviant. Practically speaking, the modified culture helped the bio-heap-leaching system operate in the chloridic media. Compared to the copper recovery from the low-grade chalcopyrite by bioleaching in the absence of chloride, bioleaching in the presence of chloride resulted in improved copper recovery. The composition of the lixiviant used in this study was a modification with respect to the basal salts in 9 K medium to optimize the leaching process. When leaching the ore in columns, 76.81 % Cu (based on solid residues of bioleaching operation) was recovered by staged leaching with lixiviant containing 34.22 mM NaCl. The quantitative findings were supported by SEM/EDS observations, X-ray elemental mapping, and mineralogical analysis of the ore before and after leaching. Finally, Adaptive neuro-fuzzy inference system (ANFIS) was used to simulate the operational parameters affecting the bioleaching operation in chloride-sulfate system.


Subject(s)
Chlorides/chemistry , Copper/chemistry , Sodium Chloride/chemistry , Bioreactors , Culture Media
17.
J Basic Microbiol ; 54(6): 491-9, 2014 Jun.
Article in English | MEDLINE | ID: mdl-23832814

ABSTRACT

Column bioleaching of chalcopyrite was conducted at 33, 45, and 65 °C, and the copper leaching rates after 220 days were 38.50, 51.35, and 56.75%, respectively. In order to compare the microbial diversity at different temperatures, the microbial community structures of both bacteria and archaea in the columns were analyzed using 16S rRNA gene clone library on day 220. Clone library results indicated that although both iron oxidizers and sulfur oxidizers occurred at all temperatures, iron oxidizers were dominant at 33 and 45 °C and sulfur oxidizers were predominant at 65 °C. With regard to bacterial community structure, Leptospirillum ferriphilum was the principal bacterium at 33 and 45 °C, and uncultured sulfur-oxidizing symbiont bacteria were dominant at 65 °C. On the other hand, with regard to archaea, only Ferroplasma sp. was detected at 33 °C, cultures similar to uncultured archaeon clone were dominant at 45 °C, and Metallosphaera sedula was predominant at 65 °C. Thus, it is suggested that different community structures occur at different temperatures, and that thermophilic chalcopyrite bioleaching should be inoculated and operated at high temperature in order to allow thermophiles to become the dominant microorganism in the system.


Subject(s)
Archaea/classification , Bacteria/classification , Biota , Copper/metabolism , Water Microbiology , Archaea/genetics , Bacteria/genetics , Cluster Analysis , DNA, Archaeal/chemistry , DNA, Archaeal/genetics , DNA, Bacterial/chemistry , DNA, Bacterial/genetics , DNA, Ribosomal/chemistry , DNA, Ribosomal/genetics , Genes, rRNA , Molecular Sequence Data , Phylogeny , RNA, Archaeal/genetics , RNA, Bacterial/genetics , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Sequence Homology, Nucleic Acid , Temperature
18.
J Basic Microbiol ; 54(7): 650-7, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24523248

ABSTRACT

Acidithiobacillus ferrooxidans is commonly used in bioleaching operations to recover copper from sulfide ores. It is commonly accepted that A. ferrooxidans attaches to mineral surfaces by means of extracellular polymeric substances (EPS), however the role of type IV pili and tight adherence genes in this process is poorly understood. Genes related to the formation of type IV pili and tight adherence were identified in the genome of the bacterium, and in this work, we show that A. ferrooxidans actively expresses these genes, as demonstrated by quantitative real-time PCR analysis using cells incubated with chalcopyrite for 2 h. Significant differences in gene expression were observed between planktonic and adhered cells, with the level of expression being much greater in planktonic cells. These results might indicate that planktonic cells can actively adhere to the substrate. A bioinformatics analysis of interaction networks of the tight adherence and type IV pilus assembly genes revealed a strong relationship between conjugation systems (tra operon) and regulatory systems (PilR, PilS).


Subject(s)
Acidithiobacillus/drug effects , Bacterial Proteins/genetics , Biofilms/drug effects , Copper/pharmacology , Fimbriae, Bacterial/genetics , Gene Expression Regulation, Bacterial , Acidithiobacillus/genetics , Acidithiobacillus/metabolism , Bacterial Adhesion/drug effects , Bacterial Proteins/metabolism , Bacterial Secretion Systems/genetics , Biofilms/growth & development , Molecular Sequence Annotation , Operon , Plankton/drug effects , Plankton/genetics , Plankton/metabolism , Protein Interaction Mapping , Quorum Sensing , Signal Transduction
19.
Materials (Basel) ; 17(4)2024 02 08.
Article in English | MEDLINE | ID: mdl-38399075

ABSTRACT

Oxidative leaching, as a basic step of the hydrometallurgical process of pure copper production from chalcopyrite, is a slow process in which mineral acids with strong oxidants addition are usually used as a leaching medium. It was found experimentally that the copper leaching from chalcopyrite in the H2SO4-H2O2-H2O system, in the presence of isopropanol (IPA) and under other conditions (H2O2 concentration, rate of mixing and temperature), takes place with satisfactory rate and efficiency. To quantify how much the change of these crucial variables affects the rate of the process, experimentally obtained kinetic curves (conversion over time) were analyzed using a Shrinking Core Model (SCM). The determined values of the copper leaching rate constants (kobs) confirmed the positive influence of increasing IPA and H2O2 concentrations as well as the temperature on the kinetics and efficiency of the leaching. The kinetic studies were also supported by using X-ray diffraction (XRD), 57Fe Mössbauer spectroscopy, scanning electron microscopy (SEM), and adsorption measurements. The positive influence of IPA was explained by its stabilizing role for iron compounds (hematite, magnetite, and pyrite), which are catalysts during the Cu dissolution, as well as H2O2 protection from decomposition during free radical reactions. Finally, the optimal conditions for efficient leaching, the rate-limiting step as well as the mechanism suggestion of the copper dissolution, were given.

20.
J Hazard Mater ; 463: 132908, 2024 02 05.
Article in English | MEDLINE | ID: mdl-37924703

ABSTRACT

The widely used 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonate) (ABTS) has gained growing attention in advanced oxidation processes (AOPs), whereas there was limited knowledge regarding the feasibility of ABTS in enhancing heterogeneous Fenton oxidation so far. Hereof, ABTS was introduced into the chalcopyrite (CuFeS2)- catalyzed heterogeneous Fenton oxidation process to degrade diclofenac (DCF), and the degradation efficiency was enhanced by 25.5% compared with CuFeS2/H2O2 process. The available reactive oxygen species (ROS) and the enhanced mechanism were elaborated. Experimental results uncovered that •OH was the dominant reactive species responsible for the DCF degradation in the CuFeS2/H2O2/ABTS process, and ABTS•+ was derived from both •OH and Fe(IV). The presence of ABTS contributed significantly to the redox cycle of surface Fe of CuFeS2, and the roles of reductive sulfur species and surface Cu(I) in promoting surface Fe cycling also could not be neglected. In addition, the effects of several influencing factors were considered, and the potential practicability of this oxidation process was examined. The results demonstrate that the CuFeS2/H2O2/ABTS process would be a promising approach for water purification. This study will contribute to the development of enhancing strategies using ABTS as a redox mediator for heterogeneous Fenton oxidation of pharmaceuticals.


Subject(s)
Hydrogen Peroxide , Water Pollutants, Chemical , Diclofenac , Oxidation-Reduction , Catalysis
SELECTION OF CITATIONS
SEARCH DETAIL