Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
1.
Anal Bioanal Chem ; 414(5): 1933-1947, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34997251

ABSTRACT

Liquid chromatography (LC) coupled with tandem mass spectrometry (MS/MS) provides a simple and efficient means for the measurement of analytes in biological matrices with high selectivity and specificity. LC-MS/MS plays an important role in the pharmaceutical industry and biomedical research, but it requires analytes to be in an ionized form in order to be detected. This can pose a challenge for large molecules such as proteins and peptides, because they can exist in multiple charged forms, and this will reduce the total analyte signal by distributing it into multiple ion peaks with a different number of charges in a mass spectrum. In conventional LC-MS/MS analysis of such macromolecules, one charged form is selected as the precursor ion which is then fragmented by collision-induced dissociation (CID) in MS/MS to generate product ions, a process referred to as multiple-reaction monitoring (MRM). The MRM method minimizes interference from endogenous molecules within biological matrices that share the same molecular weight of the precursor ion, but at the expense of signal intensity as compared to precursor ion intensity. We describe here an approach to boost detection sensitivity and expand dynamic range in the quantitation of large molecules while maintaining analytical specificity using summation of MRM (SMRM) transitions and LC separation technique. Protein image from PDB-101 (PDB101.rscb.org).


Subject(s)
Chromatography, Liquid/methods , Tandem Mass Spectrometry/methods , Animals , Feasibility Studies , Limit of Detection , Rats , Rats, Sprague-Dawley
2.
Mol Cell Proteomics ; 18(10): 2099-2107, 2019 10.
Article in English | MEDLINE | ID: mdl-31249099

ABSTRACT

Deep learning models for prediction of three key LC-MS/MS properties from peptide sequences were developed. The LC-MS/MS properties or behaviors are indexed retention times (iRT), MS1 or survey scan charge state distributions, and sequence ion intensities of HCD spectra. A common core deep supervised learning architecture, bidirectional long-short term memory (LSTM) recurrent neural networks was used to construct the three prediction models. Two featurization schemes were proposed and demonstrated to allow for efficient encoding of modifications. The iRT and charge state distribution models were trained with on order of 105 data points each. An HCD sequence ion prediction model was trained with 2 × 106 experimental spectra. The iRT prediction model and HCD sequence ion prediction model provide improved accuracies over the start-of-the-art models available in literature. The MS1 charge state distribution prediction model offers excellent performance. The prediction models can be used to enhance peptide identification and quantification in data-dependent acquisition and data-independent acquisition (DIA) experiments as well as to assist MRM (multiple reaction monitoring) and PRM (parallel reaction monitoring) experiment design.


Subject(s)
Peptides/genetics , Proteomics/methods , Amino Acid Sequence , Chromatography, Liquid , Deep Learning , HEK293 Cells , HeLa Cells , Humans , Peptides/analysis , Tandem Mass Spectrometry
3.
J Synchrotron Radiat ; 26(Pt 4): 1017-1030, 2019 Jul 01.
Article in English | MEDLINE | ID: mdl-31274423

ABSTRACT

The xcalib toolkit has been developed to calibrate the beam profile of an X-ray free-electron laser (XFEL) at the focal spot based on the experimental charge state distributions (CSDs) of light atoms. Characterization of the fluence distribution at the focal spot is essential to perform the volume integrations of physical quantities for a quantitative comparison between theoretical and experimental results, especially for fluence-dependent quantities. The use of the CSDs of light atoms is advantageous because CSDs directly reflect experimental conditions at the focal spot, and the properties of light atoms have been well established in both theory and experiment. Theoretical CSDs are obtained using xatom, a toolkit to calculate atomic electronic structure and to simulate ionization dynamics of atoms exposed to intense XFEL pulses, which involves highly excited multiple core-hole states. Employing a simple function with a few parameters, the spatial profile of an XFEL beam is determined by minimizing the difference between theoretical and experimental results. The optimization procedure employing the reinforcement learning technique can automatize and organize calibration procedures which, before, had been performed manually. xcalib has high flexibility, simultaneously combining different optimization methods, sets of charge states, and a wide range of parameter space. Hence, in combination with xatom, xcalib serves as a comprehensive tool to calibrate the fluence profile of a tightly focused XFEL beam in the interaction region.

4.
Clin Chem Lab Med ; 56(9): 1490-1497, 2018 08 28.
Article in English | MEDLINE | ID: mdl-29777607

ABSTRACT

BACKGROUND: Targeted quantification of protein biomarkers with liquid chromatography-tandem mass spectrometry (LC-MS/MS) has great potential, but is still in its infancy. Therefore, we elucidated the influence of charge state distribution and matrix effects on accurate quantification, illustrated by the peptide hormone hepcidin. METHODS: An LC-MS/MS assay for hepcidin, developed based on existing literature, was improved by using 5 mM ammonium formate buffer as mobile phase A and as an elution solution for solid phase extraction (SPE) to optimize the charge state distribution. After extensive analytical validation, focusing on interference and matrix effects, the clinical consequence of this method adjustment was studied by performing receiving operating characteristic (ROC)-curve analysis in patients with iron deficiency anemia (IDA, n=44), anemia of chronic disease (ACD, n=42) and non-anemic patients (n=93). RESULTS: By using a buffered solution during sample preparation and chromatography, the most abundant charge state was shifted from 4+ to 3+ and the charge state distribution was strongly stabilized. The matrix effects which occurred in the 4+ state were therefore avoided, eliminating bias in the low concentration range of hepcidin. Consequently, sensitivity, specificity and positive predictive value (PPV) for detection of IDA patients with the optimized assay (96%, 97%, 91%, respectively) were much better than for the original assay (73%, 70%, 44%, respectively). CONCLUSIONS: Fundamental improvements in LC-MS/MS assays greatly impact the accuracy of protein quantification. This is urgently required for improved diagnostic accuracy and clinical value, as illustrated by the validation of our hepcidin assay.


Subject(s)
Biomarkers/analysis , Chromatography, High Pressure Liquid/methods , Hepcidins/analysis , Tandem Mass Spectrometry/methods , Adolescent , Adult , Aged , Aged, 80 and over , Anemia/pathology , Anemia, Iron-Deficiency/pathology , Area Under Curve , C-Reactive Protein/analysis , Chronic Disease , Female , Hepcidins/isolation & purification , Humans , Male , Middle Aged , ROC Curve , Solid Phase Extraction , Young Adult
5.
Eur J Mass Spectrom (Chichester) ; 23(4): 181-186, 2017 08.
Article in English | MEDLINE | ID: mdl-29028387

ABSTRACT

The goals of our study were to investigate abilities of two approaches to eliminate possible errors in electrospray mass spectrometry measurements of biomolecules. Passing of a relatively dense supersonic gas jet through ionization region followed by its hitting the spray of the analyzed solution in low vacuum may be effective to keep an initial biomolecule structure in solution. Provided that retention of charge carriers for some sites in the biomolecule cannot be changed noticeably in electrospray ion source, decomposition and separation of charge-state distributions of electrosprayed ions may give additional information about native structure of biomolecules in solution.


Subject(s)
Proteins/analysis , Spectrometry, Mass, Electrospray Ionization/methods , Equipment Design , Ions/analysis , Ions/chemistry , Proteins/chemistry , Spectrometry, Mass, Electrospray Ionization/instrumentation
6.
J Mass Spectrom ; 57(11): e4891, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36328972

ABSTRACT

We report the effect of N2 gas-mixing in the xenon electron cyclotron resonance (ECR) plasma, and abundance-dependent novel, exciting and unusual trends of the isotope anomaly. The xenon plasma was produced using a 10 GHz all-permanent-magnet NANOGAN ECR ion source, and the charge state distributions of naturally abundant six stable xenon isotopes with and without N2 gas-mixing (at 25%, 50%, and 75%) were recorded. The intensity ratio of the heavier to lighter isotope, where the heavier isotope is less abundant, showed a clear signature of the isotope anomaly as explained by the linear Landau wave damping theory. Contrary to the theoretical prediction that the isotope anomaly should vanish with a relatively large fraction of the heavier isotope in mixed plasmas, the trends of intensity ratios observed in such cases are very unusual and have almost the mirror-symmetrical shapes of those trends recorded with less abundant heavier isotope. Further, the effect of relative mass difference on the isotope anomaly was also evidenced. The N2 gas-mixing of the xenon plasma at 25% and 50% shifted the entire charge state distribution toward the higher intensity side owing to the supply of additional electrons that caused high ionization efficiency. However, a prominent gas-mixing effect was observed at 75% of N2 mixing in the xenon plasma beyond the +7 charge state. The abundance-dependent unusual trends in isotope anomaly have been explained by considering different ionic temperatures, ion heating by the wave damping, and Coulomb scattering in the core of the plasma.


Subject(s)
Cyclotrons , Xenon , Electrons , Gases , Ions , Isotopes , Nitrogen
7.
J Mass Spectrom Adv Clin Lab ; 20: 25-34, 2021 Apr.
Article in English | MEDLINE | ID: mdl-34820668

ABSTRACT

INTRODUCTION: Antibiotic-resistant Gram-negative bacteria are of a growing concern globally, especially those producing enzymes conferring resistance. OXA-48-like carbapenemases hydrolyze most ß-lactam antibiotics, with typically low-level hydrolysis of carbapenems, but have limited effect on broad-spectrum cephalosporins. These are frequently co-expressed with extended spectrum ß-lactamases, especially CTX-M-15, which typically shows high level resistance to broad-spectrum cephalosporins, yet is carbapenem susceptible. The combined resistance profile makes the need for successful detection of these specific resistance determinants imperative for effective antibiotic therapy. OBJECTIVES: The objective of this study is to detect and identify OXA-48-like and CTX-M-15 enzymes using mass spectrometry, and to subsequently develop a method for detection of both enzyme types in combination with liquid chromatography. METHODS: Cells grown in either broth or on agar were harvested, lysed, and, in some cases buffer-exchanged. Lysates produced from bacterial cells were separated and analyzed via liquid chromatography with mass spectrometry (LC-MS) and tandem mass spectrometry (LC-MS/MS). RESULTS: The intact proteins of OXA-48, OXA-181, and OXA-232 (collectively OXA-48-like herein) and CTX-M-15 were characterized and detected. Acceptance criteria based on sequence-informative fragments from each protein group were established as confirmatory markers for the presence of the protein(s). A total of 25 isolates were successfully tested for OXA-48 like (2), CTX-M-15 (3), or expression of both (7) enzymes. Thirteen isolates served as negative controls. CONCLUSIONS: Here we present a method for the direct and independent detection of both OXA-48-like carbapenemases and CTX-M-15 ß-lactamases using LC-MS/MS. The added sensitivity of MS/MS allows for simultaneous detection of at least two co-eluting, co-isolated and co-fragmented proteins from a single mass spectrum.

8.
Matrix Biol Plus ; 12: 100081, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34505054

ABSTRACT

Syndecans are membrane proteoglycans regulating extracellular matrix assembly, cell adhesion and signaling. Their ectodomains can be shed from the cell surface, and act as paracrine and autocrine effectors or as competitors of full-length syndecans. We report the first biophysical characterization of the recombinant ectodomains of the four human syndecans using biophysical techniques, and show that they behave like flexible random-coil intrinsically disordered proteins, and adopt several conformation ensembles in solution. We have characterized their conformational landscapes using native mass spectrometry (MS) and ion-mobility MS, and demonstrated that the syndecan ectodomains explore the majority of their conformational landscape, from minor compact, globular-like, conformations to extended ones. We also report that the ectodomain of syndecan-4, corresponding to a natural isoform, is able to dimerize via a disulfide bond. We have generated a three-dimensional model of the C-terminus of this dimer, which supports the dimerization via a disulfide bond. Furthermore, we have mapped the NXIP adhesion motif of syndecans and their sequences involved in the formation of ternary complexes with integrins and growth factor receptors on the major conformations of their ectodomains, and shown that these sequences are not accessible in all the conformations, suggesting that only some of them are biologically active. Lastly, although the syndecan ectodomains have a far lower number of amino acid residues than their membrane partners, their intrinsic disorder and flexibility allow them to adopt extended conformations, which have roughly the same size as the cell surface receptors (e.g., integrins and growth factor receptors) they bind to.

9.
Clin Mass Spectrom ; 17: 12-21, 2020 Aug.
Article in English | MEDLINE | ID: mdl-34820520

ABSTRACT

INTRODUCTION: Carbapenemase-producing organisms (CPOs) are a growing threat to human health. Among the enzymes conferring antibiotic resistance produced by these organisms, Klebsiella pneumoniae carbapenemase (KPC) is considered to be a growing global health threat. Reliable and specific detection of this antibiotic resistance-causing enzyme is critical both for effective therapy and to mitigate further spread. OBJECTIVES: The objective of this study is to develop an intact protein mass spectrometry-based method for detection and differentiation of clinically-relevant KPC variants directly from bacterial cell lysates. The method should be specific for any variant expressed in multiple bacterial species, limit false positive results and be rapid in nature to directly influence clinical outcomes. METHODS: Lysates obtained directly from bacterial colonies were used for intact protein detection using liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS). Bottom-up and top-down proteomic methods were used to characterize the KPC protein targets of interest. Comparisons between KPC-producing and KPC-non-producing isolates from a wide variety of species were also performed. RESULTS: Characterization of the mature KPC protein revealed an unexpected signal peptide cleavage site preceding an AXA signal peptide motif, modifying the molecular weight (MW) of the mature protein. Taking the additional AXA residues into account allowed for direct detection of the intact protein using top-down proteomic methods. Further validation was performed by transforming a KPC-harboring plasmid into a negative control strain, followed by MS detection of the KPC variant from the transformed cell line. Application of this approach to clearly identify clinically-relevant variants among several species is presented for KPC-2, KPC-3, KPC-4 and KPC-5. CONCLUSION: Direct detection of these enzymes contributes to the understanding of occurrence and spread of these antibiotic-resistant organisms. The ability to detect intact KPC variants via a simple LC-MS/MS approach could have a direct and positive impact on clinical therapy, by providing both direction for epidemiological tracking and appropriate therapy.

10.
J Am Soc Mass Spectrom ; 29(5): 1002-1011, 2018 05.
Article in English | MEDLINE | ID: mdl-29520709

ABSTRACT

The detection of lysozyme, or a mixture of lysozyme, cytochrome c, and myoglobin, from solutions with varying salt concentrations (0.1 to 250 mM NaCl) is compared using laser electrospray mass spectrometry (LEMS) and electrospray ionization-mass spectrometry (ESI-MS). Protonated protein peaks were observed up to a concentration of 250 mM NaCl in the case of LEMS. In the case of ESI-MS, a protein solution with salt concentration > 0.5 mM resulted in predominantly salt-adducted features, with suppression of the protonated protein ions. The constituents in the mixture of proteins were assignable up to 250 mM NaCl for LEMS and were not assignable above a NaCl concentration of 0.5 mM for ESI. The average sodium adducts (< n >) bound to the 7+ charge state of lysozyme for LEMS measurements from salt concentrations of 2.5, 25, 50, and 100 mM NaCl are 1.71, 5.23, 5.26, and 5.11, respectively. The conventional electrospray measurements for lysozyme solution containing salt concentrations of 0.1, 1, 2, and 5 mM NaCl resulted in < n > of 2.65, 6.44, 7.57, and 8.48, respectively. LEMS displays an approximately two orders of magnitude higher salt tolerance in comparison with conventional ESI-MS. The non-equilibrium partitioning of proteins on the surface of the charged droplets is proposed as the mechanism for the high salt tolerance phenomena observed in the LEMS measurements. Graphical Abstract ᅟ.


Subject(s)
Proteins/chemistry , Sodium Chloride/chemistry , Spectrometry, Mass, Electrospray Ionization/methods , Animals , Cytochromes c/chemistry , Lasers , Muramidase/chemistry , Myoglobin/chemistry , Solutions
11.
J Am Soc Mass Spectrom ; 29(7): 1484-1492, 2018 07.
Article in English | MEDLINE | ID: mdl-29654537

ABSTRACT

Laser electrospray mass spectrometry (LEMS) measurement of the dissociation constant (Kd) for hen egg white lysozyme (HEWL) and N,N',N″-triacetylchitotriose (NAG3) revealed an apparent Kd value of 313.2 ± 25.9 µM for the ligand titration method. Similar measurements for N,N',N″,N″'-tetraacetylchitotetraose (NAG4) revealed an apparent Kd of 249.3 ± 13.6 µM. An electrospray ionization mass spectrometry (ESI-MS) experiment determined a Kd value of 9.8 ± 0.6 µM. In a second LEMS approach, a calibrated measurement was used to determine a Kd value of 6.8 ± 1.5 µM for NAG3. The capture efficiency of LEMS was measured to be 3.6 ± 1.8% and is defined as the fraction of LEMS sample detected after merging with the ESI plume. When the dilution is factored into the ligand titration measurement, the adjusted Kd value was 11.3 µM for NAG3 and 9.0 µM for NAG4. The calibration method for measuring Kd developed in this study can be applied to solutions containing unknown analyte concentrations. Graphical Abstract.

12.
Anal Chim Acta ; 1003: 1-9, 2018 Mar 20.
Article in English | MEDLINE | ID: mdl-29317023

ABSTRACT

Theta nanoelectrospray ionization of protein ions formed from aqueous buffer solutions that are mixed with denaturing solutions containing cyclic alkylcarbonates (e.g., vinyl ethylene carbonate; VEC) results in a significant increase in the extent of ion charging compared to native mass spectrometry. For six proteins, the extent of ion charging can be significantly higher than that obtained using denaturing solutions and alternative native "supercharging" methods. In theta nanoelectrospray supercharging, the extent of charging scales with protein mass in agreement with an analytical scaling relationship for ions with elongated structures. Theta nanoelectrospray supercharging of non-covalent complexes from native solutions results in essentially the complete loss of protein-ligand and protein-protein interactions. Based on circular dichroism spectroscopy, VEC can effectively denature proteins in buffered solutions. These data provide evidence that enrichment of VEC in theta nanoelectrospray ionization generated droplets can denature proteins on the timescale of droplet desolvation and ion formation. This approach can be used to form highly charged protein ions from native solutions containing biological buffers, including some that are considered incompatible with native MS. Forming some protein ions in the highest reported charge states directly from native solutions is no longer a challenge in obtaining primary structural information using tandem mass spectrometry.


Subject(s)
Carbonates/chemistry , Nanotechnology/methods , Proteins/chemistry , Spectrometry, Mass, Electrospray Ionization/methods , Alkylation , Animals , Cattle , Ligands , Protein Structure, Secondary
13.
J Am Soc Mass Spectrom ; 28(3): 470-478, 2017 Mar.
Article in English | MEDLINE | ID: mdl-28063091

ABSTRACT

Charge state distributions are measured using mass spectrometry for both native and denatured cytochrome c and myoglobin after laser vaporization from the solution state into an electrospray (ES) plume consisting of a series of solution additives differing in gas-phase basicity. The charge distribution depends on both the pH of the protein solution prior to laser vaporization and the gas-phase basicity of the solution additive employed in the ES solvent. Cytochrome c (myoglobin) prepared in solutions with pH of 7.0, 2.6, and 2.3 resulted in the average charge state distribution (Zavg) of 7.0 ± 0.1 (8.2 ± 0.1), 9.7 ± 0.2 (14.5 ± 0.3), and 11.6 ± 0.3 (16.4 ± 0.1), respectively, in ammonium formate ES solvent. The charge distribution shifted from higher charge states to lower charge states when the ES solvent contained amines additives with higher gas-phase basicity. In the case of triethyl ammonium formate, Zavg of cytochrome c (myoglobin) prepared in solutions with pH of 7.0, 2.6, and 2.3 decreased to 4.9 (5.7), 7.4 ± 0.2 (9.6 ± 0.3), and 7.9 ± 0.3 (9.8 ± 0.2), respectively. The detection of a charge state distribution corresponding to folded protein after laser vaporized, acid-denatured protein interacts with the ES solvent containing ammonium formate, ammonium acetate, triethyl ammonium formate, and triethyl ammonium acetate suggests that at least a part of protein population folds within the electrospray droplet on a millisecond timescale. Graphical Abstract ᅟ.

14.
J Am Soc Mass Spectrom ; 28(2): 315-322, 2017 02.
Article in English | MEDLINE | ID: mdl-27812920

ABSTRACT

Lasso peptides are characterized by a mechanically interlocked structure, where the C-terminal tail of the peptide is threaded and trapped within an N-terminal macrolactam ring. Their compact and stable structures have a significant impact on their biological and physical properties and make them highly interesting for drug development. Ion mobility - mass spectrometry (IM-MS) has shown to be effective to discriminate the lasso topology from their corresponding branched-cyclic topoisomers in which the C-terminal tail is unthreaded. In fact, previous comparison of the IM-MS data of the two topologies has yielded three trends that allow differentiation of the lasso fold from the branched-cyclic structure: (1) the low abundance of highly charged ions, (2) the low change in collision cross sections (CCS) with increasing charge state and (3) a narrow ion mobility peak width. In this study, a three-dimensional plot was generated using three indicators based on these three trends: (1) mean charge divided by mass (ζ), (2) relative range of CCS covered by all protonated molecules (ΔΩ/Ω) and (3) mean ion mobility peak width (δΩ). The data were first collected on a set of twenty one lasso peptides and eight branched-cyclic peptides. The indicators were obtained also for eight variants of the well-known lasso peptide MccJ25 obtained by site-directed mutagenesis and further extended to five linear peptides, two macrocyclic peptides and one disulfide constrained peptide. In all cases, a clear clustering was observed between constrained and unconstrained structures, thus providing a new strategy to discriminate mechanically interlocked topologies. Graphical Abstract ᅟ.


Subject(s)
Ion Mobility Spectrometry/methods , Mass Spectrometry/methods , Peptides/chemistry , Bacteriocins/chemistry , Bacteriocins/genetics , Disulfides/chemistry , Mutagenesis, Site-Directed , Mutation , Peptides/genetics , Protein Conformation
15.
J Mass Spectrom ; 51(11): 1090-1095, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27553493

ABSTRACT

We report the charge state distributions of the pure, 25% and 50% oxygen mixed krypton plasma to shed more light on the understanding of the gas mixing and the isotope anomaly [A. G. Drentje, Rev. Sci. Instrum. 63 (1992) 2875 and Y Kawai, D Meyer, A Nadzeyka, U Wolters and K Wiesemann, Plasma Sources Sci. Technol. 10 (2001) 451] in the electron cyclotron resonance (ECR) plasmas. The krypton plasma was produced using a 10 GHz all-permanent-magnet ECR ion source. The intensities of the highly abundant four isotopes, viz. 82 Kr (~11.58%), 83 Kr (~11.49%), 84 Kr (~57%) and 86 Kr (17.3%) up to ~ +14 charge state have been measured by extracting the ions from the plasma and analysing them in the mass and the energy using a large acceptance analyzer-cum-switching dipole magnet. The influence of the oxygen gas mixing on the isotopic krypton ion intensities is clearly evidenced beyond +9 charge state. With and without oxygen mixing, the charge state distribution of the krypton ECR plasma shows the isotope anomaly with unusual trends. The anomaly in the intensities of the isotopes having quite closer natural abundance, viz. 82 Kr, 86 Kr and 83 Kr, 86 Kr is prominent, whereas the intensity ratio of 86 Kr to 84 Kr shows a weak signature of it. The isotope anomaly tends to disappear with increasing oxygen mixing in the plasma. The observed trends in the intensities of the krypton isotopes do not follow the prediction of linear Landau wave damping in the plasma. Copyright © 2016 John Wiley & Sons, Ltd.

16.
J Mass Spectrom ; 49(6): 437-44, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24913396

ABSTRACT

The exposure of electrospray droplets to vapors of deuterating reagents during droplet desolvation in the interface of a mass spectrometer results in hydrogen/deuterium exchange (HDX) on the sub-millisecond time scale. Deuterated water is used to label ubiquitin and cytochrome c with minimal effect on the observed charge state distribution (CSD), suggesting that the protein conformation is not being altered. However, the introduction of deuterated versions of various acids (e.g., CD3COOD and DCl) and bases (ND3) induces unfolding or refolding of the protein while also labeling these newly formed conformations. The extent of HDX within a protein CSD associated with a particular conformation is essentially constant, whereas the extent of HDX can differ significantly for CSDs associated with different conformations from the same protein. In some cases, multiple HDX distributions can be observed within a given charge state (as is demonstrated with cytochrome c) suggesting that the extent of HDX and CSDs share a degree of complementarity in their sensitivities for protein conformation. The CSD is established late in the evolution of ions in electrospray whereas the HDX process presumably takes place in the bulk of the droplet throughout the electrospray process. Back exchange is also performed in which proteins are prepared in deuterated solvents prior to ionization and exposed to undeuterated vapors to exchange deuteriums for hydrogens. The degree of deuterium uptake is easily controlled by varying the identity and partial pressure of the reagent introduced into the interface. Since the exchange occurs on the sub-millisecond time scale, the use of deuterated acids or bases allows for transient species to be generated and labeled for subsequent mass analysis.


Subject(s)
Deuterium Exchange Measurement/methods , Proteins/chemistry , Proteins/metabolism , Spectrometry, Mass, Electrospray Ionization/methods , Hydrogen-Ion Concentration , Protein Conformation , Protein Folding
17.
J Mass Spectrom ; 49(1): 103-7, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24446269

ABSTRACT

The fundamental aspects of charging in electrospray ionization (ESI) are hotly debated. In the present study, ESI charging of DNA oligonucleotides was explored in both positive (ESI+) and negative (ESI-) polarity using mass spectrometry detection. Single-stranded 12-mer CCCCAATTCCCC in buffer solution (aqueous NH4Ac, 100 mM) produced similar charge state distribution (CSD) in either ESI+ or ESI-. Similarity of CSD in ESI+ and ESI- was also observed for the double-stranded 12-mer CGCGAATTCGCG. By adding typical low-vapor reagents (e.g. m-nitro benzyl alcohol, m-NBA; sulfolane) into the same buffer solution (<0.5% w/v), both CCCCAATTCCCC and CGCGAATTCGCG revealed strong supercharging (SC) effect in ESI-, while very little or no SC effect was observed in ESI+. With either sulfolane or m-NBA, the CGCGAATTCGCG duplex dissociated into single strands in ESI-. No SC was observed in both ESI+ and ESI- for thermally denatured CGCGAATTCGCG duplex in NH4 Ac buffer without the reagents. These findings are difficult to reconcile with the earlier model, which attributes SC in aqueous buffer solution to the conformational changes of analytes. Our observations suggest that the ionic strength of ESI droplets strongly affects the CSD of biopolymers such as DNA oligonucleotides and that SC effect is related to the depletion of ionic strength during the ESI process.


Subject(s)
DNA/chemistry , Oligonucleotides/chemistry , Osmolar Concentration , Spectrometry, Mass, Electrospray Ionization/methods , Acetates , Indicators and Reagents
18.
Anal Chim Acta ; 813: 97-105, 2014 Feb 27.
Article in English | MEDLINE | ID: mdl-24528666

ABSTRACT

Capillary electrophoresis (CE) coupled with electrospray ionization (ESI) mass spectrometry (MS) is a suitable technique for the analysis of intact proteins. The main configuration to realize this coupling is the sheath liquid interface, which is characterized by the addition of a make-up liquid providing the electric contact as well as the appropriate flow and solvent composition for optimal ionization and evaporation. One main advantage of this interface is that the composition of the sheath liquid can be tuned to modify the ionization without affecting CE selectivity and efficiency. In the case of protein ionization, this feature is particularly interesting to modulate their charge-state distribution (CSD), while keeping the separation performance unchanged. In this context, the current work evaluated the effect on proteins' CSD of adding supercharging molecules to the sheath liquid. Several supercharging reagents were tested with different background electrolyte (BGE) and their impact was estimated for three model proteins (i.e., human insulin, human growth hormone, hemoglobin A0) exhibiting various properties in terms of ionization, conformation, and flexibility. Their influence on the global sensitivity for each protein was also assessed. Among the supercharging reagents tested, m-NBA and sulfolane led to supercharging effect whose magnitude depended on the proteins as well of the BGE pH. The sensitivity and separation performance remained globally unchanged for each protein and supercharging additive, while sulfolane led in some cases to a sensitivity improvement.


Subject(s)
Electrophoresis, Capillary/instrumentation , Growth Hormone/chemistry , Hemoglobin A/chemistry , Insulin/chemistry , Spectrometry, Mass, Electrospray Ionization/instrumentation , Electrolytes/chemistry , Equipment Design , Humans , Ions/analysis , Protein Conformation , Thiophenes/chemistry
19.
J Mass Spectrom ; 49(7): 639-45, 2014 Jul.
Article in English | MEDLINE | ID: mdl-25044849

ABSTRACT

In this study, alleviation of ion suppression effect in sonic spray ionization mass spectrometry (SSI-MS) was investigated. Ion suppression effect was firstly compared between electrospray ionization (ESI) and conventional SSI, and more severe ion suppression effect was observed with SSI. Ion suppression effect of SSI was also found difficult to be alleviated by simply optimizing major parameters. Alternatively, we found that with the assistance of an alternating current (AC) voltage with low amplitude, the ion suppression effect was greatly alleviated (comparable with conventional ESI). That AC voltage was applied outside the SSI spray tip, and no direct contact between the electrode and spray solution was necessary. Besides the alleviation of the ion suppression effect, this newly-developed method, termed as induced electrosonic spray ionization (IESSI), appeared to preserve similar charge state distribution with SSI for protonated cytochrome c, hemoglobin, and bradykinin. IESSI could also obtain significantly improved ion intensities (~1000-fold over conventional SSI). In addition, tolerance of concentrated salts for IESSI-MS was investigated through the analysis of cytochrome c in the presence of concentrated sodium chloride (NaCl) or ammonium acetate (NH4 OAc).


Subject(s)
Ions/chemistry , Proteins/chemistry , Spectrometry, Mass, Electrospray Ionization/methods , Animals , Atenolol , Electricity , Swine
SELECTION OF CITATIONS
SEARCH DETAIL