Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 9.955
Filter
Add more filters

Publication year range
1.
J Cell Physiol ; 239(1): 135-151, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37942831

ABSTRACT

In tandem with the expanding obesity pandemic, the prevalence of metabolic dysfunction associated steatohepatitis (MASH, formerly known as NASH)- driven hepatocellular carcinoma (HCC) is predicted to rise globally, creating a significant need for therapeutic interventions. We previously identified the upregulation of apoptosis antagonizing transcription factor (AATF), which is implicated in facilitating the progression from MASH to HCC. The objective of this study was to examine whether the intervention of curcumin could alleviate AATF-mediated MASH, inhibit tumor growth, and elucidate the underlying mechanism. A preclinical murine model mimicking human MASH-HCC was employed, subjecting mice to either a chow diet normal water (CDNW) or western diet sugar water (WDSW) along with very low dose of carbon tetrachloride (CCl4 - 0.2 µL/g, weekly). Mice receiving curcumin (CUR) alongside WDSW/CCl4 exhibited significant improvements, including reduced liver enzymes, dyslipidemia, steatosis, inflammation, and hepatocellular ballooning. Curcumin treatment also suppressed hepatic expression of inflammatory, fibrogenic, and oncogenic markers. Of note, there was a significant reduction in the expression of AATF upon curcumin treatment in WDSW/CCl4 mice and human HCC cells. In contrast, curcumin upregulated Kruppel-like factor 4 (KLF4) in MASH liver and HCC cells, which is known to downregulate sp1 (specificity protein-1) expression. Thus, curcumin treatment effectively inhibited the progression of MASH to HCC by downregulating the expression of AATF via the KLF4-Sp1 signaling pathway. These preclinical findings establish a novel molecular connection between curcumin and AATF in reducing hepatocarcinogenesis, and provide a strong rationale for the development of curcumin as a viable treatment for MASH-HCC in humans.


Subject(s)
Carcinoma, Hepatocellular , Curcumin , Fatty Liver , Liver Neoplasms , Non-alcoholic Fatty Liver Disease , Animals , Humans , Mice , Apoptosis , Apoptosis Regulatory Proteins , Carcinoma, Hepatocellular/pathology , Curcumin/pharmacology , Curcumin/therapeutic use , Fatty Liver/pathology , Inflammation/drug therapy , Inflammation/pathology , Liver Neoplasms/pathology , Non-alcoholic Fatty Liver Disease/drug therapy , Non-alcoholic Fatty Liver Disease/metabolism , Repressor Proteins , Transcription Factors
2.
Breast Cancer Res ; 26(1): 114, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38978121

ABSTRACT

The protein Bcl-2, well-known for its anti-apoptotic properties, has been implicated in cancer pathogenesis. Identifying the primary gene responsible for promoting improved cell survival and development has provided compelling evidence for preventing cellular death in the progression of malignancies. Numerous research studies have provided evidence that the abundance of Bcl-2 is higher in malignant cells, suggesting that suppressing Bcl-2 expression could be a viable therapeutic approach for cancer treatment. In this study, we acquired a compound collection using a database that includes constituents from Traditional Chinese Medicine (TCM). Initially, we established a pharmacophore model and utilized it to search the TCM database for potential compounds. Compounds with a fitness score exceeding 0.75 were selected for further analysis. The Absorption, Distribution, Metabolism, Excretion, and Toxicity (ADMET) analysis identified six compounds with favorable therapeutic characteristics. The compounds that successfully passed the initial screening process based on the pharmacodynamic model were subjected to further evaluation. Extra-precision (XP) docking was employed to identify the compounds with the most favorable XP docking scores. Further analysis using the Molecular Mechanics Generalized Born Surface Area (MM-GBSA) method to calculate the overall free binding energy. The binding energy between the prospective ligand molecule and the target protein Bcl-2 was assessed by a 100 ns molecular dynamics simulation for curcumin and Epigallocatechin gallate (EGCG). The findings of this investigation demonstrate the identification of a molecular structure that effectively inhibits the functionality of the Bcl-2 when bound to the ligand EGCG. Consequently, this finding presents a novel avenue for the development of pharmaceuticals capable of effectively addressing both inflammatory and tumorous conditions.


Subject(s)
Catechin , Curcumin , Molecular Docking Simulation , Proto-Oncogene Proteins c-bcl-2 , Catechin/analogs & derivatives , Catechin/pharmacology , Catechin/chemistry , Catechin/therapeutic use , Proto-Oncogene Proteins c-bcl-2/antagonists & inhibitors , Proto-Oncogene Proteins c-bcl-2/metabolism , Humans , Curcumin/pharmacology , Curcumin/chemistry , Curcumin/therapeutic use , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Antineoplastic Agents/chemistry , Neoplasms/drug therapy , Neoplasms/pathology , Neoplasms/metabolism , Protein Binding , Pharmacophore
3.
Curr Issues Mol Biol ; 46(5): 4063-4105, 2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38785519

ABSTRACT

Osteoarthritis (OA) stands as a prevalent and progressively debilitating clinical condition globally, impacting joint structures and leading to their gradual deterioration through inflammatory mechanisms. While both non-modifiable and modifiable factors contribute to its onset, numerous aspects of OA pathophysiology remain elusive despite considerable research strides. Presently, diagnosis heavily relies on clinician expertise and meticulous differential diagnosis to exclude other joint-affecting conditions. Therapeutic approaches for OA predominantly focus on patient education for self-management alongside tailored exercise regimens, often complemented by various pharmacological interventions primarily targeting pain alleviation. However, pharmacological treatments typically exhibit short-term efficacy and local and/or systemic side effects, with prosthetic surgery being the ultimate resolution in severe cases. Thus, exploring the potential integration or substitution of conventional drug therapies with natural compounds and extracts emerges as a promising frontier in enhancing OA management. These alternatives offer improved safety profiles and possess the potential to target specific dysregulated pathways implicated in OA pathogenesis, thereby presenting a holistic approach to address the condition's complexities.

4.
Curr Issues Mol Biol ; 46(9): 10545-10569, 2024 Sep 20.
Article in English | MEDLINE | ID: mdl-39329977

ABSTRACT

The study aims to investigate the effects of curcumin on radiation/chemotherapy-induced oral mucositis (R/CIOM) and preliminarily explore its mechanism. Randomized controlled trials were identified from the PubMed, Embase, Web of Science, Cochrane Library, Medline, and Google Scholar databases. RevMan 5.4 was used for statistical analysis to calculate the combined risk ratios (RRs). The mechanism was analyzed through network pharmacology, molecular docking, and a molecular dynamics simulation. The targets of curcumin were collected in HERB, PharmMapper, Targetnet, Swiss Target Prediction, and SuperPred. OMIM, GeneCards, and Disgenet were used to collect relevant targets for R/CIOM. Cytoscape software 3.8.0 was used to construct the component-target-pathway network. Protein-Protein Interaction (PPI) networks were constructed using the STRING database. GO and KEGG enrichment analyses were performed by Metascape. AutoDock Vina 4.2 software was used for molecular docking. The molecular dynamics simulation was performed by Gromacs v2022.03. It is found that 12 studies involving 565 patients were included. Meta-analyses showed that curcumin reduced the incidence of severe R/CIOM (RR 0.42 [0.24, 0.75]) and the mean severity of R/CIOM (MD -0.93 [-1.34, -0.52]). Eleven core target genes were identified in the treatment of R/CIOM with curcumin. The results of molecular docking and the molecular dynamics simulation showed that curcumin had strong binding energy and stability with target proteins including MAPK3, SRC, and TNF. Overall, these findings suggest curcumin can effectively improve severe R/CIOM, perhaps by affecting MAPK3, SRC, and TNF.

5.
Antimicrob Agents Chemother ; 68(9): e0064224, 2024 Sep 04.
Article in English | MEDLINE | ID: mdl-39082882

ABSTRACT

Praziquantel (PZQ) is currently the only approved drug for treating clonorchiasis, but its poor efficacy against Clonorchis sinensis larvae has highlighted the need to develop newer drugs. In this study, to address this challenge, we investigated the anti-parasitic efficacy of miltefosine (MLT), curcumin (CUR), and PZQ against C. sinensis metacercariae (CsMC), newly excysted juvenile worms (CsNEJs), and adults. Larvicidal effects of MLT and CUR surpassed those elicited by PZQ in vitro. These two drugs exerted their effect against both CsMC and CsNEJs in a dose- and time-dependent manner. To confirm the effect of these drugs in vivo, Syrian golden hamsters were orally infected with 100 CsMC and subsequently treated with MLT, CUR, or PZQ at 1 and 4 weeks post-infection (wpi). MLT and CUR reduced the worm recoveries at 1 and 4 wpi, indicating that these drugs were efficacious against both larvae and adult C. sinensis. PZQ was only efficacious against adult worms. Interestingly, both MLT and CUR showed lower levels of C. sinensis-specific IgG responses than the infection control group, implying that worm burden and bile IgG responses could be correlated. These results indicate that MLT and CUR are efficacious against both larval and adult stages of C. sinensis, thereby highlighting their potential for further development as alternative therapeutic options for clonorchiasis.


Subject(s)
Anthelmintics , Clonorchiasis , Clonorchis sinensis , Curcumin , Phosphorylcholine , Praziquantel , Animals , Clonorchis sinensis/drug effects , Curcumin/pharmacology , Curcumin/therapeutic use , Clonorchiasis/drug therapy , Clonorchiasis/parasitology , Phosphorylcholine/analogs & derivatives , Phosphorylcholine/therapeutic use , Phosphorylcholine/pharmacology , Anthelmintics/therapeutic use , Anthelmintics/pharmacology , Praziquantel/pharmacology , Praziquantel/therapeutic use , Mesocricetus , Larva/drug effects , Cricetinae , Male , Metacercariae/drug effects
6.
Cell Physiol Biochem ; 58(4): 382-392, 2024 Aug 11.
Article in English | MEDLINE | ID: mdl-39137299

ABSTRACT

BACKGROUND/AIMS: The naturally occurring phenolic chemical curcumin (CUR), which was derived from the Curcuma longa plant, has a variety of biological actions, including anti-inflammatory, antimicrobial, antioxidant, and anticancer activities. Curcumin is known for its restricted bioavailability due to its hydrophobicity, poor intestinal absorption, and quick metabolism. To boost the biological effects of these bioactive molecules, it is necessary to raise both their bioavailability and their solubility in water. Aim: The aim of this study is to synthesize and characterize hybrid organic-inorganic complexes of copper and cobalt, and to evaluate their antimicrobial potential against a range of pathogenic microorganisms. METHODS: The synthesis of metal curcumin complexes (Cu-CUR and Co-CUR) was achieved by mixing curcumin with copper acetate monohydrate. The solid residue was isolated, filtered, and dried in an oven. X-ray diffraction analysis was used to identify the structure and phase of the prepared samples. FTIR spectra were recorded using a Shimadzu 2200 module. The antimicrobial activity of the prepared complexes was evaluated against four bacterial strains and two Candida species. The chemical materials were dissolved in DMSO to a final concentration of 20%, and the plates were incubated at 37°C for 24 hours. The results showed that the prepared complexes had antimicrobial activity against the tested microorganisms. RESULTS: The study compared the Powder X-ray diffraction (XRD) patterns of prepared copper and cobalt complexes to pure curcumin, revealing new, isostructural complexes. The FTIR analysis showed that the Cu-CUR and Co-CUR complexes varied in their inhibitory effect against microorganisms, with Co-CUR being more effective. The results are consistent with previous studies showing the cobalt-curcumin complex was effective against various bacterial genera, with inhibition activity varying depending on the species and strains of microorganisms. CONCLUSION: Copper and cobalt curcumin complexes, synthesized at room temperature, exhibit high crystallinity and antimicrobial activity. Co-CUR, with its superior antibacterial potential, outperforms pure curcumin in inhibiting microbes. Further investigation is needed to understand their interaction mechanisms with bacteria and fungi.


Subject(s)
Anti-Infective Agents , Cobalt , Coordination Complexes , Copper , Curcumin , Microbial Sensitivity Tests , Cobalt/chemistry , Cobalt/pharmacology , Copper/chemistry , Copper/pharmacology , Curcumin/pharmacology , Curcumin/chemistry , Coordination Complexes/chemistry , Coordination Complexes/pharmacology , Coordination Complexes/chemical synthesis , Anti-Infective Agents/pharmacology , Anti-Infective Agents/chemistry , Anti-Infective Agents/chemical synthesis , X-Ray Diffraction , Spectroscopy, Fourier Transform Infrared , Candida/drug effects , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/chemical synthesis
7.
Biochem Biophys Res Commun ; 691: 149307, 2024 Jan 08.
Article in English | MEDLINE | ID: mdl-38011821

ABSTRACT

Many proteins and peptides can aggregate into amyloid fibrils with high-ordered and cross-ß rich structure characteristics. Amyloid deposition is a common feature of neurodegenerative diseases called amyloidosis. Various natural polyphenolic compounds such as curcumin exhibited antiamyloidogenic activities, but less researches were focused on the metal complexes of these compounds. In this study, the inhibitory effects of gallium curcumin (Ga(cur)3), indium curcumin (In(cur)3), and vanadyl curcumin (VO(cur)2) on the amyloid fibrillation of hen egg white lysozyme (HEWL) have been investigated. Moreover, the details of binding interactions of these metal complexes with HEWL have been explored. The results of fluorescence quenching analyses revealed that In(cur)3 and VO(cur)2 have much higher binding affinities than Ga(cur)3 toward HEWL. The interactions of these metal complexes were accompanied by partial conformational changes in the tertiary structure of HEWL. The kinetic curves of the fibrillation process demonstrated that In(cur)3 and VO(cur)2 have higher inhibitory effects than Ga(cur)3 on the amyloid fibrillation of HEWL. The strength of binding to HEWL is completely in accordance with inhibitory activities of these metal complexes of curcumin.


Subject(s)
Coordination Complexes , Curcumin , Gallium , Curcumin/pharmacology , Curcumin/chemistry , Gallium/pharmacology , Indium , Vanadates , Muramidase/metabolism , Amyloid/metabolism
8.
Biochem Biophys Res Commun ; 705: 149729, 2024 04 23.
Article in English | MEDLINE | ID: mdl-38452515

ABSTRACT

Breast cancer resistance to chemotherapy necessitates novel combination therapeutic approaches. Linc-RoR is a long intergenic noncoding RNA that regulates stem cell differentiation and promotes metastasis and invasion in breast cancer. Herein, we report a dual delivery system employing polyamidoamine dendrimers to co-administer the natural compound curcumin and linc-RoR siRNA for breast cancer treatment. Polyamidoamine dendrimers efficiently encapsulated curcumin and formed complexes with linc-RoR siRNA at an optimal N/P ratio. In MCF-7 breast cancer cells, the dendriplexes were effectively internalized and the combination treatment synergistically enhanced cytotoxicity, arresting the cell cycle at the G1 phase and inducing apoptosis. Linc-RoR gene expression was also significantly downregulated. Individual treatments showed lower efficacy, indicating synergism between components. Mechanistic studies are warranted to define the molecular underpinnings of this synergistic interaction. Our findings suggest dual delivery of linc-RoR siRNA and curcumin via dendrimers merits further exploration as a personalized therapeutic approach for overcoming breast cancer resistance.


Subject(s)
Breast Neoplasms , Curcumin , Dendrimers , Polyamines , RNA, Long Noncoding , Humans , Female , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , RNA, Small Interfering/genetics , Curcumin/pharmacology , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Cell Line, Tumor
9.
Biochem Biophys Res Commun ; 730: 150384, 2024 Oct 20.
Article in English | MEDLINE | ID: mdl-39003866

ABSTRACT

FGFR3 activating mutations and abnormal expression are linked to tumor development. However, the current state of research on FGFR3 gene expression regulation is relatively insufficient. In this study, we have reported that the FGFR3 promoter's positive strand contains several G-tracts and most likely forms a G-quadruplex (G4) structure. Circular dichroism investigations revealed that oligonucleotides from this region exhibit G-quadruplex-like molar ellipticity. We further validated the G4 structure of the FGFR3 promoter using biochemical and cellular molecular biology techniques. The G-quadruplex mutation enhanced the transcriptional activity of the FGFR3 promoter and DNA replication, suggesting that the G4 structure inhibits its expression. Furthermore, we conducted a preliminary screen for helicases associated with FGFR3 expression and explored their regulatory effects on FGFR3 gene transcription. Subsequently, we investigated the effect of curcumin on the stability of the G4 structure of the FGFR3 promoter and its regulatory effect on FGFR3 expression.


Subject(s)
DNA Replication , G-Quadruplexes , Promoter Regions, Genetic , Receptor, Fibroblast Growth Factor, Type 3 , Receptor, Fibroblast Growth Factor, Type 3/genetics , Receptor, Fibroblast Growth Factor, Type 3/metabolism , Humans , Gene Expression Regulation , Mutation , Curcumin/pharmacology
10.
Biochem Biophys Res Commun ; 734: 150772, 2024 Sep 30.
Article in English | MEDLINE | ID: mdl-39362031

ABSTRACT

Acetaminophen (APAP) overdose is still a leading cause of drug-induced liver injury (DILI), accompanied with severe inflammatory response. However, the therapy for APAP-induced DILI is rather limited. The combined application of natural products to treat DILI induced by APAP may be a new direction of the research. This study was conducted to evaluate the dual anti-inflammatory activity of curcumin (CUR) combined with berberine (BBR) against APAP-mediated DILI. Network pharmacology found that PI3K-Akt and PPAR signaling pathways were primarily involved in anti-DILI of the combination of CUR and BBR. APAP injection enhanced the levels of ALT, AST, IL-1ß, IL-6, and TNF-α in mice, while such phenomenon was significantly reversed by the cotreatment of CUR and BBR, which was more effective than either single treatment. The increase of p-NF-κB and p-IKKα/ß protein expression and the decrease of p-PI3K, p-AKT, and PPARγ protein expression in APAP-treated mice were markedly inhibited by the coadministration of CUR and BBR. Molecular docking further demonstrated that both CUR and BBR could stably bind to PI3K, AKT, and PPARγ protein. In conclusion, the combination of CUR and BBR more effectively protected liver from APAP-triggered DILI than individual treatment. The mechanism is to alleviate hepatic inflammation by inhibiting NF-κB activation, which is possibly mediated by PI3K/Akt and PPARγ signaling pathways.

11.
BMC Biotechnol ; 24(1): 53, 2024 Aug 06.
Article in English | MEDLINE | ID: mdl-39107760

ABSTRACT

Chemotherapy as a cornerstone of cancer treatment is slowly being edged aside owing to its severe side effects and systemic toxicity. In this case, nanomedicine has emerged as an effective tool to address these drawbacks. Herein, a biocompatible carrier based on bovine serum albumin (BSA) coated gadolinium oxide nanoparticles (Gd2O3@BSA) was fabricated for curcumin (CUR) delivery and its physicochemical features along with its potential anticancer activity against nasal squamous cell carcinoma were also investigated. It was found that the fabricated Gd2O3@BSA containing CUR (Gd2O3@BSA-CUR) had spherical morphology with hydrodynamic size of nearly 26 nm, zeta-potential of -36 mV and high drug (CUR) loading capacity. Drug release profile disclosed that the release of CUR from the prepared Gd2O3@BSA-CUR nanoparticles occurred in a sustained- and pH-dependent manner. Also, in vitro cytotoxicity analysis revealed that the fabricated Gd2O3@BSA nanoparticles possessed excellent biosafety toward HFF2 normal cells, while Gd2O3@BSA-CUR appeared to display the greatest anticancer potential against RPMI 2650 and CNE-1 cancer cell lines. The results also show that the Gd2O3@BSA nanoparticles were compatible with the blood cells with minor hemolytic effect (< 3%). The manufactured NPs were found to be completely safe for biological applications in an in vivo subacute toxicity study. Taken together, these finding substantiate the potential anticancer activity of Gd2O3@BSA-CUR nanoparticles against nasal squamous cell carcinoma, but the results obtained demand further studies to assess their full potential.


Subject(s)
Antineoplastic Agents , Carcinoma, Squamous Cell , Gadolinium , Serum Albumin, Bovine , Gadolinium/chemistry , Gadolinium/pharmacology , Humans , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Carcinoma, Squamous Cell/drug therapy , Serum Albumin, Bovine/chemistry , Cell Line, Tumor , Animals , Curcumin/pharmacology , Curcumin/chemistry , Nose Neoplasms/drug therapy , Nanoparticles/chemistry , Metal Nanoparticles/chemistry , Cell Survival/drug effects , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Drug Liberation , Hemolysis/drug effects
12.
Breast Cancer Res Treat ; 205(1): 61-73, 2024 May.
Article in English | MEDLINE | ID: mdl-38280052

ABSTRACT

PURPOSE: Aromatase inhibitor (AI) therapy reduces risk of recurrence and death for postmenopausal women with breast cancer (BC); however, AI-induced arthralgia (AIIA) can lead to discontinuation of treatment. Curcumin, a bioactive polyphenolic substance, may help ameliorate inflammation-related conditions including osteoarthritis and pain. METHODS: We conducted a multisite randomized placebo-controlled, double-blind pilot trial (Alliance A22_Pilot9) to evaluate the effects of nanoemulsion curcumin (NEC, 200 mg/day) in postmenopausal women experiencing AIIA for ≥ 3 months. The primary objective was to determine the feasibility of using Functional Assessment of Cancer Treatment-Endocrine Symptoms (FACT-ES) to detect changes from 0 (T0) to 3 months (T3) of NEC treatment in AI-induced symptoms and well-being; secondary objectives included evaluation of changes in Disabilities of the Shoulder, Arm, and Hand (DASH), Brief Pain Inventory-short form (BPI-SF), grip strength, and biomarkers at T0 and T3. RESULTS: Forty-two patients were randomized to NEC or placebo; 34 women completed the 3-month study. Patient-reported outcome measures (PROMs: FACT-ES, DASH, BPI-SF) and biospecimens were collected at T0-T3 in > 80% of participants. Adherence was ≥ 90% for both arms. PROMs and grip strength did not differ significantly by treatment arm. Plasma curcumin was detected only in NEC arm participants. Serum estradiol and estrone levels were below detection or low on study agent. Gastrointestinal adverse effects were commonly reported in both arms. CONCLUSION: NEC versus placebo in a multisite randomized trial is feasible and well-tolerated. Additional studies with larger sample size are needed to further evaluate the efficacy and safety of NEC in treatment of AIIA. CLINICALTRIALS: gov Identifier: NCT03865992, first posted March 7, 2019.


Subject(s)
Aromatase Inhibitors , Breast Neoplasms , Curcumin , Humans , Female , Curcumin/therapeutic use , Curcumin/administration & dosage , Aromatase Inhibitors/adverse effects , Aromatase Inhibitors/administration & dosage , Pilot Projects , Middle Aged , Aged , Breast Neoplasms/drug therapy , Double-Blind Method , Emulsions , Treatment Outcome , Postmenopause , Arthralgia/chemically induced , Arthralgia/drug therapy
13.
Small ; : e2311128, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38888124

ABSTRACT

Intracerebral hemorrhage (ICH) is a hemorrhagic disease with high mortality and disability rates. Curcumin is a promising drug for ICH treatment due to its multiple biological activities, but its application is limited by its poor watersolubility and instability. Herein, platelet membrane-coated curcumin polylactic-co-glycolic acid (PLGA) nanoparticles (PCNPs) are prepared to achieve significantly improved solubility, stability, and sustained release of curcumin. Fourier transform infrared spectra and X-ray diffraction assays indicate good encapsulation of curcumin within nanoparticles. Moreover, it is revealed for the first time that curcumin-loaded nanoparticles can not only suppress hemin-induced astrocyte proliferation but also induce astrocytes into neuron-like cells in vitro. PCNPs are used to treat rat ICH by tail vein injection, using in situ administration as control. The results show that PCNPs are more effective than curcumin-PLGA nanoparticles in concentrating on hemorrhagic lesions, inhibiting inflammation, suppressing astrogliosis, promoting neurogenesis, and improving motor functions. The treatment efficacy of intravenously administered PCNPs is comparable to that of in situ administration, indicating a good targeting effect of PCNPs on the hemorrhage site. This study provides a potent treatment for hemorrhagic injuries and a promising solution for efficient delivery of water-insoluble drugs using composite materials of macromolecules and cell membranes.

14.
Small ; 20(27): e2307210, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38279606

ABSTRACT

Sepsis is a life-threatening condition that can progress to septic shock as the body's extreme response to pathogenesis damages its own vital organs. Staphylococcus aureus (S. aureus) accounts for 50% of nosocomial infections, which are clinically treated with antibiotics. However, methicillin-resistant strains (MRSA) have emerged and can withstand harsh antibiotic treatment. To address this problem, curcumin (CCM) is employed to prepare carbonized polymer dots (CPDs) through mild pyrolysis. Contrary to curcumin, the as-formed CCM-CPDs are highly biocompatible and soluble in aqueous solution. Most importantly, the CCM-CPDs induce the release of neutrophil extracellular traps (NETs) from the neutrophils, which entrap and eliminate microbes. In an MRSA-induced septic mouse model, it is observed that CCM-CPDs efficiently suppress bacterial colonization. Moreover, the intrinsic antioxidative, anti-inflammatory, and anticoagulation activities resulting from the preserved functional groups of the precursor molecule on the CCM-CPDs prevent progression to severe sepsis. As a result, infected mice treated with CCM-CPDs show a significant decrease in mortality even through oral administration. Histological staining indicates negligible organ damage in the MRSA-infected mice treated with CCM-CPDs. It is believed that the in vivo studies presented herein demonstrate that multifunctional therapeutic CPDs hold great potential against life-threatening infectious diseases.


Subject(s)
Extracellular Traps , Methicillin-Resistant Staphylococcus aureus , Polymers , Sepsis , Animals , Sepsis/drug therapy , Extracellular Traps/drug effects , Polymers/chemistry , Methicillin-Resistant Staphylococcus aureus/drug effects , Mice , Neutrophils/drug effects , Carbon/chemistry , Carbon/pharmacology , Staphylococcal Infections/drug therapy , Curcumin/pharmacology , Curcumin/therapeutic use , Curcumin/chemistry , Humans
15.
Small ; 20(30): e2400630, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38431937

ABSTRACT

Doxorubicin (DOX) is widely used as a chemotherapeutic agent for both hematologic and solid tumors and is a reasonable candidate for glioma treatment. However, its effectiveness is hindered by significant toxicity and drug resistance. Moreover, the presence of the blood-brain barrier (BBB) brings a crucial challenge to glioma therapy. In response, a GSH-responsive and actively targeted nanoprodrug delivery system (cRGD/PSDOX-Cur@NPs) are developed. In this system, a disulfide bond-bridged DOX prodrug (PEG-SS-DOX) is designed to release specifically in the high glutathione (GSH) tumor environment, markedly reducing the cardiotoxicity associated with DOX. To further address DOX resistance, curcumin, serving as a P-glycoprotein (P-gp) inhibitor, effectively increased cellular DOX concentration. Consequently, cRGD/PSDOX-Cur@NPs exhibited synergistic anti-tumor effects in vitro. Furthermore, in vivo experiments validated the superior BBB penetration and brain-targeting abilities of cRGD/PSDOX-Cur@NPs, showcasing the remarkable potential for treating both subcutaneous and orthotopic gliomas. This research underscores that this nanoprodrug delivery system presents a novel approach to inhibiting glioma while addressing resistance and systemic toxicity.


Subject(s)
Doxorubicin , Drug Delivery Systems , Glioma , Prodrugs , Glioma/drug therapy , Glioma/pathology , Doxorubicin/pharmacology , Doxorubicin/chemistry , Animals , Humans , Drug Delivery Systems/methods , Cell Line, Tumor , Prodrugs/chemistry , Prodrugs/pharmacology , Blood-Brain Barrier/metabolism , Blood-Brain Barrier/drug effects , Glutathione/metabolism , Glutathione/chemistry , Nanoparticles/chemistry , Mice , Brain Neoplasms/drug therapy , Brain Neoplasms/pathology , Curcumin/chemistry , Curcumin/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology
16.
Histochem Cell Biol ; 162(4): 299-309, 2024 Oct.
Article in English | MEDLINE | ID: mdl-38913116

ABSTRACT

Ionizing radiation produces deleterious effects on living organisms. The present investigation has been carried out to study the prophylactic as well as the therapeutic effects of treated rats with quercetin (Quer) and curcumin (Cur), which are two medicinal herbs known for their antioxidant activities against damages induced by whole-body fractionated gamma irradiation. Exposure of rats to whole-body gamma irradiation induced a significant decrease in erythrocyte (RBC), leukocyte (WBCs), platelet count (Plt), hemoglobin concentration (Hb), hematocrit (Hct %), mean erythrocyte hemoglobin (MCH), mean corpuscular hemoglobin concentration (MCHC), and mean erythrocyte volume (MCV); a high increase in plasma thiobarbituric acid reactive substances (TBARS); a nonsignificant statistical decrease in the mean value of serum glutathione (GSH); a significant increase in plasma alanine transferase (ALT), aspartate transferase (AST), alkaline phosphates (ALP), serum total protein, serum total cholesterol levels, total triglycerides levels, high-density lipoprotein (HDL), and low-density lipoprotein (LDL) levels; and with marked histological changes and structural changes measured by Fourier transform infrared (FTIR). Applying both quercetin and curcumin pre- and postexposure to gamma radiation revealed a remarkable improvement in all the studied parameters. The cellular damage by gamma radiation is greatly mitigated by the coadministration of curcumin and quercetin before radiation exposure.


Subject(s)
Curcumin , Gamma Rays , Liver , Quercetin , Animals , Quercetin/pharmacology , Curcumin/pharmacology , Gamma Rays/adverse effects , Rats , Male , Liver/drug effects , Liver/radiation effects , Liver/metabolism , Liver/pathology , Antioxidants/pharmacology , Rats, Wistar
17.
Metab Eng ; 82: 286-296, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38387678

ABSTRACT

Curcumin is a polyphenolic natural product from the roots of turmeric (Curcuma longa). It has been a popular coloring and flavoring agent in food industries with known health benefits. The conventional phenylpropanoid pathway is known to proceed from phenylalanine via p-coumaroyl-CoA intermediate. Although hydroxycinnamoyl-CoA: shikimate hydroxycinnamoyl transferase (HCT) plays a key catalysis in the biosynthesis of phenylpropanoid products at the downstream of p-coumaric acid, a recent discovery of caffeoyl-shikimate esterase (CSE) showed that an alternative pathway exists. Here, the biosynthetic efficiency of the conventional and the alternative pathway in producing feruloyl-CoA was examined using curcumin production in yeast. A novel modular multiplex genome-edit (MMG)-CRISPR platform was developed to facilitate rapid integrations of up to eight genes into the yeast genome in two steps. Using this MMG-CRISPR platform and metabolic engineering strategies, the alternative CSE phenylpropanoid pathway consistently showed higher titers (2-19 folds) of curcumin production than the conventional pathway in engineered yeast strains. In shake flask cultures using a synthetic minimal medium without phenylalanine, the curcumin production titer reached up to 1.5 mg/L, which is three orders of magnitude (∼4800-fold) improvement over non-engineered base strain. This is the first demonstration of de novo curcumin biosynthesis in yeast. Our work shows the critical role of CSE in improving the metabolic flux in yeast towards the phenylpropanoid biosynthetic pathway. In addition, we showcased the convenience and reliability of modular multiplex CRISPR/Cas9 genome editing in constructing complex synthetic pathways in yeast.


Subject(s)
Curcumin , Saccharomyces cerevisiae , Shikimic Acid/analogs & derivatives , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Esterases/metabolism , Curcumin/metabolism , Shikimic Acid/metabolism , Reproducibility of Results , Phenylalanine
18.
Histopathology ; 2024 Oct 09.
Article in English | MEDLINE | ID: mdl-39381846

ABSTRACT

AIMS: Although turmeric is commonly ingested and well tolerated, there is increasing evidence that over-the-counter turmeric supplements can cause drug-induced liver injury. We sought to thoroughly characterise clinicopathological features of patients for whom liver injury was attributed clinically to turmeric supplements. METHODS AND RESULTS: We identified 11 patients via retrospective pathology archive review: 10 females (91%) and one male, with a median age of 58 years (range = 37-66 years). Six patients (55%) were asymptomatic with abnormal liver function tests, while five patients (45%) presented with malaise and/or jaundice. Ten patients (91%) showed predominant transaminase abnormalities, while one exhibited predominant alkaline phosphatase elevation. Histologically, biopsies showed acute hepatitis (eight cases, 73%, including five pan-lobular and three zone 3-predominant inflammation), scattered lobular aggregates of histiocytes (two; 18%) and a chronic hepatitis pattern of injury (one; 9%). Mild bile duct injury was present in five biopsies (45%). All patients stopped ingesting turmeric supplements after presenting with liver injury, and four patients additionally received steroid therapy; liver function tests normalised in all patients. Roussel Uclaf causality assessment method (RUCAM) analysis estimated the likelihood of turmeric supplement-associated liver injury to be probable (eight cases) and possible (three). CONCLUSIONS: Histological features in the 'possible' cases were consistent with drug-induced injury, highlighting the added benefit of histological analysis relative to RUCAM analysis isolation. This study underscores the need to obtain a full history of over-the-counter medications and supplements when investigating aetiologies for liver injury, including supplements purportedly containing innocuous compounds such as turmeric.

19.
Cancer Cell Int ; 24(1): 303, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-39218854

ABSTRACT

Prostate cancer (PCa) is one of the most common and prevalent cancers in men worldwide. The majority of PCa-related deaths result from metastasis rather than primary tumors. Several studies have focused on the relationship between male-specific genes encoded on the Y chromosome and PCa metastasis; however, the relationship between the male specific protein encoded on the Y chromosome and tumor suppression has not been fully clarified. Here, we report a male specific protein of this type, the histone H3 lysine 4 (H3K4) demethylase JARID1D, which has the ability to inhibit the gene expression program related to cell invasion, and can thus form a phenotype that inhibits the invasion of PCa cells. However, JARID1D exhibits low expression level in advanced PCa, and which is related to rapid invasion and metastasis in patients with PCa. Curcumin, as a multi-target drug, can enhance the expression and demethylation activity of JARID1D, affect the androgen receptor (AR) and epithelial-mesenchymal transition (EMT) signaling cascade, and inhibit the metastatic potential of castration resistant cancer (CRPC). These findings suggest that using curcumin to increase the expression and demethylation activity of JARID1D may be a feasible strategy to inhibit PCa metastasis by regulating EMT and AR.

20.
Respir Res ; 25(1): 354, 2024 Sep 28.
Article in English | MEDLINE | ID: mdl-39342264

ABSTRACT

BACKGROUND: Exposure to a hypobaric hypoxic environment at high altitudes can lead to lung injury. In this study, we aimed to determine whether curcumin (Cur) could improve lung barrier function and protect against high-altitude-associated acute lung injury. METHODS: Two hundred healthy rats were randomly divided into standard control, high-altitude control (HC), salidroside (40 mg/kg, positive control), and Cur (200 mg/kg) groups. Each group was further divided into five subgroups. Basic vital signs, lung injury histopathology, routine blood parameters, plasma lactate level, and arterial blood gas indicators were evaluated. Protein and inflammatory factor (tumor necrosis factor α (TNF-α), interleukin [IL]-1ß, IL-6, and IL-10) concentrations in bronchoalveolar lavage fluid (BALF) were determined using the bicinchoninic acid method and enzyme-linked immunosorbent assay, respectively. Inflammation-related and lung barrier function-related proteins were analyzed using immunoblotting. RESULTS: Cur improved blood routine indicators such as hemoglobin and hematocrit and reduced the BALF protein content and TNF-α, IL-1ß, and IL-6 levels compared with those in the HC group. It increased IL-10 levels and reduced pulmonary capillary congestion, alveolar hemorrhage, and the degree of pulmonary interstitial edema. It increased oxygen partial pressure, oxygen saturation, carbonic acid hydrogen radical, and base excess levels, and the expression of zonula occludens 1, occludin, claudin-4, and reduced carbon dioxide partial pressure, plasma lactic acid, and the expression of phospho-nuclear factor kappa. CONCLUSIONS: Exposure to a high-altitude environment for 48 h resulted in severe lung injury in rats. Cur improved lung barrier function and alleviated acute lung injury in rats at high altitudes.


Subject(s)
Acute Lung Injury , Altitude Sickness , Curcumin , Rats, Sprague-Dawley , Animals , Acute Lung Injury/drug therapy , Acute Lung Injury/metabolism , Acute Lung Injury/etiology , Acute Lung Injury/prevention & control , Rats , Male , Curcumin/pharmacology , Curcumin/therapeutic use , Altitude Sickness/drug therapy , Altitude Sickness/metabolism , Altitude Sickness/complications , Altitude Sickness/physiopathology , Lung/drug effects , Lung/metabolism , Lung/pathology , Altitude , Inflammation Mediators/metabolism , Bronchoalveolar Lavage Fluid , Cytokines/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL