Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 209
Filter
1.
Genes Dev ; 34(15-16): 1065-1074, 2020 08 01.
Article in English | MEDLINE | ID: mdl-32561545

ABSTRACT

RTEL1 helicase is a component of DNA repair and telomere maintenance machineries. While RTEL1's role in DNA replication is emerging, how RTEL1 preserves genomic stability during replication remains elusive. Here we used a range of proteomic, biochemical, cell, and molecular biology and gene editing approaches to provide further insights into potential role(s) of RTEL1 in DNA replication and genome integrity maintenance. Our results from complementary human cell culture models established that RTEL1 and the Polδ subunit Poldip3 form a complex and are/function mutually dependent in chromatin binding after replication stress. Loss of RTEL1 and Poldip3 leads to marked R-loop accumulation that is confined to sites of active replication, enhances endogenous replication stress, and fuels ensuing genomic instability. The impact of depleting RTEL1 and Poldip3 is epistatic, consistent with our proposed concept of these two proteins operating in a shared pathway involved in DNA replication control under stress conditions. Overall, our data highlight a previously unsuspected role of RTEL1 and Poldip3 in R-loop suppression at genomic regions where transcription and replication intersect, with implications for human diseases including cancer.


Subject(s)
DNA Helicases/metabolism , DNA Replication , R-Loop Structures , RNA-Binding Proteins/metabolism , Cell Line , Chromatin/metabolism , Humans , Stress, Physiological , Topoisomerase I Inhibitors/pharmacology
2.
Mol Cell ; 73(6): 1204-1216.e4, 2019 03 21.
Article in English | MEDLINE | ID: mdl-30770239

ABSTRACT

PARN loss-of-function mutations cause a severe form of the hereditary disease dyskeratosis congenita (DC). PARN deficiency affects the stability of non-coding RNAs such as human telomerase RNA (hTR), but these effects do not explain the severe disease in patients. We demonstrate that PARN deficiency affects the levels of numerous miRNAs in human cells. PARN regulates miRNA levels by stabilizing either mature or precursor miRNAs by removing oligo(A) tails added by the poly(A) polymerase PAPD5, which if remaining recruit the exonuclease DIS3L or DIS3L2 to degrade the miRNA. PARN knockdown destabilizes multiple miRNAs that repress p53 translation, which leads to an increase in p53 accumulation in a Dicer-dependent manner, thus explaining why PARN-defective patients show p53 accumulation. This work also reveals that DIS3L and DIS3L2 are critical 3' to 5' exonucleases that regulate miRNA stability, with the addition and removal of 3' end extensions controlling miRNA levels in the cell.


Subject(s)
Exoribonucleases/metabolism , MicroRNAs/metabolism , RNA Stability , Tumor Suppressor Protein p53/metabolism , Uterine Cervical Neoplasms/enzymology , 3' Untranslated Regions , Antineoplastic Agents/pharmacology , Cell Survival , DEAD-box RNA Helicases/genetics , DEAD-box RNA Helicases/metabolism , Doxorubicin/pharmacology , Etoposide/pharmacology , Exoribonucleases/genetics , Female , Gene Expression Regulation, Neoplastic , HCT116 Cells , HeLa Cells , Humans , MicroRNAs/genetics , Polyadenylation , RNA Nucleotidyltransferases/genetics , RNA Nucleotidyltransferases/metabolism , Ribonuclease III/genetics , Ribonuclease III/metabolism , Ribonucleases/genetics , Ribonucleases/metabolism , Signal Transduction , Tumor Suppressor Protein p53/genetics , Uterine Cervical Neoplasms/drug therapy , Uterine Cervical Neoplasms/genetics , Uterine Cervical Neoplasms/pathology
3.
Hum Mol Genet ; 33(4): 318-332, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-37879098

ABSTRACT

Dyskerin is a component of the human telomerase complex and is involved in stabilizing the human telomerase RNA (hTR). Many mutations in the DKC1 gene encoding dyskerin are found in X-linked dyskeratosis congenita (X-DC), a premature aging disorder and other related diseases. The C-terminal extension (CTE) of dyskerin contributes to its interaction with the molecular chaperone SHQ1 during the early stage of telomerase biogenesis. Disease mutations in this region were proposed to disrupt dyskerin-SHQ1 interaction and destabilize dyskerin, reducing hTR levels indirectly. However, biochemical evidence supporting this hypothesis is still lacking. In addition, the effects of many CTE disease mutations on hTR have not been examined. In this study, we tested eight dyskerin CTE variants and showed that they failed to maintain hTR levels. These mutants showed slightly reduced but not abolished interaction with SHQ1, and caused defective binding to hTR. Deletion of the CTE further reduced binding to hTR, and perturbed localization of dyskerin to the Cajal bodies and the nucleolus, and the interaction with TCAB1 as well as GAR1. Our findings suggest impaired dyskerin-hTR interaction in cells as a previously overlooked mechanism through which dyskerin CTE mutations cause X-DC and related telomere syndromes.


Subject(s)
Dyskeratosis Congenita , Telomerase , Humans , Telomerase/genetics , Dyskeratosis Congenita/genetics , Telomere/genetics , Telomere/metabolism , Nuclear Proteins/metabolism , RNA/genetics , RNA/metabolism , Mutation , RNA-Binding Proteins/genetics , Cell Cycle Proteins/metabolism , Intracellular Signaling Peptides and Proteins/genetics
4.
Am J Hum Genet ; 109(8): 1472-1483, 2022 08 04.
Article in English | MEDLINE | ID: mdl-35931051

ABSTRACT

Dyskeratosis congenita (DC) is an inherited bone-marrow-failure disorder characterized by a triad of mucocutaneous features that include abnormal skin pigmentation, nail dystrophy, and oral leucoplakia. Despite the identification of several genetic variants that cause DC, a significant proportion of probands remain without a molecular diagnosis. In a cohort of eight independent DC-affected families, we have identified a remarkable series of heterozygous germline variants in the gene encoding thymidylate synthase (TYMS). Although the inheritance appeared to be autosomal recessive, one parent in each family had a wild-type TYMS coding sequence. Targeted genomic sequencing identified a specific haplotype and rare variants in the naturally occurring TYMS antisense regulator ENOSF1 (enolase super family 1) inherited from the other parent. Lymphoblastoid cells from affected probands have severe TYMS deficiency, altered cellular deoxyribonucleotide triphosphate pools, and hypersensitivity to the TYMS-specific inhibitor 5-fluorouracil. These defects in the nucleotide metabolism pathway resulted in genotoxic stress, defective transcription, and abnormal telomere maintenance. Gene-rescue studies in cells from affected probands revealed that post-transcriptional epistatic silencing of TYMS is occurring via elevated ENOSF1. These cell and molecular abnormalities generated by the combination of germline digenic variants at the TYMS-ENOSF1 locus represent a unique pathogenetic pathway for DC causation in these affected individuals, whereas the parents who are carriers of either of these variants in a singular fashion remain unaffected.


Subject(s)
Dyskeratosis Congenita , Thymidylate Synthase , Dyskeratosis Congenita/genetics , Germ Cells , Heterozygote , Humans , Nucleotides , Thymidylate Synthase/deficiency , Thymidylate Synthase/genetics
5.
Biogerontology ; 25(2): 265-278, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38109000

ABSTRACT

Telomeres are the nucleoprotein complex at chromosome ends essential in genomic stability. Baseline telomere length (TL) is determined by rare and common germline genetic variants but shortens with age and is susceptible to certain environmental exposures. Cellular senescence or apoptosis are normally triggered when telomeres reach a critically short length, but cancer cells overcome these protective mechanisms and continue to divide despite chromosomal instability. Rare germline variants in telomere maintenance genes cause exceedingly short telomeres for age (< 1st percentile) and the telomere biology disorders, which are associated with elevated risks of bone marrow failure, myelodysplastic syndrome, acute myeloid leukemia, and squamous cell carcinoma of the head/neck and anogenital regions. Long telomeres due to rare germline variants in the same or different telomere maintenance genes are associated with elevated risks of other cancers, such as chronic lymphocytic leukemia or sarcoma. Early epidemiology studies of TL in the general population lacked reproducibility but new methods, including creation of a TL polygenic score using common variants, have found longer telomeres associated with excess risks of renal cell carcinoma, glioma, lung cancer, and others. It has become clear that when it comes to TL and cancer etiology, not too short, not too long, but "just right" telomeres are important in minimizing cancer risk.


Subject(s)
Neoplasms , Telomerase , Humans , Reproducibility of Results , Telomere/genetics , Telomere Shortening , Cellular Senescence , Genomic Instability , Telomerase/genetics , Neoplasms/genetics , Neoplasms/pathology
6.
Proc Natl Acad Sci U S A ; 118(32)2021 08 10.
Article in English | MEDLINE | ID: mdl-34353901

ABSTRACT

Dyskeratosis congenita (DC) is a rare inherited bone marrow failure and cancer predisposition syndrome caused by mutations in telomerase or telomeric proteins. Here, we report that zebrafish telomerase RNA (terc) binds to specific DNA sequences of master myeloid genes and controls their expression by recruiting RNA Polymerase II (Pol II). Zebrafish terc harboring the CR4-CR5 domain mutation found in DC patients hardly interacted with Pol II and failed to regulate myeloid gene expression in vivo and to increase their transcription rates in vitro. Similarly, TERC regulated myeloid gene expression and Pol II promoter occupancy in human myeloid progenitor cells. Strikingly, induced pluripotent stem cells derived from DC patients with a TERC mutation in the CR4-CR5 domain showed impaired myelopoiesis, while those with mutated telomerase catalytic subunit differentiated normally. Our findings show that TERC acts as a transcription factor, revealing a target for therapeutic intervention in DC patients.


Subject(s)
Dyskeratosis Congenita/genetics , Myelopoiesis/physiology , RNA Polymerase II/genetics , RNA/metabolism , Telomerase/metabolism , Animals , Animals, Genetically Modified , Binding Sites , Cells, Cultured , Dyskeratosis Congenita/pathology , Gene Expression Regulation , Humans , Induced Pluripotent Stem Cells/pathology , Larva/genetics , Mutation , Myelopoiesis/genetics , Promoter Regions, Genetic , Protein Domains , RNA/genetics , RNA Polymerase II/metabolism , Telomerase/genetics , Zebrafish/genetics , Zebrafish Proteins/genetics
7.
Int J Mol Sci ; 25(3)2024 Jan 28.
Article in English | MEDLINE | ID: mdl-38338888

ABSTRACT

Dyskeratosis Congenita (DC) is a multisystem disorder intrinsically associated with telomere dysfunction, leading to bone marrow failure (BMF). Although the pathology of DC is largely driven by mutations in telomere-associated genes, the implications of gene fusions, which emerge due to telomere-induced genomic instability, remain unexplored. We meticulously analyzed gene fusions in RNA-Seq data from DC patients to provide deeper insights into DC's progression. The most significant DC-specific gene fusions were subsequently put through in silico assessments to ascertain biophysical and structural attributes, including charge patterning, inherent disorder, and propensity for self-association. Selected candidates were then analyzed using deep learning-powered structural predictions and molecular dynamics simulations to gauge their potential for forming higher-order oligomers. Our exploration revealed that genes participating in fusion events play crucial roles in upholding genomic stability, facilitating hematopoiesis, and suppressing tumors. Notably, our analysis spotlighted a particularly disordered polyampholyte fusion protein that exhibits robust higher-order oligomerization dynamics. To conclude, this research underscores the potential significance of several high-confidence gene fusions in the progression of BMF in DC, particularly through the dysregulation of genomic stability, hematopoiesis, and tumor suppression. Additionally, we propose that these fusion proteins might hold a detrimental role, specifically in inducing proteotoxicity-driven hematopoietic disruptions.


Subject(s)
Dyskeratosis Congenita , Pancytopenia , Telomerase , Humans , Dyskeratosis Congenita/genetics , Dyskeratosis Congenita/pathology , Telomerase/metabolism , Bone Marrow Failure Disorders , Mutation , Telomere/metabolism , Genomic Instability
8.
Clin Immunol ; 257: 109837, 2023 12.
Article in English | MEDLINE | ID: mdl-37944684

ABSTRACT

Telomere biology disorders (TBD) are caused by germline pathogenic variants in genes related to telomere maintenance and are characterized by critically short telomeres. In contrast to classical dyskeratosis congenita (DC), which is typically diagnosed in infancy, adult or late onset TBD frequently lack the typical DC triad and rather show variable organ manifestations and a cryptic disease course, thus complicating its diagnosis. Common variable immunodeficiency (CVID), on the other hand, is a primary antibody deficiency (PAD) syndrome. PADs are a heterogenous group of diseases characterized by hypogammaglobulinemia which occurs due to dysfunctional B lymphocytes and additional autoimmune and autoinflammatory complications. Genetic screening reveals a monogenic cause in a subset of CVID patients (15-35%). In our study, we screened the exomes of 491 CVID patients for the occurrence of TBD-related variants in 13 genes encoding for telomere/telomerase-associated proteins, which had previously been linked to the disease. We found 110/491 patients (22%) carrying 91 rare candidate variants in these 13 genes. Following the American College of Medical Genetics and Genomics (ACMG) guidelines, we classified two variants as benign, two as likely benign, 64 as variants of uncertain significance (VUS), four as likely pathogenic, and one heterozygous variant in an autosomal recessive disease gene as pathogenic. We performed telomere length measurement in 42 of the 110 patients with candidate variants and CVID. Two of these 42 patients showed significantly shorter telomeres compared to controls in both lymphocytes and granulocytes. Following the evaluation of the published literature and the patient's manifestations, we re-classified two VUS as likely pathogenic variants. Thus, 0.5-1% of all CVID patients in our study carry possibly pathogenic variants in telomere/telomerase-associated genes. Our data adds CVID to the broad clinical spectrum of cryptic adult-onset TBD. As the molecular diagnosis greatly impacts patient management and treatment strategies, we advise inclusion of all TBD-associated genes-despite their low prevalence-into the molecular screening of patients with antibody deficiencies.


Subject(s)
Common Variable Immunodeficiency , Dyskeratosis Congenita , Primary Immunodeficiency Diseases , Telomerase , Adult , Humans , Common Variable Immunodeficiency/genetics , Telomerase/genetics , Telomerase/metabolism , Telomere/genetics , Telomere/metabolism , Telomere/pathology , Dyskeratosis Congenita/genetics , Dyskeratosis Congenita/diagnosis , Dyskeratosis Congenita/pathology , Biology
9.
Br J Haematol ; 203(5): 820-828, 2023 12.
Article in English | MEDLINE | ID: mdl-37354000

ABSTRACT

Individuals with telomere biology disorders (TBDs) have very short telomeres, high risk of bone marrow failure (BMF), and reduced survival. Using data from TBD patients, a mean leukocyte Southern blot telomere length (TL) of 5 kilobases (kb) was estimated as the 'telomere brink' at which human survival is markedly reduced. However, the shortest telomere, not the mean TL, signals replicative senescence. We used the Telomere Shortest Length Assay (TeSLA) to tally TL of all 46 chromosomes in blood-derived DNA and examined its relationship with TBDs. Patients (n = 18) had much shorter mean TL (TeSmTL) (2.54 ± 0.41 kb vs. 4.48 ± 0.52 kb, p < 0.0001) and more telomeres <3 kb than controls (n = 22) (70.43 ± 8.76% vs. 33.05 ± 6.93%, p < 0.0001). The proportion of ultrashort telomeres (<1.6 kb) was also higher in patients than controls (39.29 ± 10.69% vs. 10.40 ± 4.09%, p < 0.0001). TeS <1.6 kb was associated with severe (n = 11) compared with non-severe (n = 7) BMF (p = 0.027). Patients with multi-organ manifestations (n = 10) had more telomeres <1.6 kb than those with one affected organ system (n = 8) (p = 0.029). Findings suggest that TBD clinical manifestations are associated with a disproportionately higher number of haematopoietic cell telomeres reaching a telomere brink, whose length at the single telomere level is yet to be determined.


Subject(s)
Bone Marrow Failure Disorders , Dyskeratosis Congenita , Pancytopenia , Humans , Biology , Dyskeratosis Congenita/genetics , Telomere/genetics , Telomere Shortening
10.
RNA ; 27(12): 1441-1458, 2021 12.
Article in English | MEDLINE | ID: mdl-34556550

ABSTRACT

Dyskerin and its homologs are ancient and conserved enzymes that catalyze the most common post-transcriptional modification found in cells, pseudouridylation. The resulting pseudouridines provide stability to RNA molecules and regulate ribosome biogenesis and splicing events. Dyskerin does not act independently-it is the core component of a protein heterotetramer, which associates with RNAs that contain the H/ACA motif. The variety of H/ACA RNAs that guide the function of this ribonucleoprotein (RNP) complex highlights the diversity of cellular processes in which dyskerin participates. When associated with small nucleolar (sno) RNAs, it regulates ribosomal (r) RNAs and ribosome biogenesis. By interacting with small Cajal body (sca) RNAs, it targets small nuclear (sn) RNAs to regulate pre-mRNA splicing. As a component of the telomerase holoenzyme, dyskerin binds to the telomerase RNA to modulate telomere maintenance. In a disease context, dyskerin malfunction can result in multiple detrimental phenotypes. Mutations in DKC1, the gene that encodes dyskerin, cause the premature aging syndrome X-linked dyskeratosis congenita (X-DC), a still incurable disorder that typically leads to bone marrow failure. In this review, we present the classical and most recent findings on this essential protein, discussing the evolutionary, structural, and functional aspects of dyskerin and the H/ACA RNP. The latest research underscores the role that dyskerin plays in the regulation of gene expression, translation efficiency, and telomere maintenance, along with the impacts that defective dyskerin has on aging, cell proliferation, haematopoietic potential, and cancer.


Subject(s)
Alternative Splicing , Cell Cycle Proteins/metabolism , Intramolecular Transferases/metabolism , Mutation , Nuclear Proteins/metabolism , RNA Processing, Post-Transcriptional , Ribosomes/metabolism , Telomere/physiology , Cell Cycle Proteins/genetics , Dyskeratosis Congenita , Humans , Intramolecular Transferases/genetics , Nuclear Proteins/genetics
11.
Eur J Haematol ; 111(3): 423-431, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37259830

ABSTRACT

BACKGROUND: Telomere biology diseases (TBD) result from defective telomere maintenance, leading to bone marrow failure. The only curative treatment for aplastic anemia related to TBD is a hematopoietic cell transplant (HCT). Although reduced-intensity conditioning (RIC) regimens decrease transplant-related mortality, non-hematological phenotypes represent a major challenge and are associated with poor long-term follow-up outcomes. OBJECTIVE: To describe the outcome of TBD patients transplanted for marrow failure. STUDY DESIGN: This is a retrospective, single-center study describing the outcomes of 32 consecutive transplants on 29 patients between 1993 and 2019. RESULTS: The median age at transplantation was 14 years (range, 3-30 years). Most patients received a RIC regimen (n = 28) and bone marrow (BM) from an unrelated donor (n = 16). Four patients received a haploidentical transplant. Chimerism was available for 27 patients with a median time to neutrophil recovery of 20 days (13-36 days). Primary graft failure occurred in one patient, whereas second graft failure occurred in two. Acute GVHD grade II-IV and moderate to severe chronic GVHD occurred in 22% of patients at risk. Fourteen patients were alive after HCT at the last follow-up (median, 6 years; 1.4-19 years). The 5-year overall survival was better after matched sibling donor (MSD) transplantation compared to other hematopoietic stem cell sources (88.9% vs. 47.7%; p = .05; CI = 95%). Overall, 15 patients died after HCT, most of them (n = 11) after the first year of transplant, due to non-hematological disease progression or complication of chronic GVHD. CONCLUSIONS: Hematopoietic cell transplantation is a potentially curative treatment option for TBD, nonetheless the poor outcome reflects the progression of non-hematologic disease manifestations, which should be considered when transplantation is indicated.


Subject(s)
Graft vs Host Disease , Hematopoietic Stem Cell Transplantation , Humans , Hematopoietic Stem Cell Transplantation/adverse effects , Retrospective Studies , Cohort Studies , Graft vs Host Disease/etiology , Unrelated Donors , Telomere/genetics , Biology , Transplantation Conditioning/adverse effects
12.
Semin Diagn Pathol ; 40(6): 429-442, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37507252

ABSTRACT

The diagnostic work up and surveillance of germline disorders of bone marrow failure and predisposition to myeloid malignancy is complex and involves correlation between clinical findings, laboratory and genetic studies, and bone marrow histopathology. The rarity of these disorders and the overlap of clinical and pathologic features between primary and secondary causes of bone marrow failure, acquired aplastic anemia, and myelodysplastic syndrome may result in diagnostic uncertainty. With an emphasis on the pathologist's perspective, we review diagnostically useful features of germline disorders including Fanconi anemia, Shwachman-Diamond syndrome, telomere biology disorders, severe congenital neutropenia, GATA2 deficiency, SAMD9/SAMD9L diseases, Diamond-Blackfan anemia, and acquired aplastic anemia. We discuss the distinction between baseline morphologic and genetic findings of these disorders and features that raise concern for the development of myelodysplastic syndrome.


Subject(s)
Anemia, Aplastic , Bone Marrow Diseases , Myelodysplastic Syndromes , Myeloproliferative Disorders , Neoplasms , Humans , Anemia, Aplastic/genetics , Anemia, Aplastic/complications , Congenital Bone Marrow Failure Syndromes/complications , Bone Marrow Diseases/genetics , Bone Marrow Diseases/complications , Bone Marrow Diseases/diagnosis , Pathologists , Myelodysplastic Syndromes/genetics , Myelodysplastic Syndromes/complications , Bone Marrow Failure Disorders/complications , Germ Cells , Neoplasms/complications , Intracellular Signaling Peptides and Proteins
13.
Int J Mol Sci ; 24(19)2023 Oct 06.
Article in English | MEDLINE | ID: mdl-37834388

ABSTRACT

Mice with a constitutive increase in p53 activity exhibited features of dyskeratosis congenita (DC), a bone marrow failure syndrome (BMFS) caused by defective telomere maintenance. Further studies confirmed, in humans and mice, that germline mutations affecting TP53 or its regulator MDM4 may cause short telomeres and alter hematopoiesis, but also revealed features of Diamond-Blackfan anemia (DBA) or Fanconi anemia (FA), two BMFSs, respectively, caused by defects in ribosomal function or DNA repair. p53 downregulates several genes mutated in DC, either by binding to promoter sequences (DKC1) or indirectly via the DREAM repressor complex (RTEL1, DCLRE1B), and the p53-DREAM pathway represses 22 additional telomere-related genes. Interestingly, mutations in any DC-causal gene will cause telomere dysfunction and subsequent p53 activation to further promote the repression of p53-DREAM targets. Similarly, ribosomal dysfunction and DNA lesions cause p53 activation, and p53-DREAM targets include the DBA-causal gene TSR2, at least 9 FA-causal genes, and 38 other genes affecting ribosomes or the FA pathway. Furthermore, patients with BMFSs may exhibit brain abnormalities, and p53-DREAM represses 16 genes mutated in microcephaly or cerebellar hypoplasia. In sum, positive feedback loops and the repertoire of p53-DREAM targets likely contribute to partial phenotypic overlaps between BMFSs of distinct molecular origins.


Subject(s)
Anemia, Diamond-Blackfan , Dyskeratosis Congenita , Fanconi Anemia , Humans , Animals , Mice , Tumor Suppressor Protein p53/genetics , Bone Marrow Failure Disorders , Fanconi Anemia/genetics , Anemia, Diamond-Blackfan/genetics , Dyskeratosis Congenita/genetics , Telomere/genetics , Nuclear Proteins/genetics , Cell Cycle Proteins/genetics , Proto-Oncogene Proteins/genetics , Exodeoxyribonucleases/genetics
14.
J Biol Chem ; 296: 100064, 2021.
Article in English | MEDLINE | ID: mdl-33482595

ABSTRACT

Genetic mutations that affect telomerase function or telomere maintenance result in a variety of diseases collectively called telomeropathies. This wide spectrum of disorders, which include dyskeratosis congenita, pulmonary fibrosis, and aplastic anemia, is characterized by severely short telomeres, often resulting in hematopoietic stem cell failure in the most severe cases. Recent work has focused on understanding the molecular basis of these diseases. Mutations in the catalytic TERT and TR subunits of telomerase compromise activity, while others, such as those found in the telomeric protein TPP1, reduce the recruitment of telomerase to the telomere. Mutant telomerase-associated proteins TCAB1 and dyskerin and the telomerase RNA maturation component poly(A)-specific ribonuclease affect the maturation and stability of telomerase. In contrast, disease-associated mutations in either CTC1 or RTEL1 are more broadly associated with telomere replication defects. Yet even with the recent surge in studies decoding the mechanisms underlying these diseases, a significant proportion of dyskeratosis congenita mutations remain uncharacterized or poorly understood. Here we review the current understanding of the molecular basis of telomeropathies and highlight experimental data that illustrate how genetic mutations drive telomere shortening and dysfunction in these patients. This review connects insights from both clinical and molecular studies to create a comprehensive view of the underlying mechanisms that drive these diseases. Through this, we emphasize recent advances in therapeutics and pinpoint disease-associated variants that remain poorly defined in their mechanism of action. Finally, we suggest future avenues of research that will deepen our understanding of telomere biology and telomere-related disease.


Subject(s)
Telomere , Anemia, Aplastic/genetics , Dyskeratosis Congenita/genetics , Humans , Mutation , Shelterin Complex , Telomerase/genetics , Telomerase/metabolism , Telomere Shortening , Telomere-Binding Proteins
15.
Am J Med Genet A ; 188(4): 1226-1232, 2022 04.
Article in English | MEDLINE | ID: mdl-34890115

ABSTRACT

Short telomere syndromes constitute a heterogeneous group of clinical conditions characterized by short telomeres and impaired telomerase activity due to pathogenic variants in the essential telomerase components. Dyskeratosis congenita (DC) is a rare, multisystemic telomere biology disorder characterized by abnormal skin pigmentation, oral leukoplakia and nail dysplasia along with various somatic findings. Hoyeraal-Hreidarsson syndrome (HHS) is generally an autosomal recessively inherited subgroup showing growth retardation, microcephaly, cerebellar hypoplasia and severe immunodeficiency. We here report on a consanguineous family from Turkey, in which a missense variant in the reverse transcriptase domain of the TERT gene segregated with short telomere lengths and was associated with full-blown short telomere syndrome phenotype in the index; and heterogeneous adult-onset manifestations in heterozygous individuals.


Subject(s)
Dyskeratosis Congenita , Intellectual Disability , Microcephaly , Telomerase , Dyskeratosis Congenita/diagnosis , Dyskeratosis Congenita/genetics , Dyskeratosis Congenita/pathology , Fetal Growth Retardation , Humans , Intellectual Disability/genetics , Microcephaly/diagnosis , Microcephaly/genetics , Microcephaly/pathology , Mutation , Telomerase/genetics , Telomerase/metabolism , Telomere/genetics
16.
Pediatr Blood Cancer ; 69(10): e29909, 2022 10.
Article in English | MEDLINE | ID: mdl-35927969

ABSTRACT

Dyskeratosis congenita (DC) is a bone marrow failure syndrome with extrahematopoietic abnormalities. DC is a paradigmatic telomere biology disorder (TBD) caused by germline mutations in genes responsible for telomere maintenance including TERT. Cryptic TBD is a bone marrow failure syndrome due to premature telomere shortening but without additional symptoms, frequently clinically indistinguishable from severe aplastic anemia (SAA) or hypoplastic myelodysplastic syndrome. We present the complex diagnostic pathway in a boy with a rare germline p.Thr726Met TERT variant with previous reports of SAA association and compromised enzymatic function who presented with juvenile myelomonocytic leukemia, which is a rare myelodysplastic/myeloproliferative neoplasm of childhood.


Subject(s)
Anemia, Aplastic , Dyskeratosis Congenita , Leukemia, Myelomonocytic, Juvenile , Telomerase , Anemia, Aplastic/genetics , Bone Marrow Failure Disorders , Dyskeratosis Congenita/genetics , Germ Cells , Humans , Leukemia, Myelomonocytic, Juvenile/complications , Leukemia, Myelomonocytic, Juvenile/genetics , Male , Mutation , Telomerase/genetics
17.
Genes Dev ; 28(2): 153-66, 2014 Jan 15.
Article in English | MEDLINE | ID: mdl-24449270

ABSTRACT

The progressive bone marrow failure syndrome dyskeratosis congenita (DC) is often caused by mutations in telomerase or the factors involved in telomerase biogenesis and trafficking. However, a subset of DC patients is heterozygous for mutations in the shelterin component TIN2. To determine how the TIN2-DC mutations affect telomere function, we generated mice with the equivalent of the TIN2 K280E DC allele (TIN2(DC)) by gene targeting. Whereas homozygous TIN2(DC/DC) mice were not viable, first-generation TIN2(+/DC) mice were healthy and fertile. In the second and third generations, the TIN2(+/DC) mice developed mild pancytopenia, consistent with hematopoietic dysfunction in DC, as well as diminished fecundity. Bone marrow telomeres of TIN2(+/DC) mice shortened over the generations, and immortalized TIN2(+/DC) mouse embryonic fibroblasts (MEFs) showed telomere shortening with proliferation. Unexpectedly, telomere shortening was accelerated in TIN2(+/DC) mTR(-/-) mice and MEFs compared with TIN2(+/+) mTR(-/-) controls, establishing that the TIN2(DC) telomere maintenance defect was not solely due to diminished telomerase action. The TIN2(DC) allele induced mild ATR kinase signaling at telomeres and a fragile telomere phenotype, suggestive of telomere replication problems. These data suggest that this TIN2-DC mutation could induce telomeric dysfunction phenotypes in telomerase-negative somatic cells and tissues that further exacerbate the telomere maintenance problems in telomerase-positive stem cell compartments.


Subject(s)
Telomere Shortening/genetics , Telomere-Binding Proteins/genetics , Animals , Cell Line, Tumor , Disease Models, Animal , Dyskeratosis Congenita/genetics , Fertility/genetics , Gene Knock-In Techniques , HeLa Cells , Humans , Mice , Mutation , Pancytopenia/genetics , Signal Transduction , Telomerase/metabolism , Telomere/pathology
18.
Genes Dev ; 28(19): 2090-102, 2014 Oct 01.
Article in English | MEDLINE | ID: mdl-25233904

ABSTRACT

Germline mutations in telomere biology genes cause dyskeratosis congenita (DC), an inherited bone marrow failure and cancer predisposition syndrome. DC is a clinically heterogeneous disorder diagnosed by the triad of dysplastic nails, abnormal skin pigmentation, and oral leukoplakia; Hoyeraal-Hreidarsson syndrome (HH), a clinically severe variant of DC, also includes cerebellar hypoplasia, immunodeficiency, and intrauterine growth retardation. Approximately 70% of DC cases are associated with a germline mutation in one of nine genes, the products of which are all involved in telomere biology. Using exome sequencing, we identified mutations in Adrenocortical Dysplasia Homolog (ACD) (encoding TPP1), a component of the telomeric shelterin complex, in one family affected by HH. The proband inherited a deletion from his father and a missense mutation from his mother, resulting in extremely short telomeres and a severe clinical phenotype. Characterization of the mutations revealed that the single-amino-acid deletion affecting the TEL patch surface of the TPP1 protein significantly compromises both telomerase recruitment and processivity, while the missense mutation in the TIN2-binding region of TPP1 is not as clearly deleterious to TPP1 function. Our results emphasize the critical roles of the TEL patch in proper stem cell function and demonstrate that TPP1 is the second shelterin component (in addition to TIN2) to be implicated in DC.


Subject(s)
Dyskeratosis Congenita/genetics , Fetal Growth Retardation/genetics , Germ-Line Mutation/genetics , Intellectual Disability/genetics , Microcephaly/genetics , Serine Proteases/genetics , Adult , Child , Child, Preschool , Dyskeratosis Congenita/pathology , Female , Fetal Growth Retardation/pathology , HeLa Cells , Humans , Infant , Intellectual Disability/pathology , Male , Microcephaly/pathology , Models, Molecular , Mutation, Missense/genetics , Pedigree , Protein Structure, Tertiary , Sequence Deletion/genetics , Serine Proteases/chemistry , Shelterin Complex , Telomerase/metabolism , Telomere-Binding Proteins/metabolism
19.
Int J Mol Sci ; 23(23)2022 Nov 22.
Article in English | MEDLINE | ID: mdl-36498862

ABSTRACT

In recent years, the knowledge about the immune-mediated impairment of bone marrow precursors in immune-dysregulation and autoimmune disorders has increased. In addition, immune-dysregulation, secondary to marrow failure, has been reported as being, in some cases, the most evident and early sign of the disease and making the diagnosis of both groups of disorders challenging. Dyskeratosis congenita is a disorder characterized by premature telomere erosion, typically showing marrow failure, nail dystrophy and leukoplakia, although incomplete genetic penetrance and phenotypes with immune-dysregulation features have been described. We report on a previously healthy 17-year-old girl, with a cousin successfully treated for acute lymphoblastic leukemia, who presented with leukopenia and neutropenia. The diagnostic work-up showed positive anti-neutrophil antibodies, leading to the diagnosis of autoimmune neutropenia, a slightly low NK count and high TCR-αß+-double-negative T-cells. A next-generation sequencing (NGS) analysis showed the 734C>A variant on exon 6 of the TINF2 gene, leading to the p.Ser245Tyr. The telomere length was short on the lymphocytes and granulocytes, suggesting the diagnosis of an atypical telomeropathy showing with immune-dysregulation. This case underlines the importance of an accurate diagnostic work-up of patients with immune-dysregulation, who should undergo NGS or whole exome sequencing to identify specific disorders that deserve targeted follow-up and treatment.


Subject(s)
Dyskeratosis Congenita , Neutropenia , Humans , Dyskeratosis Congenita/genetics , Telomere , Exons , Neutropenia/genetics , Bone Marrow , Telomere-Binding Proteins/genetics
20.
Rinsho Ketsueki ; 63(9): 1115-1125, 2022.
Article in Japanese | MEDLINE | ID: mdl-36198537

ABSTRACT

Inherited bone marrow failure syndrome (IBMFS) is a heterogeneous group of genetic disorders characterized by bone marrow failure, congenital anomalies, and an increased risk of malignancy. The p53 tumor suppressor protein is a transcription factor activated in response to various cellular stresses and induces genes involved in apoptosis, cell cycle arrest, and DNA repair. Several lines of evidence suggest that p53 activation is central to the pathogenesis of IBMFS. We discovered germline TP53 activating mutations in IBMFS cases mimicking Diamond-Blackfan anemia using whole-exome sequencing. These cases were recognized as having a novel disorder, germline TP53 activation syndrome (bone marrow failure syndrome 5; OMIN). Recently, additional cases with the same TP53 mutations were reported, further clarifying the phenotype of this disease. This discovery confirms the hypothesis that p53 activation causes IBMFS. This review focuses on this novel IBMFS and discusses the link between p53 hyperactivation and IBMFS.


Subject(s)
Anemia, Aplastic , Anemia, Diamond-Blackfan , Bone Marrow Diseases , Hemoglobinuria, Paroxysmal , Pancytopenia , Anemia, Aplastic/genetics , Anemia, Diamond-Blackfan/genetics , Bone Marrow Diseases/genetics , Bone Marrow Failure Disorders , Congenital Bone Marrow Failure Syndromes , Hemoglobinuria, Paroxysmal/genetics , Humans , Mutation , Transcription Factors/genetics , Tumor Suppressor Protein p53/genetics
SELECTION OF CITATIONS
SEARCH DETAIL