Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 182
Filter
1.
Cell ; 184(16): 4186-4202.e20, 2021 08 05.
Article in English | MEDLINE | ID: mdl-34216540

ABSTRACT

Polyamine synthesis represents one of the most profound metabolic changes during T cell activation, but the biological implications of this are scarcely known. Here, we show that polyamine metabolism is a fundamental process governing the ability of CD4+ helper T cells (TH) to polarize into different functional fates. Deficiency in ornithine decarboxylase, a crucial enzyme for polyamine synthesis, results in a severe failure of CD4+ T cells to adopt correct subset specification, underscored by ectopic expression of multiple cytokines and lineage-defining transcription factors across TH cell subsets. Polyamines control TH differentiation by providing substrates for deoxyhypusine synthase, which synthesizes the amino acid hypusine, and mice in which T cells are deficient for hypusine develop severe intestinal inflammatory disease. Polyamine-hypusine deficiency caused widespread epigenetic remodeling driven by alterations in histone acetylation and a re-wired tricarboxylic acid (TCA) cycle. Thus, polyamine metabolism is critical for maintaining the epigenome to focus TH cell subset fidelity.


Subject(s)
Cell Lineage , Polyamines/metabolism , T-Lymphocytes, Helper-Inducer/cytology , T-Lymphocytes, Helper-Inducer/metabolism , Animals , Cell Differentiation/drug effects , Cell Lineage/drug effects , Cell Polarity/drug effects , Cell Proliferation/drug effects , Chromatin/metabolism , Citric Acid Cycle/drug effects , Colitis/immunology , Colitis/pathology , Cytokines/metabolism , Disease Models, Animal , Enzyme Inhibitors/pharmacology , Epigenome , Histones/metabolism , Inflammation/immunology , Inflammation/pathology , Lymphocyte Subsets/drug effects , Lymphocyte Subsets/metabolism , Lysine/analogs & derivatives , Lysine/metabolism , Mice , Mice, Inbred C57BL , Ornithine Decarboxylase/metabolism , T-Lymphocytes, Helper-Inducer/drug effects , Th17 Cells/drug effects , Th17 Cells/immunology , Transcription Factors/metabolism
2.
Mol Cell ; 83(4): 607-621.e4, 2023 02 16.
Article in English | MEDLINE | ID: mdl-36804914

ABSTRACT

Ribosome-associated quality control (RQC) is a conserved process degrading potentially toxic truncated nascent peptides whose malfunction underlies neurodegeneration and proteostasis decline in aging. During RQC, dissociation of stalled ribosomes is followed by elongation of the nascent peptide with alanine and threonine residues, driven by Rqc2 independently of mRNA, the small ribosomal subunit and guanosine triphosphate (GTP)-hydrolyzing factors. The resulting CAT tails (carboxy-terminal tails) and ubiquitination by Ltn1 mark nascent peptides for proteasomal degradation. Here we present ten cryogenic electron microscopy (cryo-EM) structures, revealing the mechanistic basis of individual steps of the CAT tailing cycle covering initiation, decoding, peptidyl transfer, and tRNA translocation. We discovered eIF5A as a crucial eukaryotic RQC factor enabling peptidyl transfer. Moreover, we observed dynamic behavior of RQC factors and tRNAs allowing for processivity of the CAT tailing cycle without additional energy input. Together, these results elucidate key differences as well as common principles between CAT tailing and canonical translation.


Subject(s)
Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/genetics , Protein Biosynthesis , Proteolysis , Ubiquitin-Protein Ligases/metabolism , Ribosomes/genetics , Ribosomes/metabolism , Peptides/chemistry , RNA, Transfer/genetics , RNA, Transfer/metabolism , Quality Control
3.
Mol Cell ; 81(19): 3904-3918.e6, 2021 10 07.
Article in English | MEDLINE | ID: mdl-34375581

ABSTRACT

Polyamines, small organic polycations, are essential for cell viability, and their physiological levels are homeostatically maintained by post-transcriptional regulation of key biosynthetic enzymes. In addition to de novo synthesis, cells can also take up polyamines; however, identifying cellular polyamine transporters has been challenging. Here we show that the S. cerevisiae HOL1 mRNA is under translational control by polyamines, and we reveal that the encoded membrane transporter Hol1 is a high-affinity polyamine transporter and is required for yeast growth under limiting polyamine conditions. Moreover, we show that polyamine inhibition of the translation factor eIF5A impairs translation termination at a Pro-Ser-stop motif in a conserved upstream open reading frame on the HOL1 mRNA to repress Hol1 synthesis under conditions of elevated polyamines. Our findings reveal that polyamine transport, like polyamine biosynthesis, is under translational autoregulation by polyamines in yeast, highlighting the extensive control cells impose on polyamine levels.


Subject(s)
Cation Transport Proteins/metabolism , Membrane Transport Proteins/metabolism , Polyamines/metabolism , Protein Biosynthesis , Ribosomes/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/metabolism , Biological Transport , Cation Transport Proteins/genetics , Gene Expression Regulation, Fungal , Membrane Transport Proteins/genetics , Open Reading Frames , Peptide Initiation Factors/genetics , Peptide Initiation Factors/metabolism , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , Ribosomes/genetics , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/growth & development , Saccharomyces cerevisiae Proteins/genetics , Eukaryotic Translation Initiation Factor 5A
4.
Mol Cell ; 76(1): 110-125.e9, 2019 10 03.
Article in English | MEDLINE | ID: mdl-31474573

ABSTRACT

Failure to make adaptive immune responses is a hallmark of aging. Reduced B cell function leads to poor vaccination efficacy and a high prevalence of infections in the elderly. Here we show that reduced autophagy is a central molecular mechanism underlying immune senescence. Autophagy levels are specifically reduced in mature lymphocytes, leading to compromised memory B cell responses in old individuals. Spermidine, an endogenous polyamine metabolite, induces autophagy in vivo and rejuvenates memory B cell responses. Mechanistically, spermidine post-translationally modifies the translation factor eIF5A, which is essential for the synthesis of the autophagy transcription factor TFEB. Spermidine is depleted in the elderly, leading to reduced TFEB expression and autophagy. Spermidine supplementation restored this pathway and improved the responses of old human B cells. Taken together, our results reveal an unexpected autophagy regulatory mechanism mediated by eIF5A at the translational level, which can be harnessed to reverse immune senescence in humans.


Subject(s)
Autophagy/drug effects , B-Lymphocytes/drug effects , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/metabolism , Cellular Senescence/drug effects , Immunosenescence/drug effects , Peptide Initiation Factors/metabolism , Protein Processing, Post-Translational/drug effects , RNA-Binding Proteins/metabolism , Spermidine/pharmacology , Adaptive Immunity/drug effects , Age Factors , Aging , Animals , B-Lymphocytes/immunology , B-Lymphocytes/metabolism , B-Lymphocytes/pathology , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/deficiency , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/genetics , HEK293 Cells , Humans , Immunologic Memory/drug effects , Jurkat Cells , Mice , Mice, Inbred C57BL , Mice, Knockout , NIH 3T3 Cells , Peptide Initiation Factors/genetics , RNA-Binding Proteins/genetics , Signal Transduction , Eukaryotic Translation Initiation Factor 5A
5.
Mol Cell ; 70(2): 254-264.e6, 2018 04 19.
Article in English | MEDLINE | ID: mdl-29677493

ABSTRACT

Translation initiation is typically restricted to AUG codons, and scanning eukaryotic ribosomes inefficiently recognize near-cognate codons. We show that queuing of scanning ribosomes behind a paused elongating ribosome promotes initiation at upstream weak start sites. Ribosomal profiling reveals polyamine-dependent pausing of elongating ribosomes on a conserved Pro-Pro-Trp (PPW) motif in an inhibitory non-AUG-initiated upstream conserved coding region (uCC) of the antizyme inhibitor 1 (AZIN1) mRNA, encoding a regulator of cellular polyamine synthesis. Mutation of the PPW motif impairs initiation at the uCC's upstream near-cognate AUU start site and derepresses AZIN1 synthesis, whereas substitution of alternate elongation pause sequences restores uCC translation. Impairing ribosome loading reduces uCC translation and paradoxically derepresses AZIN1 synthesis. Finally, we identify the translation factor eIF5A as a sensor and effector for polyamine control of uCC translation. We propose that stalling of elongating ribosomes triggers queuing of scanning ribosomes and promotes initiation by positioning a ribosome near the start codon.


Subject(s)
Carrier Proteins/biosynthesis , Peptide Chain Elongation, Translational , Peptide Chain Initiation, Translational , Polyamines/metabolism , RNA, Messenger/metabolism , Ribosomes/metabolism , Amino Acid Motifs , Animals , Carrier Proteins/genetics , Cell Line, Tumor , Codon, Initiator , Conserved Sequence , HEK293 Cells , Humans , Mice , Open Reading Frames , Peptide Initiation Factors/genetics , Peptide Initiation Factors/metabolism , Proteins/genetics , Proteins/metabolism , RNA, Messenger/genetics , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , Ribosomes/genetics , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Eukaryotic Translation Initiation Factor 5A
6.
Am J Hum Genet ; 109(8): 1549-1558, 2022 08 04.
Article in English | MEDLINE | ID: mdl-35858628

ABSTRACT

Deoxyhypusine hydroxylase (DOHH) is the enzyme catalyzing the second step in the post-translational synthesis of hypusine [Nε-(4-amino-2-hydroxybutyl)lysine] in the eukaryotic initiation factor 5A (eIF5A). Hypusine is formed exclusively in eIF5A by two sequential enzymatic steps catalyzed by deoxyhypusine synthase (DHPS) and deoxyhypusine hydroxylase (DOHH). Hypusinated eIF5A is essential for translation and cell proliferation in eukaryotes, and all three genes encoding eIF5A, DHPS, and DOHH are highly conserved throughout eukaryotes. Pathogenic variants affecting either DHPS or EIF5A have been previously associated with neurodevelopmental disorders. Using trio exome sequencing, we identified rare bi-allelic pathogenic missense and truncating DOHH variants segregating with disease in five affected individuals from four unrelated families. The DOHH variants are associated with a neurodevelopmental phenotype that is similar to phenotypes caused by DHPS or EIF5A variants and includes global developmental delay, intellectual disability, facial dysmorphism, and microcephaly. A two-dimensional gel analyses revealed the accumulation of deoxyhypusine-containing eIF5A [eIF5A(Dhp)] and a reduction in the hypusinated eIF5A in fibroblasts derived from affected individuals, providing biochemical evidence for deficiency of DOHH activity in cells carrying the bi-allelic DOHH variants. Our data suggest that rare bi-allelic variants in DOHH result in reduced enzyme activity, limit the hypusination of eIF5A, and thereby lead to a neurodevelopmental disorder.


Subject(s)
Lysine , Mixed Function Oxygenases , Neurodevelopmental Disorders , Alleles , Gene Expression , Humans , Lysine/analogs & derivatives , Mixed Function Oxygenases/genetics , Neurodevelopmental Disorders/genetics
7.
Mol Cell ; 66(2): 194-205.e5, 2017 Apr 20.
Article in English | MEDLINE | ID: mdl-28392174

ABSTRACT

The eukaryotic translation factor eIF5A, originally identified as an initiation factor, was later shown to promote translation elongation of iterated proline sequences. Using a combination of ribosome profiling and in vitro biochemistry, we report a much broader role for eIF5A in elongation and uncover a critical function for eIF5A in termination. Ribosome profiling of an eIF5A-depleted strain reveals a global elongation defect, with abundant ribosomes stalling at many sequences, not limited to proline stretches. Our data also show ribosome accumulation at stop codons and in the 3' UTR, suggesting a global defect in termination in the absence of eIF5A. Using an in vitro reconstituted translation system, we find that eIF5A strongly promotes the translation of the stalling sequences identified by profiling and increases the rate of peptidyl-tRNA hydrolysis more than 17-fold. We conclude that eIF5A functions broadly in elongation and termination, rationalizing its high cellular abundance and essential nature.


Subject(s)
Peptide Chain Elongation, Translational , Peptide Chain Termination, Translational , Peptide Initiation Factors/metabolism , RNA-Binding Proteins/metabolism , Ribosomes/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/metabolism , 3' Untranslated Regions , Amino Acid Motifs , Codon, Terminator , Gene Expression Profiling/methods , Hydrolysis , Kinetics , Peptide Initiation Factors/genetics , Peptide Termination Factors/genetics , Peptide Termination Factors/metabolism , Peptides/metabolism , Peptidyl Transferases/genetics , Peptidyl Transferases/metabolism , RNA, Fungal/genetics , RNA, Fungal/metabolism , RNA, Transfer, Amino Acyl/genetics , RNA, Transfer, Amino Acyl/metabolism , RNA-Binding Proteins/genetics , Ribosomes/genetics , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/genetics , Eukaryotic Translation Initiation Factor 5A
8.
Mol Cell ; 68(3): 515-527.e6, 2017 Nov 02.
Article in English | MEDLINE | ID: mdl-29100052

ABSTRACT

Ribosomes synthesizing proteins containing consecutive proline residues become stalled and require rescue via the action of uniquely modified translation elongation factors, EF-P in bacteria, or archaeal/eukaryotic a/eIF5A. To date, no structures exist of EF-P or eIF5A in complex with translating ribosomes stalled at polyproline stretches, and thus structural insight into how EF-P/eIF5A rescue these arrested ribosomes has been lacking. Here we present cryo-EM structures of ribosomes stalled on proline stretches, without and with modified EF-P. The structures suggest that the favored conformation of the polyproline-containing nascent chain is incompatible with the peptide exit tunnel of the ribosome and leads to destabilization of the peptidyl-tRNA. Binding of EF-P stabilizes the P-site tRNA, particularly via interactions between its modification and the CCA end, thereby enforcing an alternative conformation of the polyproline-containing nascent chain, which allows a favorable substrate geometry for peptide bond formation.


Subject(s)
Escherichia coli Proteins/metabolism , Escherichia coli/metabolism , Peptide Elongation Factors/metabolism , Peptides/metabolism , Ribosomes/metabolism , Binding Sites , Cryoelectron Microscopy , Escherichia coli/genetics , Escherichia coli Proteins/chemistry , Escherichia coli Proteins/genetics , Escherichia coli Proteins/ultrastructure , Molecular Docking Simulation , Molecular Dynamics Simulation , Mutation , Nucleic Acid Conformation , Peptide Elongation Factors/chemistry , Peptide Elongation Factors/genetics , Peptide Elongation Factors/ultrastructure , Peptide Initiation Factors/chemistry , Peptide Initiation Factors/metabolism , Peptides/chemistry , Protein Binding , Protein Biosynthesis , Protein Conformation , RNA, Messenger/chemistry , RNA, Messenger/genetics , RNA, Messenger/metabolism , RNA, Transfer/chemistry , RNA, Transfer/genetics , RNA, Transfer/metabolism , RNA-Binding Proteins/chemistry , RNA-Binding Proteins/metabolism , Ribosomes/chemistry , Ribosomes/ultrastructure , Structure-Activity Relationship , Eukaryotic Translation Initiation Factor 5A
9.
Breast Cancer Res ; 26(1): 70, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38654332

ABSTRACT

BACKGROUND: Basal-like breast cancer (BLBC) is the most aggressive subtype of breast cancer due to its aggressive characteristics and lack of effective therapeutics. However, the mechanism underlying its aggressiveness remains largely unclear. S-adenosylmethionine decarboxylase proenzyme (AMD1) overexpression occurs specifically in BLBC. Here, we explored the potential molecular mechanisms and functions of AMD1 promoting the aggressiveness of BLBC. METHODS: The potential effects of AMD1 on breast cancer cells were tested by western blotting, colony formation, cell proliferation assay, migration and invasion assay. The spermidine level was determined by high performance liquid chromatography. The methylation status of CpG sites within the AMD1 promoter was evaluated by bisulfite sequencing PCR. We elucidated the relationship between AMD1 and Sox10 by ChIP assays and quantitative real-time PCR. The effect of AMD1 expression on breast cancer cells was evaluated by in vitro and in vivo tumorigenesis model. RESULTS: In this study, we showed that AMD1 expression was remarkably elevated in BLBC. AMD1 copy number amplification, hypomethylation of AMD1 promoter and transcription activity of Sox10 contributed to the overexpression of AMD1 in BLBC. AMD1 overexpression enhanced spermidine production, which enhanced eIF5A hypusination, activating translation of TCF4 with multiple conserved Pro-Pro motifs. Our studies showed that AMD1-mediated metabolic system of polyamine in BLBC cells promoted tumor cell proliferation and tumor growth. Clinically, elevated expression of AMD1 was correlated with high grade, metastasis and poor survival, indicating poor prognosis of breast cancer patients. CONCLUSION: Our work reveals the critical association of AMD1-mediated spermidine-eIF5A hypusination-TCF4 axis with BLBC aggressiveness, indicating potential prognostic indicators and therapeutic targets for BLBC.


Subject(s)
Breast Neoplasms , Cell Proliferation , Eukaryotic Translation Initiation Factor 5A , Gene Expression Regulation, Neoplastic , Lysine/analogs & derivatives , Peptide Initiation Factors , RNA-Binding Proteins , Spermidine , Transcription Factor 4 , Humans , Female , Breast Neoplasms/pathology , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Breast Neoplasms/mortality , Peptide Initiation Factors/metabolism , Peptide Initiation Factors/genetics , Mice , Animals , Spermidine/metabolism , RNA-Binding Proteins/metabolism , RNA-Binding Proteins/genetics , Transcription Factor 4/metabolism , Transcription Factor 4/genetics , Cell Line, Tumor , Promoter Regions, Genetic , Adenosylmethionine Decarboxylase/metabolism , Adenosylmethionine Decarboxylase/genetics , Cell Movement/genetics , DNA Methylation , Prognosis , SOXE Transcription Factors/metabolism , SOXE Transcription Factors/genetics
10.
Neurobiol Dis ; 195: 106488, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38565397

ABSTRACT

Given their highly polarized morphology and functional singularity, neurons require precise spatial and temporal control of protein synthesis. Alterations in protein translation have been implicated in the development and progression of a wide range of neurological and neurodegenerative disorders, including Huntington's disease (HD). In this study we examined the architecture of polysomes in their native brain context in striatal tissue from the zQ175 knock-in mouse model of HD. We performed 3D electron tomography of high-pressure frozen and freeze-substituted striatal tissue from HD models and corresponding controls at different ages. Electron tomography results revealed progressive remodelling towards a more compacted polysomal architecture in the mouse model, an effect that coincided with the emergence and progression of HD related symptoms. The aberrant polysomal architecture is compatible with ribosome stalling phenomena. In fact, we also detected in the zQ175 model an increase in the striatal expression of the stalling relief factor EIF5A2 and an increase in the accumulation of eIF5A1, eIF5A2 and hypusinated eIF5A1, the active form of eIF5A1. Polysomal sedimentation gradients showed differences in the relative accumulation of 40S ribosomal subunits and in polysomal distribution in striatal samples of the zQ175 model. These findings indicate that changes in the architecture of the protein synthesis machinery may underlie translational alterations associated with HD, opening new avenues for understanding the progression of the disease.


Subject(s)
Disease Models, Animal , Huntington Disease , Polyribosomes , Ribosomes , Animals , Huntington Disease/metabolism , Huntington Disease/pathology , Huntington Disease/genetics , Mice , Polyribosomes/metabolism , Ribosomes/metabolism , Corpus Striatum/metabolism , Corpus Striatum/pathology , Mice, Transgenic , Disease Progression , Huntingtin Protein/genetics , Huntingtin Protein/metabolism , Peptide Initiation Factors/metabolism , Peptide Initiation Factors/genetics
11.
Pharmacol Res ; : 107453, 2024 Oct 09.
Article in English | MEDLINE | ID: mdl-39393437

ABSTRACT

Vasculogenic mimicry (VM) contributes factor to the poor prognosis of malignant melanoma. Developing deoxyhypusine synthase (DHPS) inhibitors against melanoma VM is clinically essential. In this study, we optimized and synthesized a series of compounds based on the candidate structure, and the hit compound 7k was identified through enzyme assay and cell viability inhibition screening. Both inside and outside the cell, 7k's ability to target DHPS and its high affinity were demonstrated. Molecular dynamics and point mutation indicated that mutations of K329 or V129 in DHPS abolish 7k's inhibitory activity. Using PCR arrays, solid-state antibody microarrays, and angiogenesis assays investigated 7k's impact on melanoma cells to reveal that DHPS regulates melanoma VM by promoting FGFR2 and c-KIT expression. Surprisingly, 7k was discovered to inhibit MC1R-mediated melanin synthesis in the zebrafish. Pharmacokinetic evaluations demonstrated 7k's favorable properties, and xenograft models evidenced its notable anti-melanoma efficacy, achieving a TGI of 73%. These results highlighted DHPS as key in melanoma VM formation and confirmed 7k's potential as a novel anti-melanoma agent.

12.
Cell Mol Biol Lett ; 29(1): 15, 2024 Jan 16.
Article in English | MEDLINE | ID: mdl-38229033

ABSTRACT

BACKGROUND: The eukaryotic translation initiation protein eIF5A is a highly conserved and essential factor that plays a critical role in different physiological and pathological processes including stress response and cancer. Different proteomic studies suggest that eIF5A may be a small ubiquitin-like modifier (SUMO) substrate, but whether eIF5A is indeed SUMOylated and how relevant is this modification for eIF5A activities are still unknown. METHODS: SUMOylation was evaluated using in vitro SUMOylation assays, Histidine-tagged proteins purification from His6-SUMO2 transfected cells, and isolation of endogenously SUMOylated proteins using SUMO-binding entities (SUBES). Mutants were engineered by site-directed mutagenesis. Protein stability was measured by a cycloheximide chase assay. Protein localization was determined using immunofluorescence and cellular fractionation assays. The ability of eIF5A1 constructs to complement the growth of Saccharomyces cerevisiae strains harboring thermosensitive mutants of a yeast EIF5A homolog gene (HYP2) was analyzed. The polysome profile and the formation of stress granules in cells expressing Pab1-GFP (a stress granule marker) by immunofluorescence were determined in yeast cells subjected to heat shock. Cell growth and migration of pancreatic ductal adenocarcinoma PANC-1 cells overexpressing different eIF5A1 constructs were evaluated using crystal violet staining and transwell inserts, respectively. Statistical analysis was performed with GraphPad Software, using unpaired Student's t-test, or one-way or two-way analysis of variance (ANOVA). RESULTS: We found that eIF5A is modified by SUMO2 in vitro, in transfected cells and under endogenous conditions, revealing its physiological relevance. We identified several SUMO sites in eIF5A and found that SUMOylation modulates both the stability and the localization of eIF5A in mammalian cells. Interestingly, the SUMOylation of eIF5A responds to specific stresses, indicating that it is a regulated process. SUMOylation of eIF5A is conserved in yeast, the eIF5A SUMOylation mutants are unable to completely suppress the defects of HYP2 mutants, and SUMOylation of eIF5A is important for both stress granules formation and disassembly of polysomes induced by heat-shock. Moreover, mutation of the SUMOylation sites in eIF5A abolishes its promigratory and proproliferative activities in PANC-1 cells. CONCLUSIONS: SUMO2 conjugation to eIF5A is a stress-induced response implicated in the adaptation of yeast cells to heat-shock stress and required to promote the growth and migration of pancreatic ductal adenocarcinoma cells.


Subject(s)
Adenocarcinoma , Saccharomyces cerevisiae , Animals , Humans , Mammals , Proteomics , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Small Ubiquitin-Related Modifier Proteins/genetics , Small Ubiquitin-Related Modifier Proteins/metabolism , Sumoylation , Ubiquitin/metabolism
13.
Int J Mol Sci ; 25(3)2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38339043

ABSTRACT

Programmed ribosomal frameshifting (PRF) exists in all branches of life that regulate gene expression at the translational level. The eukaryotic translation initiation factor 5A (eIF5A) is a highly conserved protein essential in all eukaryotes. It is identified initially as an initiation factor and functions broadly in translation elongation and termination. The hypusination of eIF5A is specifically required for +1 PRF at the shifty site derived from the ornithine decarboxylase antizyme 1 (OAZ1) in Saccharomyces cerevisiae. However, whether the regulation of +1 PRF by yeast eIF5A is universal remains unknown. Here, we found that Sc-eIF5A depletion decreased the putrescine/spermidine ratio. The re-introduction of Sc-eIF5A in yeast eIF5A mutants recovered the putrescine/spermidine ratio. In addition, the Sc-eIF5A depletion decreases +1 PRF during the decoding of Ty1 retrotransposon mRNA, but has no effect on -1 PRF during the decoding of L-A virus mRNA. The re-introduction of Sc-eIF5A in yeast eIF5A mutants restored the +1 PRF rate of Ty1. The inhibition of the hypusine modification of yeast eIF5A by GC7 treatment or by mutating the hypusination site Lys to Arg caused decreases of +1 PRF rates in the Ty1 retrotransposon. Furthermore, mutational studies of the Ty1 frameshifting element support a model where the efficient removal of ribosomal subunits at the first Ty1 frame 0 stop codon is required for the frameshifting of trailing ribosomes. This dependency is likely due to the unique position of the frame 0 stop codon distance from the slippery sequence of Ty1. The results showed that eIF5A is a trans-regulator of +1 PRF for Ty1 retrotransposon and could function universally in yeast.


Subject(s)
Frameshifting, Ribosomal , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Spermidine/metabolism , Putrescine/metabolism , Retroelements/genetics , Codon, Terminator/genetics , Codon, Terminator/metabolism , Peptide Initiation Factors/genetics , Peptide Initiation Factors/metabolism
14.
Int J Mol Sci ; 25(15)2024 Jul 26.
Article in English | MEDLINE | ID: mdl-39125743

ABSTRACT

The unique amino acid hypusine [Nε-(4-amino-2-hydroxybutyl)lysine] is exclusively formed on the translational regulator eukaryotic initiation factor 5A (eIF5A) via a process coined hypusination. Hypusination is mediated by two enzymes, deoxyhypusine synthase (DHPS) and deoxyhypusine hydroxylase (DOHH), and hypusinated eIF5A (eIF5AHyp) promotes translation elongation by alleviating ribosome pauses at amino acid motifs that cause structural constraints, and it also facilitates translation initiation and termination. Accordingly, eIF5AHyp has diverse biological functions that rely on translational control of its targets. Homozygous deletion of Eif5a, Dhps, or Dohh in mice leads to embryonic lethality, and heterozygous germline variants in EIF5A and biallelic variants in DHPS and DOHH are associated with rare inherited neurodevelopmental disorders, underscoring the importance of the hypusine circuit for embryonic and neuronal development. Given the pleiotropic effects of eIF5AHyp, a detailed understanding of the cell context-specific intrinsic roles of eIF5AHyp and of the chronic versus acute effects of eIF5AHyp inhibition is necessary to develop future strategies for eIF5AHyp-targeted therapy to treat various human health problems. Here, we review the most recent studies documenting the intrinsic roles of eIF5AHyp in different tissues/cell types under normal or pathophysiological conditions and discuss these unique aspects of eIF5AHyp-dependent translational control.


Subject(s)
Eukaryotic Translation Initiation Factor 5A , Lysine , Peptide Initiation Factors , RNA-Binding Proteins , Peptide Initiation Factors/metabolism , Peptide Initiation Factors/genetics , Humans , RNA-Binding Proteins/metabolism , RNA-Binding Proteins/genetics , Animals , Lysine/metabolism , Lysine/analogs & derivatives , Oxidoreductases Acting on CH-NH Group Donors/genetics , Oxidoreductases Acting on CH-NH Group Donors/metabolism , Mixed Function Oxygenases/genetics , Mixed Function Oxygenases/metabolism , Protein Biosynthesis , Mice
15.
Medicina (Kaunas) ; 60(4)2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38674185

ABSTRACT

Oxidative stress is implicated in the pathogenesis of various acute disorders including ischemia/reperfusion injury, ultraviolet/radiation burn, as well as chronic disorders such as dyslipidemia, atherosclerosis, diabetes mellitus, chronic renal disease, and inflammatory bowel disease (IBD). However, the precise mechanism involved remains to be clarified. We formerly identified a novel apoptosis-inducing humoral protein, in a hypoxia/reoxygenation-conditioned medium of cardiac myocytes, which proved to be 69th tyrosine-sulfated eukaryotic translation initiation factor 5A (eIF5A). We named this novel tyrosine-sulfated secreted form of eIF5A Oxidative Stress-Responsive Apoptosis-Inducing Protein (ORAIP). To investigate the role of ORAIP in a dextran sulfate sodium (DSS)-induced murine model of ulcerative colitis (UC), we analyzed the effects of in vivo treatment with anti-ORAIP neutralizing monoclonal antibody (mAb) on the DSS-induced disease exacerbation. The body weight in anti-ORAIP mAb-treated group was significantly heavier than that in a mouse IgG-treated control group on day 8 of DSS-treatment ((85.21 ± 1.03%) vs. (77.38 ± 2.07%); (mean ± SE0, n = 5 each, p < 0.01, t-test). In vivo anti-ORAIP mAb-treatment also significantly suppressed the shortening of colon length as well as Disease Activity Index (DAI) score ((5.00 ± 0.44) vs. (8.20 ± 0.37); (mean ± SE), n = 5 each, p < 0.001, t-test) by suppressing inflammation of the rectal tissue and apoptosis of intestinal mucosal cells. These data reveal the pivotal role of ORAIP in DSS-induced oxidative stress involved in an animal model of UC.


Subject(s)
Colitis, Ulcerative , Dextran Sulfate , Disease Models, Animal , Oxidative Stress , Animals , Dextran Sulfate/toxicity , Mice , Oxidative Stress/drug effects , Peptide Initiation Factors/metabolism , Eukaryotic Translation Initiation Factor 5A , Apoptosis/drug effects , Male , Mice, Inbred C57BL
16.
J Cell Sci ; 134(18)2021 09 15.
Article in English | MEDLINE | ID: mdl-34447991

ABSTRACT

Translation of mRNAs that encode peptide sequences with consecutive prolines (polyproline) requires the conserved and essential elongation factor eIF5A to facilitate the formation of peptide bonds. It has been shown that, upon eIF5A depletion, yeast ribosomes stall in polyproline motifs, but also in tripeptide sequences that combine proline with glycine and charged amino acids. Mammalian collagens are enriched in putative eIF5A-dependent Pro-Gly-containing tripeptides. Here, we show that depletion of active eIF5A in mouse fibroblasts reduced collagen type I α1 chain (Col1a1) content, which concentrated around the nuclei. Moreover, it provoked the upregulation of endoplasmic reticulum (ER) stress markers, suggesting retention of partially synthesized collagen 1 (Col1) in the ER. We confirmed that eIF5A is needed for heterologous collagen synthesis in yeast and, using a double luciferase reporter system, showed that eIF5A depletion interrupts translation at Pro-Gly collagenic motifs. A dramatically lower level of Col1a1 protein was also observed in functional eIF5A-depleted human hepatic stellate cells treated with the profibrotic cytokine TGF-ß1. In sum, our results show that collagen expression requires eIF5A and imply its potential as a target for regulating collagen production in fibrotic diseases.


Subject(s)
Peptide Initiation Factors , RNA-Binding Proteins , Animals , Collagen/genetics , Mice , Peptide Initiation Factors/genetics , Peptide Initiation Factors/metabolism , RNA-Binding Proteins/genetics , Ribosomes/metabolism , Saccharomyces cerevisiae/metabolism
17.
FASEB J ; 36(7): e22422, 2022 07.
Article in English | MEDLINE | ID: mdl-35747924

ABSTRACT

Nociceptors are a type of sensory neuron that are integral to most forms of pain. Targeted disruption of nociceptor sensitization affords unique opportunities to prevent pain. An emerging model for nociceptors are sensory neurons derived from human stem cells. Here, we subjected five groups to high-throughput sequencing: human induced pluripotent stem cells (hiPSCs) prior to differentiation, mature hiPSC-derived sensory neurons, mature co-cultures containing hiPSC-derived astrocytes and sensory neurons, mouse dorsal root ganglion (DRG) tissues, and mouse DRG cultures. Co-culture of nociceptors and astrocytes promotes expression of transcripts enriched in DRG tissues. Comparisons of the hiPSC models to tissue samples reveal that many key transcripts linked to pain are present. Markers indicative of a range of neuronal subtypes present in the DRG were detected in mature hiPSCs. Intriguingly, translation factors were maintained at consistently high expression levels across species and culture systems. As a proof of concept for the utility of this resource, we validated expression of eukaryotic initiation factor 5A (eIF5A) in DRG tissues and hiPSC samples. eIF5A is subject to a unique posttranslational hypusine modification required for its activity. Inhibition of hypusine biosynthesis prevented hyperalgesic priming by inflammatory mediators in vivo and diminished hiPSC activity in vitro. Collectively, our results illuminate the transcriptomes of hiPSC sensory neuron models. We provide a demonstration for this resource through our investigation of eIF5A. Our findings reveal hypusine as a potential target for inflammation associated pain in males.


Subject(s)
Induced Pluripotent Stem Cells , Animals , Humans , Male , Mice , Nociceptors , Pain/genetics , RNA, Messenger , Transcriptome
18.
Amino Acids ; 55(7): 913-929, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37258638

ABSTRACT

Hypusine amino acid [Nε-(4-amino-2-hydroxybutyl)-lysine] was first isolated in 1971 from bovine brain extracts. Hypusine originates from a post-translational modification at the eukaryotic translation initiation factor 5A (eIF5A), a protein produced by archaebacteria and eukaryotes. The eIF5A protein is the only one described containing the hypusine residue, which is essential for its activity. Hypusine as a free amino acid is a consequence of proteolytic degradation of eIF5A. Herein, we showed, for the first time, evidence of biological activity for the free hypusine. C6 rat glioma cells were treated with hypusine, and different cellular parameters were evaluated. Hypusine treatment significantly reduced C6 cell proliferation and potently suppressed their clonogenic capacity without leading to apoptosis. Hypusine also decreased the Eif5A transcript content and the global protein synthesis profile that may occur due to negative feedback in response to high hypusine concentration, controlling the content of newly synthesized eIF5A, which can affect the translation process. Besides, hypusine treatment also altered cellular metabolism by changing the pathways for energy production, reducing cellular respiration coupled with oxidative phosphorylation, and increasing the anaerobic metabolism. These observed results and the relationship between eIF5A and tumor processes led us to test the combination of hypusine with the chemotherapeutic drug temozolomide. Combining temozolomide with hypusine reduced the MTT conversion to the same levels as those observed using double temozolomide dosage alone, demonstrating a synergetic action between the compounds. Thus, since 1971, this is the first study showing evidence of biological activity for hypusine not associated with being an essential component of the eiF5A protein. Finding out the molecular targets of hypusine are the following efforts to completely characterize its biological activity.


Subject(s)
Amino Acids , Lysine , Animals , Cattle , Rats , Amino Acids/metabolism , Eukaryotic Translation Initiation Factor 5A , Lysine/metabolism , Peptide Initiation Factors/genetics , Peptide Initiation Factors/metabolism , Protein Processing, Post-Translational , Temozolomide
19.
Reprod Biomed Online ; 47(1): 15-25, 2023 07.
Article in English | MEDLINE | ID: mdl-37137790

ABSTRACT

RESEARCH QUESTION: Is the hypusinated form of the eukaryotic translation initiation factor 5A (EIF5A) present in human myometrium, leiomyoma and leiomyosarcoma, and does it regulate cell proliferation and fibrosis? DESIGN: The hypusination status of eIF5A in myometrial and leiomyoma patient-matched tissues was evaluated by immunohistochemistry and Western blotting as well as in leiomyosarcoma tissues by immunohistochemistry. Myometrial, leiomyoma and leiomyosarcoma cell lines were treated with N1-guanyl-1,7-diaminoheptane (GC-7), responsible for the inhibition of the first step of eIF5A hypunization, and the proliferation rate was determined by MTT assay; fibronectin expression was analysed by Western blotting. Finally, expression of fibronectin in leiomyosarcoma tissues was detected by immunohistochemistry. RESULTS: The hypusinated form of eIF5A was present in all tissues examined, with an increasing trend of hypusinated eIF5A levels from normal myometrium to neoplastic benign leiomyoma up to neoplastic malignant leiomyosarcoma. The higher levels in leiomyoma compared with myometrium were confirmed by Western blotting (P = 0.0046). The inhibition of eIF5A hypusination, with GC-7 treatment at 100 nM, reduced the cell proliferation in myometrium (P = 0.0429), leiomyoma (P = 0.0030) and leiomyosarcoma (P = 0.0044) cell lines and reduced the expression of fibronectin in leiomyoma (P = 0.0077) and leiomyosarcoma (P = 0.0280) cells. The immunohistochemical staining of leiomyosarcoma tissue revealed that fibronectin was highly expressed in the malignant aggressive (central) part of the leiomyosarcoma lesion, where hypusinated eIF5A was also highly represented. CONCLUSIONS: These data support the hypothesis that eIF5A may be involved in the pathogenesis of myometrial benign and malignant pathologies.


Subject(s)
Leiomyoma , Leiomyosarcoma , Uterine Neoplasms , Female , Humans , Fibronectins/metabolism , Leiomyosarcoma/metabolism , Leiomyosarcoma/pathology , Leiomyoma/pathology , Cell Proliferation , Myometrium/metabolism , Uterine Neoplasms/pathology , Eukaryotic Translation Initiation Factor 5A
20.
Mol Biol Rep ; 50(4): 3099-3109, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36689050

ABSTRACT

PURPOSE: The aim of this study was to investigate whether eIF5A hypusine (eIF5AHyp) reduces adenosine 2b receptor (A2bAR) gene expression through interaction with highly structured stem-loop sequences within the A2bAR 3'UTR. METHODS AND RESULTS: Based on real-time PCR and western blotting, expression of A2bAR mRNA was significantly decreased upon treatment with eIF5AHyp in mouse embryonic fibroblasts of eIF5A (eIF5A-MEF) and 3T3-L1 cells. Target Scan software and RNAfold web server predicted two different structures formed by stem-loop sequences with overlapping microRNA 27 seed sequences and mutations. The EMSA results showed significantly impaired formation of the wild type (WT) biotin-labeled A2bAR probe (27 base) containing stem loop sequences-eIF5AHyp complex by mutation of stem-loop sequences or by eIF5A non-hypusine (eIF5ALys). The luciferase reporter assay showed that GC7-induced eIF5ALys accumulation increased the activity of pMIR-A2bAR WT containing the same stem-loop sequence in 3T3-L1 cells, whereas the activity with pMIR-A2bAR Mut was increased compared to WT control without dependence on GC7. Oil Red O staining showed that suppression of A2bAR expression (A2bAR siRNA and eIF5AHyp) increased the amount of lipid droplet formation and the mRNA levels of lipid droplet-related genes (C/EBP-ß, PPAR-γ, FABP4, SREBP-1, and Perilipin). In contrast, overexpression of A2bAR (A2bAR vector, eIF5ALys vector, and GC7) significantly decreased the expression of lipid droplet-associated genes and lipid droplet formation. CONCLUSIONS: eIF5AHyp acts as a negative regulator of A2bAR gene expression through stem loop sequences in A2bAR 3'UTR, allowing differentiation of adipocytes.


Subject(s)
Fibroblasts , MicroRNAs , Animals , Mice , 3' Untranslated Regions/genetics , Fibroblasts/metabolism , Gene Expression , Peptide Initiation Factors/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , Receptors, Purinergic P1/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL