Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters

Publication year range
1.
Proc Natl Acad Sci U S A ; 119(22): e2122975119, 2022 05 31.
Article in English | MEDLINE | ID: mdl-35609193

ABSTRACT

SignificanceThin transparent semiconductors of two-dimensional materials are attractive for the practical applications in next-generation nanoelectronic and optoelectronic devices. Probing the electron states and electrical switching mechanisms of a molybdenum disulphide monolayer with atomic-scale thickness (6.5 Å) allows us to unlock the full technological potential of this nanomaterial. We introduced a plasmonic phase imaging method to uncover the underlying mechanism and detailed switching dynamics of an electrical-state switching event. This dramatic phase change can be attributed to the reversible switching of classical electromagnetic coupling and quantum coupling effects interplaying between a single metal nanoparticle and molybdenum disulphide monolayer, and the transient intermediate states during the switching event can be directly imaged by a plasmonic technique.

2.
Nano Lett ; 21(18): 7831-7838, 2021 Sep 22.
Article in English | MEDLINE | ID: mdl-34491061

ABSTRACT

Perovskite semiconductor nanocrystals are promising for optical amplification and laser applications benefiting from efficient optical gain generation. Nevertheless, the pump threshold is limited by more than one exciton per nanocrystal required to generate population inversion in neutral nanocrystals due to the level degeneracy. Here, we show that by charging nanocrystals with current injection, the level degeneracy can be lifted to generate charged exciton gain with markedly low excitation density. On the basis of the scenario, we have demonstrated electrical switching of amplified spontaneous emission in films of CsPbBr3 nanocrystals sandwiched by two electrodes with over 50% threshold reduction owing to charged excitons. Our work provides an effective approach to electrically modulated optical gain in colloidal perovskite nanocrystals for potential applications in advanced laser and information technology.

3.
Angew Chem Int Ed Engl ; 58(45): 16101-16104, 2019 Nov 04.
Article in English | MEDLINE | ID: mdl-31483541

ABSTRACT

Using an external stimulus to modulate the electronic structure of covalent organic frameworks (COFs) is very important because such a response will endow them with additional functions. A two-dimensional (2D) COF, constructed from a photo-responsive unit (1,2-bis(5-formyl-2-methylthien-3-yl)cyclopentene), can reversibly switch its electrical conductivity 200 times from low state (the open form) to high state (the closed form) upon irradiation with UV light and reversible with visible light. This reversible phenomenon can be monitored through a circuit containing a light-emitting diode (LED). Photoinduced ring-closing/opening reactions do not destroy the integrity of the frameworks, and both processes follow logarithmic carrier generation with time. Moreover, the correlation between COFs electronic properties and changes in photoinduced kinetics and absorption curves has been demonstrated.

4.
Nanomaterials (Basel) ; 14(2)2024 Jan 09.
Article in English | MEDLINE | ID: mdl-38251107

ABSTRACT

The optical properties of light-absorbing materials in optical shutter devices are critical to the use of such platforms for optical applications. We demonstrate switchable optical properties of dyes and nanoparticles in liquid-based electrowetting-on-dielectric (EWOD) devices. Our work uses narrow-band-absorbing dyes and nanoparticles, which are appealing for spectral-filtering applications targeting specific wavelengths while maintaining device transparency at other wavelengths. Low-voltage actuation of boron dipyromethene (BODIPY) dyes and nanoparticles (Ag and CdSe) was demonstrated without degradation of the light-absorbing materials. Three BODIPY dyes were used, namely Abs 503 nm, 535 nm and 560 nm for dye 1 (BODIPY-core), 2 (I2BODIPY) and 3 (BODIPY-TMS), respectively. Reversible and low-voltage (≤20 V) switching of dye optical properties was observed as a function of device pixel dimensions (300 × 900, 200 × 600 and 150 × 450 µm). Low-voltage and reversible switching was also demonstrated for plasmonic and semiconductor nanoparticles, such as CdSe nanotetrapods (abs 508 nm), CdSe nanoplatelets (Abs 461 and 432 nm) and Ag nanoparticles (Abs 430 nm). Nanoparticle-based devices showed minimal hysteresis as well as faster relaxation times. The study presented can thus be extended to a variety of nanomaterials and dyes having the desired optical properties.

5.
Natl Sci Rev ; 10(2): nwac154, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36872930

ABSTRACT

Non-collinear antiferromagnetic Weyl semimetals, combining the advantages of a zero stray field and ultrafast spin dynamics, as well as a large anomalous Hall effect and the chiral anomaly of Weyl fermions, have attracted extensive interest. However, the all-electrical control of such systems at room temperature, a crucial step toward practical application, has not been reported. Here, using a small writing current density of around 5 × 106 A·cm-2, we realize the all-electrical current-induced deterministic switching of the non-collinear antiferromagnet Mn3Sn, with a strong readout signal at room temperature in the Si/SiO2/Mn3Sn/AlOx structure, and without external magnetic field or injected spin current. Our simulations reveal that the switching originates from the current-induced intrinsic non-collinear spin-orbit torques in Mn3Sn itself. Our findings pave the way for the development of topological antiferromagnetic spintronics.

6.
Article in English | MEDLINE | ID: mdl-38047552

ABSTRACT

The electrically driven optical performance modulation of the plasmonic nanostructure by conductive polymers provides a prospective technology for miniaturized and integrated active optoelectronic devices. These features of wafer-scale and flexible preparation, a wide spectrum adjustment range, and excellent electric cycling stability are critical to the practical applications of dynamic plasmonic components. Herein, we have demonstrated a large-scale and flexible active plasmonic nanostructure constructed by electrochemically synthesizing nanometric-thickness conductive polymer onto spatially mismatched Au nanodisk-hole (AuND-H) array on the poly(ethylene terephthalate) (PET) substrate, offering low-power electrically driven switching of reflective light in a wide wavelength range of 550-850 nm. The composite structure of the polymer/AuND-H array supports multiple plasmonic resonance modes with strong near-field enhancement and confinement, which provides an excellent dynamic spectral modulation platform. As a result, the PPy/AuND-H array achieves 18.4% reversible switching of spectral intensity at 780 nm and speedy response time, as well as maintains a stable dynamic modulation range at two-potential cycling between -0.6 and 0.1 V after 200 modulation cycles. Compared to the case of the PPy/AuND-H array, the PANI/AuND-H array obtains a more extensive intensity modulation of 25.1% at 750 nm, which is attributed to the significant differences in the extinction coefficient between the oxidized and reduced states of PANI, but its modulation range degrades apparently after 20 cycles driven at applied voltages between -0.1 and 0.8 V. Additionally, the cycling stability could be further improved by reducing the modulation voltage range. Our proposed electromodulated composite structure provides a promising technological proposal for dynamically plasmonic reconfigurable devices.

7.
ACS Nano ; 16(4): 6480-6492, 2022 Apr 26.
Article in English | MEDLINE | ID: mdl-35343230

ABSTRACT

Carbon quantum dots (CQDs) have been extensively explored in diverse fields because of their exceptional features. The nanometric particles with photoluminescence (PL) benefit various optical and photonic applications. However, the majority of previous reports have mainly focused on either unpolarized or circular-polarized (CP) PL. Linearly polarized (LP) emission of CQDs is limited mainly because of their isometric shape and difficulties in macroscopic orientation control. Herein, we report syntheses of anisometric CQDs and facile control of the uniaxial orientation on a macroscopic scale, which results in linearly polarized photoluminescence (LP-PL). The anisometric CQDs are synthesized from rigid-rod-shaped precursors and evenly dispersed in the rod-like liquid crystal (LC) host. As-synthesized CQDs exhibit a PL quantum yield as high as 35% in chloroform. In addition to uniform alignment, facile directional switching of the elongated CQD is established by employing the electrical responsiveness of the CQD and host LC. Therefore, the dichroic photophysical properties of anisometric CQDs have been beneficially adopted for fabrications of polarization-sensitive and electrically switchable PL devices. Also, anisometric CQDs are embedded in polymer films with molecular orientational patterns and clearly recognized by LP-PL.

8.
Sci Technol Adv Mater ; 11(6): 065002, 2010 Dec.
Article in English | MEDLINE | ID: mdl-27877369

ABSTRACT

Vanadium dioxide is an intensively studied material that undergoes a temperature-induced metal-insulator phase transition accompanied by a large change in electrical resistivity. Electrical switches based on this material show promising properties in terms of speed and broadband operation. The exploration of the failure behavior and reliability of such devices is very important in view of their integration in practical electronic circuits. We performed systematic lifetime investigations of two-terminal switches based on the electrical activation of the metal-insulator transition in VO2 thin films. The devices were integrated in coplanar microwave waveguides (CPWs) in series configuration. We detected the evolution of a 10 GHz microwave signal transmitted through the CPW, modulated by the activation of the VO2 switches in both voltage- and current-controlled modes. We demonstrated enhanced lifetime operation of current-controlled VO2-based switching (more than 260 million cycles without failure) compared with the voltage-activated mode (breakdown at around 16 million activation cycles). The evolution of the electrical self-oscillations of a VO2-based switch induced in the current-operated mode is a subtle indicator of the material properties modification and can be used to monitor its behavior under various external stresses in sensor applications.

9.
ACS Appl Mater Interfaces ; 12(47): 52929-52936, 2020 Nov 25.
Article in English | MEDLINE | ID: mdl-33169981

ABSTRACT

An impurity doping in semiconductors is an important irreversible process of manipulating the electrical properties of advanced electron devices. Here, we report an unusual reversible dopant activation/deactivation phenomenon, which emerges at an interface between indium tin oxide (ITO) and single-crystalline oxide channel. We found that the interface electrical resistance between ITO electrodes and single-crystalline oxide nanowire channel can be repeatedly switched between a metallic state and a near-insulative state by applying thermal treatments in air or vacuum. Interestingly, this electrical switching phenomenon disappears when the oxide nanowire changes from the single-crystalline structure to the lithography-defined polycrystalline structure. Atmosphere-controlled annealing experiments reveal that atmospheric oxygen induces repeatable change in the interfacial electrical resistance. Systematic investigations on metal cation species and channel crystallinity demonstrate that the observed electrical switching is related to an interface-specific reversible Sn-dopant activation/deactivation of ITO electrode in contact with a single-crystalline oxide channel.

10.
Adv Mater ; 32(42): e2000058, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32930451

ABSTRACT

Active plasmonic nanostructures have garnered considerable interest in physics, chemistry, and material science due to the dynamically switchable capability of plasmonic responses. Here, the first electrically dynamic control of magnetic plasmon resonance (MPR) through structure transformation by selective deposition of lithium on a metal-insulator-metal (MIM) structure is reported. Distinct optical switching between MPR and surface plasmon polariton (SPP) excitations can be enabled by applying a proper electrical current to the electrochemical cell. Furthermore, the structure transformation through lithium metal deposition indicates the reconfigurable MPR excitation in a full cycling of the charging and discharging process. The results may shed light on electrically compatible self-powered active plasmonics as well as nondestructive optical sensing for electrochemical evolution.

11.
ACS Appl Mater Interfaces ; 12(48): 54005-54011, 2020 Dec 02.
Article in English | MEDLINE | ID: mdl-33207879

ABSTRACT

Effective high-capacity data management necessitates the use of ultrafast fiber lasers with mode-locking-based femtosecond pulse generation. We suggest a simple but highly efficient structure of a graphene saturable absorber in the form of a graphene/poly(methyl methacrylate) (PMMA)/graphene capacitor and demonstrate the generation of ultrashort pulses by passive mode-locking in a fiber ring laser cavity, with simultaneous electrical switching (on/off) of the mode-locking operation. The voltage applied to the capacitor shifts the Fermi level of the graphene layers, thereby controlling their nonlinear light absorption, which is directly correlated with mode-locking. The flexible PMMA layer used for graphene transfer also acts as a dielectric layer to realize a very simple but effective capacitor structure. By employing the graphene capacitor on the polished surface of a D-shaped fiber, we demonstrate the switching of the mode-locking operation reversibly from the femtosecond pulse regime to a continuous wave regime of the ring laser with an extinction ratio of 70.4 dB.

12.
ACS Appl Mater Interfaces ; 11(43): 40332-40338, 2019 Oct 30.
Article in English | MEDLINE | ID: mdl-31610648

ABSTRACT

Although organic small-molecule-based memory devices (OSMDs) have been demonstrated to show great potential for the application in next-generation data-storage technology, progress toward their further development has been hugely hindered by the ambiguity of their electrical switching mechanism. Thus, purposely fabricating OSMDs with a definite switching behavior is very urgent. Here, we reported a redox-gated nonvolatile rewritable memory device using an organometallic small molecule as an active material. By introducing the redox-active ferrocene into an organic skeleton, the target small molecule exhibits reliable and robust FLASH-type bistable electrical characteristics with a clear redox-controlled switching mechanism, which leads to low operational voltages, good endurance, and long retention. Our study offers a proof-of-concept strategy to design controllable OSMDs with excellent performances.

13.
ACS Appl Mater Interfaces ; 9(2): 1577-1584, 2017 Jan 18.
Article in English | MEDLINE | ID: mdl-27997109

ABSTRACT

Epitaxial VO2/TiO2 thin film heterostructures were grown on (100) (m-cut) Al2O3 substrates via pulsed laser deposition. We have demonstrated the ability to reduce the semiconductor-metal transition (SMT) temperature of VO2 to ∼44 °C while retaining a 4 order of magnitude SMT using the TiO2 buffer layer. A combination of electrical transport and X-ray diffraction reciprocal space mapping studies help examine the specific strain states of VO2/TiO2/Al2O3 heterostructures as a function of TiO2 film growth temperatures. Atomic force microscopy and transmission electron microscopy analyses show that the columnar microstructure present in TiO2 buffer films is responsible for the partially strained VO2 film behavior and subsequently favorable transport characteristics with a lower SMT temperature. Such findings are of crucial importance for both the technological implementation of the VO2 system, where reduction of its SMT temperature is widely sought, as well as the broader complex oxide community, where greater understanding of the evolution of microstructure, strain, and functional properties is a high priority.

14.
Adv Mater ; 25(35): 4938-43, 2013 Sep 20.
Article in English | MEDLINE | ID: mdl-23857730

ABSTRACT

A large contrast in the electrical and thermal conductivities via a first order phase transition in surface-functionalized carbon nanotube(CNT)/hexadecane composites is reported. Surface modification of the CNTs improves the electrical conductivity contrast and the stability of the composites. We demonstrate that, with these composites, the electrical conductivity changes above 10(5) times and the thermal conductivity varies up to 3 times at 18 °C.

SELECTION OF CITATIONS
SEARCH DETAIL