Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 55
Filter
1.
Small ; 20(14): e2309344, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37990354

ABSTRACT

Electrocatalytic nitrogen reduction reaction (eNRR) is a promising method for sustainable ammonia production. Although the majority of studies on the eNRR are devoted to developing efficient electrocatalysts, it is critical to study the influence of mass transfer because of the poor N2 transfer efficiency. Herein, a novel bubble-based microreactor (BBMR) is proposed that efficiently promotes the mass transfer behavior during the eNRR using microfluidic strategies. The BBMR possesses abundant triphasic interfaces and provides spatial confinement and accurate potential control, ensuring rapid mass transfer dynamics and improved eNRR performance, as confirmed by experimental and simulation studies. The ammonia yield of the reaction over Ag nanoparticles can be enhanced to 31.35 µg h-1 mgcat. -1, which is twice that of the H-cell. Excellent improvements are also achieved using Ru/C and Fe/g-CN catalysts, with 5.0 and 8.5 times increase in ammonia yield, respectively. This work further demonstrates the significant effect of mass transfer on the eNRR performance and provides an effective strategy for process enhancement through electrode design.

2.
Sensors (Basel) ; 24(11)2024 May 22.
Article in English | MEDLINE | ID: mdl-38894099

ABSTRACT

Cochlear implants are crucial for addressing severe-to-profound hearing loss, with the success of the procedure requiring careful electrode placement. This scoping review synthesizes the findings from 125 studies examining the factors influencing insertion forces (IFs) and intracochlear pressure (IP), which are crucial for optimizing implantation techniques and enhancing patient outcomes. The review highlights the impact of variables, including insertion depth, speed, and the use of robotic assistance on IFs and IP. Results indicate that higher insertion speeds generally increase IFs and IP in artificial models, a pattern not consistently observed in cadaveric studies due to variations in methodology and sample size. The study also explores the observed minimal impact of robotic assistance on reducing IFs compared to manual methods. Importantly, this review underscores the need for a standardized approach in cochlear implant research to address inconsistencies and improve clinical practices aimed at preserving hearing during implantation.


Subject(s)
Cochlear Implantation , Cochlear Implants , Humans , Cochlear Implantation/methods , Pressure , Cochlea/surgery , Cochlea/physiology , Robotic Surgical Procedures/methods , Robotics/methods , Hearing Loss/surgery , Hearing Loss/physiopathology
3.
Minim Invasive Ther Allied Technol ; 33(2): 71-79, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38219217

ABSTRACT

INTRODUCTION: For decades, radiofrequency (RF)-induced tissue fusion has garnered great attention due to its potential to replace sutures and staples for anastomosis of tissue reconstruction. However, the complexities of achieving high bonding strength and reducing excessive thermal damage present substantial limitations of existing fusion devices. MATERIALS AND METHODS: This study proposed a discrete linkage-type electrode to carry out ex vivo RF-induced intestinal anastomosis experiments. The anastomotic strength was examined by burst pressure and shear strength test. The degree of thermal damage was monitored through an infrared thermal imager. And the anastomotic stoma fused by the electrode was further investigated through histopathological and ultrastructural observation. RESULTS: The burst pressure and shear strength of anastomotic tissue can reach 62.2 ± 3.08 mmHg and 8.73 ± 1.11N, respectively, when the pressure, power and duration are 995 kPa, 160 W and 13 s, and the thermal damage can be controlled within limits. Histopathological and ultrastructural observation indicate that an intact and fully fused stomas with collagenic crosslink can be formed. CONCLUSION: The discrete linkage-type electrode presents favorable efficiency and security in RF-induced tissue fusion, and these results are informative to the design of electrosurgical medical devices with controllable pressure and energy delivery.


Subject(s)
Digestive System Surgical Procedures , Anastomosis, Surgical/methods , Electrodes , Collagen
4.
Skin Res Technol ; 29(10): e13472, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37881053

ABSTRACT

BACKGROUND: Non-ablative radiofrequency (RF) has been widely used in clinical and at-home cosmetics devices. RF electrode geometry can influence the heat distribution in the tissue. This study analyzes the influence of geometric parameters of the electrode on the heat distribution in the layered tissue. MATERIALS & METHODS: The finite element simulation of the electrothermal coupling field was performed to obtain the three-dimensional (3D) temperature distribution of the four-layer tissue. The electrode geometric parameters including the inter-electrode spacing (5-12 mm), width (1-3 mm), length (3-10 mm), shapes (bar, dot and circle), and the coupling gel's electrical conductivity (0.2-1.5 S/m) were simulated. The maximum temperature at 2 mm depth (T-2 mm ) and the temperature difference (Tdiff ) between the maximum skin surface temperature and T-2 mm were obtained to evaluate the effectiveness and safety. RESULTS: The effect of geometric parameters on the effectiveness and safety was mixed. The maximum T-2 mm occurred with the 5 mm inter-electrode spacing, 3 mm width, 10 mm length, the circle-shaped electrode, and the 1.5 S/m coupling gel's electrical conductivity. The ratio of inter-electrode spacing to width at around four can achieve rapid temperature rise and skin surface temperature protection. The electrode shape influenced the area of temperature rise in the tissue's cross-section. The coupling gel's electrical conductivity should be close to that of the skin to avoid energy accumulation on the skin surface. CONCLUSION: The electrode's geometric parameters affect the effectiveness and safety of the RF product. This study has provided the simulation procedure for the electrode design.


Subject(s)
Catheter Ablation , Humans , Catheter Ablation/methods , Heating , Electrodes , Temperature , Body Temperature
5.
Angew Chem Int Ed Engl ; 62(38): e202301435, 2023 Sep 18.
Article in English | MEDLINE | ID: mdl-37246161

ABSTRACT

CO2 reduction, two-electron O2 reduction, and N2 reduction are sustainable technologies to valorise common molecules. Their further development requires working electrode design to promote the multistep electrochemical processes from gas reactants to value-added products at the device level. This review proposes critical features of a desirable electrode based on the fundamental electrochemical processes and the development of scalable devices. A detailed discussion is made to approach such a desirable electrode, addressing the recent progress on critical electrode components, assembly strategies, and reaction interface engineering. Further, we highlight the electrode design tailored to reaction properties (e.g., its thermodynamics and kinetics) for performance optimisation. Finally, the opportunities and remaining challenges are presented, providing a framework for rational electrode design to push these gas reduction reactions towards an improved technology readiness level (TRL).

6.
Molecules ; 26(6)2021 Mar 11.
Article in English | MEDLINE | ID: mdl-33799697

ABSTRACT

Lithium metal batteries have achieved large-scale application, but still have limitations such as poor safety performance and high cost, and limited lithium resources limit the production of lithium batteries. The construction of these devices is also hampered by limited lithium supplies. Therefore, it is particularly important to find alternative metals for lithium replacement. Sodium has the properties of rich in content, low cost and ability to provide high voltage, which makes it an ideal substitute for lithium. Sulfur-based materials have attributes of high energy density, high theoretical specific capacity and are easily oxidized. They may be used as cathodes matched with sodium anodes to form a sodium-sulfur battery. Traditional sodium-sulfur batteries are used at a temperature of about 300 °C. In order to solve problems associated with flammability, explosiveness and energy loss caused by high-temperature use conditions, most research is now focused on the development of room temperature sodium-sulfur batteries. Regardless of safety performance or energy storage performance, room temperature sodium-sulfur batteries have great potential as next-generation secondary batteries. This article summarizes the working principle and existing problems for room temperature sodium-sulfur battery, and summarizes the methods necessary to solve key scientific problems to improve the comprehensive energy storage performance of sodium-sulfur battery from four aspects: cathode, anode, electrolyte and separator.

7.
Sensors (Basel) ; 20(18)2020 Sep 10.
Article in English | MEDLINE | ID: mdl-32927651

ABSTRACT

Traditional capacitive electrocardiogram (cECG) electrodes suffer from limited patient comfort, difficulty of disinfection and low signal-to-noise ratio in addition to the challenge of integrating them in wearables. A novel hybrid flexible cECG electrode was developed that offers high versatility in the integration method, is well suited for large-scale manufacturing, is easy to disinfect in clinical settings and exhibits better performance over a comparable rigid contactless electrode. The novel flexible electrode meets the frequency requirement for clinically important QRS complex detection (0.67-5 Hz) and its performance is improved over rigid contactless electrode across all measured metrics as it maintains lower cut-off frequency, higher source capacitance and higher pass-band gain when characterized over a wide spectrum of patient morphologies. The results presented in this article suggest that the novel flexible electrode could be used in a medical device for cECG acquisition and medical diagnosis. The novel design proves also to be less sensitive to motion than a reference rigid electrode. We therefore anticipate it can represent an important step towards improving the repeatability of cECG methods while requiring less post-processing. This would help making cECG a viable method for remote cardiac health monitoring.


Subject(s)
Electrocardiography , Electrodes , Monitoring, Physiologic/instrumentation , Electric Capacitance , Humans , Motion
8.
Network ; 27(2-3): 107-134, 2016.
Article in English | MEDLINE | ID: mdl-27135951

ABSTRACT

Since the 1970s, computational modeling has been used to investigate the fundamental mechanisms of cochlear implant stimulation. Lumped parameter models and analytical models have been used to simulate cochlear potentials, as well as three-dimensional volume conduction models based on the Finite Difference, Finite Element, and Boundary Element methods. Additionally, in order to simulate neural responses, several of these cochlear models have been combined with nerve models, which were either simple activation functions or active nerve fiber models of the cochlear auditory neurons. This review paper will present an overview of the ways in which these computational models have been employed to study different stimulation strategies and electrode designs. Research into stimulation strategies has concentrated mainly on multipolar stimulation as a means of achieving current focussing and current steering, while modeling work on electrode design has been chiefly concerned with finding the optimal position and insertion depth of the electrode array. Finally, the present and future of computational modeling of the electrically stimulated cochlea is discussed.


Subject(s)
Cochlear Implants , Cochlear Nerve , Electric Stimulation , Cochlea , Cochlear Implantation , Humans , Models, Theoretical
9.
ACS Appl Mater Interfaces ; 16(27): 34830-34839, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38941578

ABSTRACT

Li-ion battery degradation and safety events are often attributed to undesirable metallic lithium plating. Since their release, Li-ion battery electrodes have been made progressively thicker to provide a higher energy density. However, the propensity for plating in these thicker pairings is not well understood. Herein, we combine an experimental plating-prone condition with robust mesoscale modeling to examine electrode pairings with capacities ranging from 2.5 to 6 mAh/cm2 and negative to positive (N/P) electrode areal capacity ratio from 0.9 to 1.8 without the need for extensive aging tests. Using both experimentation and a mesoscale model, we identify a shift from conventional high state-of-charge (SOC) type plating to high overpotential (OP) type plating as electrode thickness increases. These two plating modes have distinct morphologies, identified by optical microscopy and electrochemical signatures. We demonstrate that under operating conditions where these plating modes converge, a high propensity of plating exists, revealing the importance of predicting and avoiding this overlap for a given electrode pairing. Further, we identify that thicker electrodes, beyond a capacity of 3 mAh/cm2 or thickness >75 µm, are prone to high OP, limiting negative electrode (NE) utilization and preventing cross-sectional oversizing the NE from mitigating plating. Here, it simply contributes to added mass and volume. The experimental thermal gradient and mesoscale model either combined or independently provide techniques capable of probing performance and safety implications of mild changes to electrode design features.

10.
ACS Appl Mater Interfaces ; 16(29): 37972-37980, 2024 Jul 24.
Article in English | MEDLINE | ID: mdl-39010759

ABSTRACT

The efficiency of copper indium gallium selenide (CIGS) solar cells that use transparent conductive oxide (TCO) as the top electrode decreases significantly as the device area increases owing to the poor electrical properties of TCO. Therefore, high-efficiency, large-area CIGS solar cells require the development of a novel top electrode with high transmittance and conductivity. In this study, a microgrid/TCO hybrid electrode is designed to minimize the optical and resistive losses that may occur in the top electrode of a CIGS solar cell. In addition, the buffer layer of the CIGS solar cells is changed from the conventional CdS buffer to a dry-processed wide-band gap ZnMgO (ZMO) buffer, resulting in increased device efficiency by minimizing parasitic absorption in the short-wavelength region. By optimizing the combination of ZMO buffer and the microgrid/TCO hybrid electrode, a device efficiency of up to 20.5% (with antireflection layers) is achieved over a small device area of 5 mm × 5 mm (total area). Moreover, CIGS solar cells with an increased device area of up to 20 mm × 70 mm (total area) exhibit an efficiency of up to 19.7% (with antireflection layers) when a microgrid/TCO hybrid electrode is applied. Thus, this study demonstrates the potential for high-efficiency, large-area CIGS solar cells with novel microgrid electrodes.

11.
Article in English | MEDLINE | ID: mdl-39369438

ABSTRACT

OBJECTIVE: Electrode array design may impact hearing outcomes in patients who receive cochlear implants. The goal of this work was to assess differences in post operative speech perception among patients who received cochlear implants of differing designs and lengths. STUDY DESIGN: Retrospective chart review. SETTING: Tertiary Care Hospital. METHODS: Patients (n = 129) received 1 of 9 electrode arrays, which were categorized by design: Lateral wall electrodes (n = 36) included CI522, CI622 (Cochlear Americas), Flex24, and Flex28 (Med El). Midscala electrodes (n = 16) included HiRes Ultra 3D (Advanced Bionics). Perimodiolar electrodes (n = 77) included CI512, CI532, CI612, and CI632 (Cochlear Americas). Speech perception was evaluated using consonant-nucleus-consonant (CNC) tests and at 3, 6, 12, and 24 months postimplantation. RESULTS: Perimodiolar electrodes showed significantly higher CNC scores compared to lateral wall electrodes at 6 and 24 months. Perimodiolar electrodes also outperformed midscala electrodes at 12 months. An inverse relationship was observed between electrode length and CNC scores noted at 6, 12, and 24 months. CONCLUSION: Perimodiolar electrode arrays, which tend to be shorter, demonstrated better speech perception outcomes compared to the longer lateral wall and midscala arrays at some timepoints. These findings suggest a potential advantages of perimodiolar electrodes for optimizing hearing outcomes.

12.
Nanomicro Lett ; 16(1): 130, 2024 Feb 23.
Article in English | MEDLINE | ID: mdl-38393483

ABSTRACT

Adopting a nano- and micro-structuring approach to fully unleashing the genuine potential of electrode active material benefits in-depth understandings and research progress toward higher energy density electrochemical energy storage devices at all technology readiness levels. Due to various challenging issues, especially limited stability, nano- and micro-structured (NMS) electrodes undergo fast electrochemical performance degradation. The emerging NMS scaffold design is a pivotal aspect of many electrodes as it endows them with both robustness and electrochemical performance enhancement, even though it only occupies complementary and facilitating components for the main mechanism. However, extensive efforts are urgently needed toward optimizing the stereoscopic geometrical design of NMS scaffolds to minimize the volume ratio and maximize their functionality to fulfill the ever-increasing dependency and desire for energy power source supplies. This review will aim at highlighting these NMS scaffold design strategies, summarizing their corresponding strengths and challenges, and thereby outlining the potential solutions to resolve these challenges, design principles, and key perspectives for future research in this field. Therefore, this review will be one of the earliest reviews from this viewpoint.

13.
ACS Appl Mater Interfaces ; 16(5): 5881-5895, 2024 Feb 07.
Article in English | MEDLINE | ID: mdl-38277499

ABSTRACT

This study presents a novel approach to developing high-performance lithium-ion battery electrodes by loading titania-carbon hybrid spherogels with sulfur. The resulting hybrid materials combine high charge storage capacity, electrical conductivity, and core-shell morphology, enabling the development of next-generation battery electrodes. We obtained homogeneous carbon spheres caging crystalline titania particles and sulfur using a template-assisted sol-gel route and carefully treated the titania-loaded carbon spherogels with hydrogen sulfide. The carbon shells maintain their microporous hollow sphere morphology, allowing for efficient sulfur deposition while protecting the titania crystals. By adjusting the sulfur impregnation of the carbon sphere and varying the titania loading, we achieved excellent lithium storage properties by successfully cycling encapsulated sulfur in the sphere while benefiting from the lithiation of titania particles. Without adding a conductive component, the optimized material provided after 150 cycles at a specific current of 250 mA g-1 a specific capacity of 825 mAh g-1 with a Coulombic efficiency of 98%.

14.
J Mol Model ; 29(12): 384, 2023 Nov 24.
Article in English | MEDLINE | ID: mdl-37999803

ABSTRACT

CONTEXT: This work theoretically demonstrates a catalyst of copper monatomic wire supported on graphene nanoribbons (Cu-GNR) with a high efficiency for nitric oxide electroreduction reaction (NORR). This not only decreases the usage rate of noble metals but also possesses superior limiting potential comparable to pure Cu (- 0.69 and - 0.61 V, vs. reversible hydrogen electrode (RHE)). The key is that Cu-GNR will have more efficient catalytic activity for NORR when fully covered by NO, since these weaken the adsorption ability of the reduction steps at the beginning. In sum, our findings may offer a platform for clarifying the effects of the concentration of reactants on catalytic process. METHODS: Spin-polarized DFT with ultrasoft pseudopotentials as implemented in the CASTEP code was used in this work. The exchange correlation effects were described by generalized gradient approximation (GGA) with Perdew-Burke-Ernzerhof (PBE) functional. The dispersion correction within Grimme scheme (DFT-D2) was employed to accurately describe the van der Waals (vdW) interactions. The Hirshfeld population analysis was adopted to evaluate the charge transfer.

15.
Biosensors (Basel) ; 13(3)2023 Feb 27.
Article in English | MEDLINE | ID: mdl-36979534

ABSTRACT

Detection sensitivity is a crucial factor in the application of ECIS sensors. For these biosensors, the electrode configuration has a direct impact on sensitivity, yet few studies on monopolar electrodes have been reported. In this study, ECIS sensor arrays, which have a series of working electrode configuration with a wide diameter range and different electrode number, were fabricated to monitor living osteoblast-like MC3T3-E1 cells. The experimental results revealed that when the electrode diameter was larger than 25 µm, electrodes with smaller diameter and number yielded higher impedance values and generated more impedance shift to cell status change. The membrane capacitance obtained by equivalent circuit fitting was at the same level. When the electrode diameter was even smaller, the results in detection of cell monolayer were opposite, and there was no distinct relationship between impedance and membrane capacitance shift to cell status change and electrode geometry. The proposed sensor chip, allowing for a sustained and stable detection of cellular impedance, provides the basis for the selection of the electrode configuration of monopolar electrodes. The test results of electrodes with a diameter of 25 µm and lower indicated the possibility of single cell impedance measurement, which can provide unique insight into the heterogeneous electrical behavior of cells, and, in this case, the electrode size should be close to the cell size.


Subject(s)
Biosensing Techniques , Osteoblasts , Electric Impedance , Electrodes
16.
Ultrasonics ; 130: 106925, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36630743

ABSTRACT

In this paper, we report the simulation and fabrication of thickness-shear mode langasite resonators with stepped elliptical electrode designs to investigate their effects on energy trapping and suppression of spurious modes at elevated temperatures. Finite element analysis was conducted to analyze the design of a stepped elliptical electrode on a contoured langasite crystal. Based on the simulation findings, langasite resonators with stepped electrodes were fabricated, and their displacement profiles and frequency-temperature properties were characterized using network analysis and laser Doppler vibrometry. Results demonstrate improved frequency separation between the resonant and spurious modes, and enhanced spurious mode suppression at both room and higher temperatures, suggesting that stepped elliptical electrode designs can effectively enhance the sensing performance of langasite resonators.

17.
Front Chem ; 11: 1286572, 2023.
Article in English | MEDLINE | ID: mdl-38075493

ABSTRACT

Microbial fuel cells (MFCs) offer a dual solution of generating electrical energy from organic pollutants-laden wastewater while treating it. This study focuses on enhancing MFC performance through innovative electrode design. Three-dimensional (3D) anodes, created from corncobs and mango seeds via controlled graphitization, achieved remarkable power densities. The newly developed electrode configurations were evaluated within sewage wastewater-driven MFCs without the introduction of external microorganisms or prior treatment of the wastewater. At 1,000°C and 1,100°C graphitization temperatures, corncob and mango seed anodes produced 1,963 and 2,171 mW/m2, respectively, nearly 20 times higher than conventional carbon cloth and paper anodes. An advanced cathode composed of an activated carbon-carbon nanotube composite was introduced, rivaling expensive platinum-based cathodes. By optimizing the thermal treatment temperature and carbon nanotube content of the proposed cathode, comparable or superior performance to standard Pt/C commercial cathodes was achieved. Specifically, MFCs assembled with corncob anode with the proposed and standard Pt/C cathodes reached power densities of 1,963.1 and 2,178.6 mW/m2, respectively. Similarly, when utilizing graphitized mango seeds at 1,100°C, power densities of 2,171 and 2,151 mW/m2 were achieved for the new and standard cathodes, respectively. Furthermore, in continuous operation with a flow rate of 2 L/h, impressive chemical oxygen demand (COD) removal rates of 77% and 85% were achieved with corncob and mango seed anodes, respectively. This work highlights the significance of electrode design for enhancing MFC efficiency in electricity generation and wastewater treatment.

18.
Vet Rec ; 191(12): e2184, 2022 12.
Article in English | MEDLINE | ID: mdl-36197754

ABSTRACT

BACKGROUND: Electrical impedance tomography (EIT) produces lung ventilation images via a thoracic electrode belt. Robust electrode design and material, providing low electrode skin contact impedance (SCI), is needed in veterinary medicine. The aim of this study was to compare three EIT electrode designs and materials. METHODS: Simulations of cylindrical, rectangular and spiked electrode designs were used to evaluate electrode SCI as a function of electrode size, where skin contact was uneven. Gold-plated washers (EGW ), zinc-plated rivets (EZR ) and zinc-galvanised spikes (EZS ) were assigned randomly on two interconnected EIT belts. Gel was applied to the cranial or caudal belt and placed on 17 standing cattle. SCI was recorded at baseline and 3, 5, 7, 9 and 11 minutes later. RESULTS: Simulations that involved electrodes with a greater skin contact area had lower and more uniform SCI. In cattle, SCI decreased with all electrodes over time (p < 0.01). Without gel, no difference was found between EGW and EZS , while SCI was higher for EZR (p < 0.03). With gel, SCI was lower in EGW and EZR (p < 0.026), with the SCI in EGW being the lowest (p < 0.01). LIMITATIONS: Low numbers of animals and static electrode position may affect SCI. CONCLUSIONS: Electrode design is important for EIT measurement, with larger electrode designs able to compensate for the use of less conductive materials. Gel is not necessary to achieve acceptable SCI in large animals.


Subject(s)
Tomography, X-Ray Computed , Tomography , Animals , Cattle , Tomography/veterinary , Tomography/methods , Electric Impedance , Electrodes , Zinc
19.
Ear Nose Throat J ; : 1455613221134860, 2022 Oct 17.
Article in English | MEDLINE | ID: mdl-36251258

ABSTRACT

This study aimed to identify the association between different cochlear metrics, including the basal turn diameter (A-value), the basal turn width (B-value), and the height of the cochlea (H-value). We also reported an association between H-value and hearing outcomes with cochlear implants (CI). This is a retrospective study that included all patients who underwent CI procedures between 2012 and 2018 at a tertiary center and have; preoperative high-resolution computed tomography (CT), normal cochlea, postoperative follow-up duration of at least 2 years, scores of the category auditory performance II (CAP-II), and speech intelligibility rating (SIR) scales. A total of 65 ears implanted with CI in 46 patients (24 boys and 20 girls; mean age of 7 (±10) years) fulfilled the inclusion criteria. We found significant positive correlations between A vs B, A vs H, and B vs H (P-value = 0.008, 0.018, and 0.0039, respectively). We also found a significant positive relationship between A, B, and H values and cochlear duct length (CDL) (P-value < 0.0001, 0.008, and 0.018, respectively). Finally, the H-value was significantly correlated with the SIR (P-value = 0.027). However, its correlation with the CAP score was not statistically significant (P-value = 0.62). Cochlear height significantly correlated with CDL and the other cochlear parameters. The variation in cochlear height can also affect speech outcomes in patients undergoing CI. Therefore, the H-value together with the other cochlear metrics should be adequately assessed preoperatively in CI patients.

20.
Water Res ; 219: 118597, 2022 Jul 01.
Article in English | MEDLINE | ID: mdl-35609490

ABSTRACT

Microbial electrosynthesis (MES) cells use renewable energy to convert carbon dioxide into valuable chemical products such as methane and acetate, but chemical production rates are low and pH changes can adversely impact biocathodes. To overcome these limitations, an MES reactor was designed with a zero-gap electrode configuration with a cation exchange membrane (CEM) to achieve a low internal resistance, and a vapor-fed electrode to minimize pH changes. Liquid catholyte was pumped through a carbon felt cathode inoculated with anaerobic digester sludge, with humidified N2 gas flowing over the abiotic anode (Ti or C with a Pt catalyst) to drive water splitting. The ohmic resistance was 2.4 ± 0.5 mΩ m2, substantially lower than previous bioelectrochemical systems (20-25 mΩ m2), and the catholyte pH remained near-neutral (6.6-7.2). The MES produced a high methane production rate of 2.9 ± 1.2 L/L-d (748 mmol/m2-d, 17.4 A/m2; Ti/Pt anode) at a relatively low applied voltage of 3.1 V. In addition, acetate was produced at a rate of 940 ± 250 mmol/m2-d with 180 ± 30 mmol/m2-d for propionate. The biocathode microbial community was dominated by the methanogens of the genus Methanobrevibacter, and the acetogen of the genus Clostridium sensu stricto 1. These results demonstrate the utility of this zero-gap cell and vapor-fed anode design for increasing rates of methane and chemical production in MES.


Subject(s)
Euryarchaeota , Methane , Acetates , Carbon Dioxide/metabolism , Electrodes , Euryarchaeota/metabolism , Gases , Methane/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL