Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 52
Filter
1.
Orthod Craniofac Res ; 27(1): 84-94, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37452556

ABSTRACT

OBJECTIVE: Dysregulation of Fibroblast Growth Factor 10 (FGF10), a member of the family of Fibroblast Growth Factor (FGF) proteins, has been implicated in craniofacial and dental anomalies, including craniosynostosis, cleft palate, and Lacrimo-Auriculo-Dento-Digital Syndrome. The aim of this murine study was to assess the craniofacial and dental phenotypes associated with a heterozygous FGF10 gene (FGF10+/- ) mutation at skeletal maturity. METHODS: Skulls of 40 skeletally mature mice, comprising two genotypes (heterozygous FGF10+/- mutation, n = 22; wildtype, n = 18) and two sexes (male, n = 23; female, n = 17), were subjected to micro-computed tomography. Landmark-based linear dimensions were measured for the cranial vault, maxilla, mandible, and first molar teeth. Multivariate analysis of variance was performed to assess whether there were significant differences in the craniofacial and dental structures between genotypes and sexes. RESULTS: The craniomaxillary skeleton and the first molar teeth were smaller in the FGF10+/- mice (P < .05), but the mandible was unaffected. Sex did not have a significant effect on these structures (P > .05). Cranial sutural defects were noted in 5/22 (22.7%) mutant versus 2/18 (11.1%) wildtype mice, and cleft palate in only one (4.5%) mutant mouse. None of the mice displayed craniosynostosis, expansive bony lesions, bifid condyles, or impacted teeth. CONCLUSION: The FGF10+/- mutation was associated with craniomaxillary skeletal hypoplasia that probably arose from deficient (delayed) intramembranous ossification of the sutured bones. Overall, the skeletal and dental data suggest that the FGF10 gene plays an important role in the aetiology of craniofacial dysmorphology and malocclusion.


Subject(s)
Cleft Palate , Craniofacial Abnormalities , Craniosynostoses , Mice , Male , Female , Animals , Cleft Palate/genetics , X-Ray Microtomography , Fibroblast Growth Factor 10/genetics , Disease Models, Animal , Craniofacial Abnormalities/diagnostic imaging , Craniofacial Abnormalities/genetics , Craniosynostoses/genetics , Mutation/genetics
2.
Differentiation ; : 100741, 2023 Nov 25.
Article in English | MEDLINE | ID: mdl-38040515

ABSTRACT

Fibroblast growth factor 10 (FGF10) is a major morphoregulatory factor that plays essential signaling roles during vertebrate multiorgan development and homeostasis. FGF10 is predominantly expressed in mesenchymal cells and signals though FGFR2b in adjacent epithelia to regulate branching morphogenesis, stem cell fate, tissue differentiation and proliferation, in addition to autocrine roles. Genetic loss of function analyses have revealed critical requirements for FGF10 signaling during limb, lung, digestive system, ectodermal, nervous system, craniofacial and cardiac development. Heterozygous FGF10 mutations have been identified in human genetic syndromes associated with craniofacial anomalies, including lacrimal and salivary gland aplasia. Elevated Fgf10 expression is associated with poor prognosis in a range of cancers. In addition to developmental and disease roles, FGF10 regulates homeostasis and repair of diverse adult tissues and has been identified as a target for regenerative medicine.

3.
Am J Med Genet A ; 191(11): 2768-2774, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37615310

ABSTRACT

Thirteen affected individuals of six generations of a single kindred presented with epiphora evident from infancy. Physical exam and Schirmer test revealed variable expression of tear deficiency, congenital punctal atresia, and dry mouth with multiple caries, without concomitant abnormalities of the ears or digits, commensurate with a diagnosis of aplasia of the lacrimal and salivary glands (ALSG). Reconstruction of the upper lacrimal drainage system was performed in some of the affected individuals. Genetic analysis, testing six affected individuals and three non-affected family members, identified a single novel heterozygous splice-site variant, c.429 + 1, G > T in fibroblast growth factor 10 (FGF10) (NM_004465.1), segregating throughout the family as expected for dominant heredity. RT-PCR assays of HEK-293 cells transfected with wild type or mutant FGF10 demonstrated that the variant causes skipping of Exon 2. Notably, individuals sharing the same variant exhibited phenotypic variability, with unilateral or bilateral epiphora, as well as variable expression of dry mouth and caries. Moreover, one of the variant carriers had no ALSG-related clinical findings, demonstrating incomplete penetrance. While coding mutations in FGF10 are known to cause malformations in the nasolacrimal system, this is the second FGF10 splice-site variant and the first donor-site variant reported to cause ALSG. Thus, our study of a unique large kindred with multiple affected individuals heterozygous for the same FGF10 variant highlights intronic splice-site mutations and phenotypic variability/partial penetrance in ALSG.

4.
Clin Exp Pharmacol Physiol ; 50(1): 59-67, 2023 01.
Article in English | MEDLINE | ID: mdl-36111374

ABSTRACT

Ischaemia-reperfusion (I/R) injury is one of the leading causes of acute kidney injury (AKI). Its pathologic mechanism is quite complex, involving oxidative stress, inflammatory response, autophagy, and apoptosis. Fibroblast growth factor 10 (FGF10) and 5-hydroxydecanoate (5-HD) play essential roles in kidney injury. Rats were divided into four groups: (i) sham group, sham-operated animals with an unconstructed renal artery; (ii) I/R group, kidneys were subjected to 50 min of ischaemia followed by reperfusion for 2 days; (iii) I/R + FGF10 group, animals treated with 0.5 mg/kg FGF10 (i.p.) 1 h before ischaemia; and (iv) 5-HD group, animals treated with 5 mg/kg 5-HD (i.m.) 30 min before FGF10 treatment. Renal injury, apoptosis damage, mitochondrial oxidative damage, mitochondrial membrane potential (MMP), and expression of the ATP-sensitive K+ (KATP) channel subunit Kir6.2 were evaluated. FGF10 treatment significantly alleviated I/R-induced elevation in the serum creatinine level and the number of terminal deoxynucleotidyl transferase-mediated dUTP nick-end labelling-positive tubular cells in the kidney. In addition, FGF10 dramatically ameliorated renal mitochondrial-related damage, including reducing mitochondrial-dependent apoptosis, alleviating oxidative stress, maintaining the mitochondrial membrane potential, and opening the mitochondrial KATP channels. The protective effect of FGF10 was significantly compromised by the ATP-dependent potassium channel blocker 5-HD. Our data suggest that FGF10 offers effective protection against I/R and improves animal survival by attenuating mitochondrial damage.


Subject(s)
Reperfusion Injury , Rats , Animals , Fibroblast Growth Factor 10 , Reperfusion Injury/drug therapy , Kidney , Ischemia , Adenosine Triphosphate
5.
BMC Urol ; 23(1): 169, 2023 Oct 24.
Article in English | MEDLINE | ID: mdl-37875848

ABSTRACT

BACKGROUND: Dysregulation of the terminal differentiation of bladder urothelium is associated with the pathogenesis of urinary tract disorders. Fibroblast growth factor (Fgf)7 and Fgf10 stimulate urothelial proliferation; however, their roles in cellular differentiation remain unclear. In this study, we used an organoid system to investigate the roles of these Fgfs in regulating bladder urothelium differentiation and identify their distribution patterns in the mouse bladder. METHODS: Adult bladder epithelia (AdBE) isolated from adult mouse bladder tissues (AdBTs) were used to culture adult bladder organoids (AdBOs) in the presence of Fgf7 and Fgf10. The differentiation status of the cells in AdBTs, AdBEs, AdBOs, and neonatal bladder tissues (NeoBTs) was analyzed via quantitative real-time-PCR for the presence of undifferentiated cell markers (Krt5, Trp63, and Krt14) and differentiated cell markers (Krt20, Upk1a, Upk2, and Upk3a). Organoid cell proliferation was assessed by counting cell numbers using the trypan blue method. The effects of Fgf7 and Fgf10 on organoid differentiation were assessed using different doses of Fgfs, and the involvement of peroxisome proliferator-activated receptor γ (PPARγ) signaling in these processes was tested by introducing a PPARγ agonist (Rosiglitazone) and antagonist (T0070907) to the culture. The expression patterns of Fgf7 and Fgf10 were examined via in situ hybridization of AdBTs. RESULTS: AdBOs showed higher expression of undifferentiated cell markers and lower expression of differentiated cell markers than AdBTs, NeoBTs, and AdBEs, indicating the relatively immature state of AdBOs. Differentiation of AdBOs was enhanced by Rosiglitazone and Fgf7, suggesting an interplay of intracellular signals between Fgf7 and PPARγ. Co-addition of T0070907 suppressed Fgf7-mediated differentiation, demonstrating that PPARγ is activated downstream of Fgf7 to promote cellular differentiation into umbrella cells. Furthermore, we found that Fgf7 is predominantly expressed in the umbrella cells of the urothelium, whereas Fgf10 is predominantly expressed in the urothelium and stroma of AdBTs. CONCLUSIONS: We demonstrated that unlike Fgf10, Fgf7 induces cellular differentiation via PPARγ activity and has a unique tissue distribution pattern in the adult bladder. Further studies on the Fgf7-PPARγ signaling axis would provide insights into the differentiation mechanisms toward functional umbrella cells and the pathogenesis of several urinary tract diseases.


Subject(s)
PPAR gamma , Urinary Bladder , Mice , Animals , PPAR gamma/metabolism , Rosiglitazone/metabolism , Urothelium/metabolism , Cell Differentiation , Organoids , Fibroblast Growth Factor 10/pharmacology , Fibroblast Growth Factor 10/metabolism , Fibroblast Growth Factor 7/metabolism , Uroplakin III/metabolism
6.
Am J Hum Genet ; 104(2): 213-228, 2019 02 07.
Article in English | MEDLINE | ID: mdl-30639323

ABSTRACT

Primary defects in lung branching morphogenesis, resulting in neonatal lethal pulmonary hypoplasias, are incompletely understood. To elucidate the pathogenetics of human lung development, we studied a unique collection of samples obtained from deceased individuals with clinically and histopathologically diagnosed interstitial neonatal lung disorders: acinar dysplasia (n = 14), congenital alveolar dysplasia (n = 2), and other lethal lung hypoplasias (n = 10). We identified rare heterozygous copy-number variant deletions or single-nucleotide variants (SNVs) involving TBX4 (n = 8 and n = 2, respectively) or FGF10 (n = 2 and n = 2, respectively) in 16/26 (61%) individuals. In addition to TBX4, the overlapping ∼2 Mb recurrent and nonrecurrent deletions at 17q23.1q23.2 identified in seven individuals with lung hypoplasia also remove a lung-specific enhancer region. Individuals with coding variants involving either TBX4 or FGF10 also harbored at least one non-coding SNV in the predicted lung-specific enhancer region, which was absent in 13 control individuals with the overlapping deletions but without any structural lung anomalies. The occurrence of rare coding variants involving TBX4 or FGF10 with the putative hypomorphic non-coding SNVs implies a complex compound inheritance of these pulmonary hypoplasias. Moreover, they support the importance of TBX4-FGF10-FGFR2 epithelial-mesenchymal signaling in human lung organogenesis and help to explain the histopathological continuum observed in these rare lethal developmental disorders of the lung.


Subject(s)
Fibroblast Growth Factor 10/genetics , Infant, Newborn, Diseases/genetics , Infant, Newborn, Diseases/mortality , Lung Diseases/genetics , Lung Diseases/mortality , Signal Transduction/genetics , T-Box Domain Proteins/genetics , DNA Copy Number Variations/genetics , Female , Fibroblast Growth Factor 10/metabolism , Gene Expression Regulation , Gestational Age , Humans , Infant, Newborn , Infant, Newborn, Diseases/metabolism , Infant, Newborn, Diseases/pathology , Lung/embryology , Lung/growth & development , Lung Diseases/metabolism , Lung Diseases/pathology , Male , Maternal Inheritance , Organogenesis , Paternal Inheritance , Pedigree , Polymorphism, Single Nucleotide/genetics , Receptor, Fibroblast Growth Factor, Type 2/metabolism , T-Box Domain Proteins/metabolism
7.
Respir Res ; 23(1): 269, 2022 Oct 01.
Article in English | MEDLINE | ID: mdl-36183124

ABSTRACT

BACKGROUND: The defects and imbalance in lung repair and structural maintenance contribute to the pathogenesis of chronic obstructive pulmonary diseases (COPD), yet the molecular mechanisms that regulate lung repair process are so far incompletely understood. We hypothesized that cigarette smoking causes glycocalyx impairment and endothelial apoptosis in COPD, which could be repaired by the stimulation of fibroblast growth factor 10 (FGF10)/FGF receptor 1 (FGFR1) signaling. METHODS: We used immunostaining (immunohistochemical [IHC] and immunofluorescence [IF]) and enzyme-linked immunosorbent assay (ELISA) to detect the levels of glycocalyx components and endothelial apoptosis in animal models and in patients with COPD. We used the murine emphysema model and in vitro studies to determine the protective and reparative role of FGF10/FGFR1. RESULTS: Exposure to cigarette smoke caused endothelial glycocalyx impairment and emphysematous changes in murine models and human specimens. Pretreatment of FGF10 attenuated the development of emphysema and the shedding of glycocalyx components induced by CSE in vivo. However, FGF10 did not attenuate the emphysema induced by endothelial-specific killing peptide CGSPGWVRC-GG-D(KLAKLAK)2. Mechanistically, FGF10 alleviated smoke-induced endothelial apoptosis and glycocalyx repair through FGFR1/ERK/SOX9/HS6ST1 signaling in vitro. FGF10 was shown to repair pulmonary glycocalyx injury and endothelial apoptosis, and attenuate smoke-induced COPD through FGFR1 signaling. CONCLUSIONS: Our results suggest that FGF10 may serve as a potential therapeutic strategy against COPD via endothelial repair and glycocalyx reconstitution.


Subject(s)
Emphysema , Pulmonary Disease, Chronic Obstructive , Pulmonary Emphysema , Animals , Apoptosis/physiology , Emphysema/complications , Fibroblast Growth Factor 10 , Glycocalyx/metabolism , Glycocalyx/pathology , Humans , Mice , Pulmonary Emphysema/metabolism , Receptors, Fibroblast Growth Factor/therapeutic use , Nicotiana
8.
Am J Respir Cell Mol Biol ; 62(2): 256-266, 2020 02.
Article in English | MEDLINE | ID: mdl-31486675

ABSTRACT

TAZ (transcriptional coactivator with PDZ-binding motif) and YAP (Yes-associated protein) are key molecules of the Hippo pathway. Recent studies revealed that these molecules are essential in lung development; however, the precise signaling cascade involving these molecules and the differences in their roles during lung development remain unknown. We aimed to investigate YAP and TAZ functions using lung epithelium-specific Taz and Yap conditional knockout mice. We generated lung epithelium-specific Taz and Yap conditional knockout mice and investigated the functions of YAP and TAZ in lung development. Selective TAZ deficiency in mouse lung epithelial cells resulted in abnormal alveolarization, which mimics lung emphysema, in adults, whereas YAP deficiency caused disruption of bronchial morphogenesis during the embryonic stage. We report that TAZ and YAP are sequentially expressed in the lung and that this could explain their different phenotypes. Furthermore, we report that YAP stimulates Shh (Sonic hedgehog) expression and regulates the FGF (fibroblast growth factor)-SHH feedback loop, thereby contributing to normal bronchial morphogenesis. We also found that TGF-ß (transforming growth factor-ß) stimulation induced Shh expression in the lung epithelial cells, and both TAZ and YAP are essential in this novel pathway. Our results provide a novel insight into the molecular mechanisms underlying lung development and contribute to a better understanding of the characteristics of TAZ and YAP.


Subject(s)
Hedgehog Proteins/metabolism , Lung/growth & development , Proto-Oncogene Proteins c-yes/genetics , Trans-Activators/genetics , Adaptor Proteins, Signal Transducing/metabolism , Animals , Cell Cycle Proteins/metabolism , Intracellular Signaling Peptides and Proteins/metabolism , Mice, Knockout , Organogenesis , Phosphoproteins/genetics , Protein Serine-Threonine Kinases/metabolism
9.
J Biol Chem ; 294(41): 15052-15067, 2019 10 11.
Article in English | MEDLINE | ID: mdl-31431501

ABSTRACT

Peritoneal fibrosis is a common complication of long-term peritoneal dialysis (PD) and the principal cause of ultrafiltration failure during PD. The initial and reversible step in PD-associated peritoneal fibrosis is the epithelial-mesenchymal transition (EMT). Although the mechanisms in the EMT have been the focus of many studies, only limited information is currently available concerning microRNA (miRNA) regulation in peritoneal fibrosis. In this study, we aimed to characterize the roles of microRNA-145 (miR-145) and fibroblast growth factor 10 (FGF10) in peritoneal fibrosis. After inducing EMT with transforming growth factor-ß1 (TGF-ß1) in vitro, we found that miR-145 is significantly up-regulated, whereas FGF10 is markedly down-regulated, suggesting a close link between miR-145 and FGF10 in peritoneal fibrosis, further confirmed in luciferase reporter experiments. Furthermore, in human peritoneal mesothelial cells (i.e. HMrSV5 cells), miR-145 mimics induced EMT, whereas miR-145 inhibition suppressed EMT, and we also observed that miR-145 suppressed FGF10 expression. In vivo, we found that the exogenous delivery of an miR-145 expression plasmid both blocked FGF10 and intensified the EMT, whereas miR-145 inhibition promoted the expression of FGF10 and reversed the EMT. In conclusion, miR-145 promotes the EMT during the development of peritoneal fibrosis by suppressing FGF10 activity, suggesting that miR-145 represents a potential therapeutic target for managing peritoneal fibrosis.


Subject(s)
Epithelial-Mesenchymal Transition/genetics , Fibroblast Growth Factor 10/genetics , MicroRNAs/genetics , Peritoneal Dialysis/adverse effects , Peritoneal Fibrosis/genetics , Peritoneal Fibrosis/pathology , 3' Untranslated Regions/genetics , Animals , Base Sequence , Cell Line , Fibroblast Growth Factor 10/deficiency , Gene Knockdown Techniques , Humans , Male , Mice , Mice, Inbred C57BL
10.
J Transl Med ; 18(1): 283, 2020 07 14.
Article in English | MEDLINE | ID: mdl-32664970

ABSTRACT

BACKGROUND: Conotruncal defects (CTDs) are a type of heterogeneous congenital heart diseases (CHDs), but little is known about their etiology. Increasing evidence has demonstrated that fibroblast growth factor (FGF) 8 and FGF10 may be involved in the pathogenesis of CTDs. METHODS: The variants of FGF8 and FGF10 in unrelated Chinese Han patients with CHDs (n = 585), and healthy controls (n = 319) were investigated. The expression and function of these patient-identified variants were detected to confirm the potential pathogenicity of the non-synonymous variants. The expression of FGF8 and FGF10 during the differentiation of human embryonic stem cells (hESCs) to cardiomyocytes and in Carnegie stage 13 human embryo was also identified. RESULTS: Two probable deleterious variants (p.C10Y, p.R184H) of FGF8 and one deletion mutant (p.23_24del) of FGF10 were identified in three patients with CTD. Immunofluorescence suggested that variants did not affect the intracellular localization, whereas ELISA showed that the p.C10Y and p.23_24del variants reduced the amount of secreted FGF8 and FGF10, respectively. Quantitative RT-PCR and western blotting showed that the expression of FGF8 and FGF10 variants was increased compared with wild-type; however, their functions were reduced. And we found that FGF8 and FGF10 were expressed in the outflow tract (OFT) during human embryonic development, and were dynamically expressed during the differentiation of hESCs into cardiomyocytes. CONCLUSION: Our results provided evidence that damaging variants of FGF8 and FGF10 were likely contribute to the etiology of CTD. This discovery expanded the spectrum of FGF mutations and underscored the pathogenic correlation between FGF mutations and CTD.


Subject(s)
Fibroblast Growth Factors , Heart Defects, Congenital , Asian People , Embryo, Mammalian , Fibroblast Growth Factor 10/genetics , Fibroblast Growth Factor 8 , Fibroblast Growth Factors/genetics , Heart Defects, Congenital/genetics , Humans , Mutation/genetics
11.
J Cell Biochem ; 120(10): 16876-16887, 2019 10.
Article in English | MEDLINE | ID: mdl-31144392

ABSTRACT

Bronchopulmonary dysplasia (BPD) is a common and refractory disease affecting newborn children and infants with alveolar dysplasia and declined pulmonary function. Several microRNAs (miRNAs) have been found to be differentially expressed in BPD progression. This study further explores the role of miR-421 via fibroblast growth factor 10 (Fgf10) in mice with BPD. A mouse model of BPD was established through the induction of hyperoxia, in which the expression pattern of miR-421 and Fgf10 was identified. Furthermore, adenovirus-packed vectors were injected in mice to intervene miR-421 and Fgf10 expression, including miR-421 mimics or inhibitors, and si-Fgf10 to explore the role of miR-421 and Fgf10 in BPD. The target relationship between miR-421 and Fgf10 was investigated. Inflammatory response and cell apoptosis were observed in the mice, with inflammatory cytokines and apoptosis-related factors detected by applying Reverse transcription quantitative polymerase chain reaction, Western blot analysis, and enzyme-linked immunosorbent assay. Fgf10 was confirmed as a target gene of miR-421. Elevated expression of miR-421 was evident, while Fgf10 was poorly expressed in BPD. upregulation of miR-421 and silence of Fgf10 aggravated inflammatory response in lung tissue and promoted lung cell apoptosis in BPD. The aforementioned alterations could be reversed by downregulation of miR-421. Collectively, inhibition of miR-421 can assist in the development of BPD in mice BPD by upregulating Fgf10. Therefore, the present study provides a probable target for the treatment of BPD.


Subject(s)
Apoptosis/genetics , Bronchopulmonary Dysplasia/genetics , Fibroblast Growth Factor 10/metabolism , MicroRNAs/genetics , Animals , Animals, Newborn , Bronchopulmonary Dysplasia/pathology , Cell Line , Cytokines/metabolism , Disease Models, Animal , Gene Silencing , Hyperoxia/physiopathology , Inflammation/genetics , Inflammation/pathology , Mice , Mice, Inbred Strains , Pulmonary Alveoli/embryology
12.
J Cell Biochem ; 120(9): 15241-15247, 2019 09.
Article in English | MEDLINE | ID: mdl-31021460

ABSTRACT

Myopia has become a major public health issue worldwide. Identification of genetic loci related to myopia in young children may advance our knowledge of the pathogenesis of myopia. Fibroblast growth factor 10 (FGF10) plays essential roles for the development of myopia through modulating extracellular matrix-associated genes. Studies revealed that genetic variants of FGF10 were associated with extreme myopia in adults. However, their associations with susceptibility of myopia in young children, which are less affected by confounding factors and more suitable for studying genetic factors of myopia, have not been explored. In the current study, we evaluated 13 tagSNPs that captured 100% of genetic variation in the FGF10 gene region for their associations with myopia in a large Chinese case-control study with 900 myopia children and 900 nonmyopia children. We found rs2973644 was significantly associated with increased risk of myopia (odds ratio [OR]: 1.26; 95% confidence intervals [CI]: 1.06-1.49; P = 0.009). furthermore, rs339501 (OR: 1.73; 95% CI: 1.18-2.53; P = 0.005), rs2973644 (OR: 1.57; 95% CI: 1.13-2.19; P = 0.007), and rs79002828 (OR: 1.83; 95% CI: 1.20-2.77; P = 0.005) were significantly associated with increased risk of high myopia in young children. Functional assessment of rs2973644 by luciferase assays revealed the risk G allele causes a higher expression level of FGF10 than the protective A allele. Our results do support that genetic variants of cytokine FGF10 are associated with susceptibility of myopia (as well as high myopia) in young children and further exploration are needed for myopia in children.


Subject(s)
Fibroblast Growth Factor 10/genetics , Genetic Predisposition to Disease , Myopia/genetics , Polymorphism, Single Nucleotide/genetics , Cell Line , Child , Female , Genetic Association Studies , Humans , Linkage Disequilibrium/genetics , Luciferases/metabolism , Male , Risk Factors
13.
Mol Reprod Dev ; 86(2): 166-174, 2019 02.
Article in English | MEDLINE | ID: mdl-30625262

ABSTRACT

In cattle and other species, the fetal ovary is steroidogenically active before follicular development commences, and there is evidence that estradiol and progesterone inhibit follicle formation and activation. Estradiol levels decline sharply around the time of follicle formation. In the present study, we hypothesized that FGF10 and FGF18, which inhibit estradiol secretion from granulosa cells of antral follicles, also regulate fetal ovarian steroid production. Fetuses were collected at local abattoirs, and age determined by crown-rump length measurements. Real-time polymerase chain reaction assays with RNA extracted from whole ovaries revealed that the abundance of CYP19A1 messenger RNA (mRNA) decreased from 60 to 90 days of gestation, which is consistent with the decline in estradiol secretion previously observed. Immunohistochemistry revealed the presence of FGF18 in ovigerous cords in early gestation and in oocytes later in fetal age (≥150 days). The abundance of FGF18 mRNA increased after Day 90 gestation. Addition of recombinant FGF18 to fetal ovarian pieces inhibited estradiol and progesterone secretion in vitro, whereas FGF10 was without effect. Consistent with these results, FGF18 decreased levels of mRNA for CYP19A1 and CYP11A1 in ovarian pieces in vitro. These data suggest that FGF18 may be an intraovarian factor that regulates steroidogenesis in fetal ovaries.


Subject(s)
Estradiol/biosynthesis , Fetus/metabolism , Fibroblast Growth Factors/biosynthesis , Granulosa Cells/metabolism , Progesterone/biosynthesis , Animals , Cattle , Female , Fetus/cytology , Gestational Age , Granulosa Cells/cytology
14.
J Pathol ; 241(1): 91-103, 2017 Jan.
Article in English | MEDLINE | ID: mdl-27770432

ABSTRACT

Inflammation-induced FGF10 protein deficiency is associated with bronchopulmonary dysplasia (BPD), a chronic lung disease of prematurely born infants characterized by arrested alveolar development. So far, experimental evidence for a direct role of FGF10 in lung disease is lacking. Using the hyperoxia-induced neonatal lung injury as a mouse model of BPD, the impact of Fgf10 deficiency in Fgf10+/- versus Fgf10+/+ pups was investigated. In normoxia, no lethality of Fgf10+/+ or Fgf10+/- pups was observed. By contrast, all Fgf10+/- pups died within 8 days of hyperoxic injury, with lethality starting at day 5, whereas Fgf10+/+ pups were all alive. Lungs of pups from the two genotypes were collected on postnatal day 3 following normoxia or hyperoxia exposure for further analysis. In hyperoxia, Fgf10+/- lungs exhibited increased hypoalveolarization. Analysis by FACS of the Fgf10+/- versus control lungs in normoxia revealed a decreased ratio of alveolar epithelial type II (AECII) cells over total Epcam-positive cells. In addition, gene array analysis indicated reduced AECII and increased AECI transcriptome signatures in isolated AECII cells from Fgf10+/- lungs. Such an imbalance in differentiation is also seen in hyperoxia and is associated with reduced mature surfactant protein B and C expression. Attenuation of the activity of Fgfr2b ligands postnatally in the context of hyperoxia also led to increased lethality with decreased surfactant expression. In summary, decreased Fgf10 mRNA levels lead to congenital lung defects, which are compatible with postnatal survival, but which compromise the ability of the lungs to cope with sub-lethal hyperoxic injury. Fgf10 deficiency affects quantitatively and qualitatively the formation of AECII cells. In addition, Fgfr2b ligands are also important for repair after hyperoxia exposure in neonates. Deficient AECII cells could be an additional complication for patients with BPD. Copyright © 2016 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Subject(s)
Bronchopulmonary Dysplasia/metabolism , Fibroblast Growth Factor 10/deficiency , Animals , Animals, Newborn , Bronchopulmonary Dysplasia/etiology , Bronchopulmonary Dysplasia/genetics , Bronchopulmonary Dysplasia/pathology , Cells, Cultured , Disease Models, Animal , Female , Fibroblast Growth Factor 10/genetics , Fibroblast Growth Factor 10/metabolism , Gene Expression Regulation/physiology , Hyperoxia/complications , Hyperoxia/metabolism , Male , Mice, Inbred C57BL , Mice, Transgenic , Pulmonary Surfactants/metabolism , RNA, Messenger/genetics , Receptor, Fibroblast Growth Factor, Type 2/metabolism
15.
J Hepatol ; 60(5): 1002-9, 2014 May.
Article in English | MEDLINE | ID: mdl-24365171

ABSTRACT

BACKGROUND & AIMS: Fibroblast Growth Factors (FGFs) promote the proliferation and survival of hepatic progenitor cells (HPCs) via AKT-dependent ß-catenin activation. Moreover, the emergence of hepatocytes expressing the HPC marker A6 during 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC)-induced liver injury is mediated partly by FGF and ß-catenin signaling. Herein, we investigate the role of FGF signaling and AKT-mediated ß-catenin activation in acute DDC liver injury. METHODS: Transgenic mice were fed DDC chow for 14days concurrent with either Fgf10 over-expression or inhibition of FGF signaling via expression of soluble dominant-negative FGF Receptor (R)-2IIIb. RESULTS: After 14days of DDC treatment, there was an increase in periportal cells expressing FGFR1, FGFR2, and AKT-activated phospho-Serine 552 (pSer552) ß-Catenin in association with up-regulation of genes encoding the FGFR2IIIb ligands, Fgf7, Fgf10, and Fgf22. In response to Fgf10 over-expression, there was an increase in the number of pSer552-ß-Catenin((positive)+ive) periportal cells as well as cells co-positive for A6 and hepatocyte marker, Hepatocyte Nuclear Factor-4α (HNF4α). A similar expansion of A6(+ive) cells was observed after Fgf10 over-expression with regular chow and after partial hepatectomy during ethanol toxicity. Inhibition of FGF signaling increased the periportal A6(+ive)HNF4α(+ive) cell population while reducing centrolobular A6(+ive) HNF4α(+ive) cells. AKT inhibition with Wortmannin attenuated FGF10-mediated A6(+ive)HNF4α(+ive) cell expansion. In vitro analyses using FGF10 treated HepG2 cells demonstrated AKT-mediated ß-Catenin activation but not enhanced cell migration. CONCLUSIONS: During acute DDC treatment, FGF signaling promotes the expansion of A6-expressing liver cells partly via AKT-dependent activation of ß-Catenin expansion of A6(+ive) periportal cells and possibly by reprogramming of centrolobular hepatocytes.


Subject(s)
Fibroblast Growth Factors/metabolism , Hepatocytes/cytology , Hepatocytes/metabolism , Microfilament Proteins/metabolism , Proto-Oncogene Proteins c-akt/metabolism , beta Catenin/metabolism , Animals , Biomarkers/metabolism , Cell Proliferation , Chemical and Drug Induced Liver Injury/genetics , Chemical and Drug Induced Liver Injury/metabolism , Chemical and Drug Induced Liver Injury/pathology , Fibroblast Growth Factor 10/genetics , Fibroblast Growth Factor 10/metabolism , Fibroblast Growth Factors/genetics , Hep G2 Cells , Hepatocyte Nuclear Factor 4/genetics , Hepatocyte Nuclear Factor 4/metabolism , Hepatocytes/drug effects , Humans , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Phosphoinositide-3 Kinase Inhibitors , Protein-Tyrosine Kinases/metabolism , Pyridines/toxicity , Receptors, Fibroblast Growth Factor/genetics , Receptors, Fibroblast Growth Factor/metabolism , Signal Transduction/drug effects , Stem Cells/cytology , Stem Cells/metabolism , Up-Regulation/drug effects
16.
Reprod Biol ; 24(2): 100883, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38643607

ABSTRACT

Fibroblast growth factor 10 (FGF10) plays critical roles in oocyte maturation and embryonic development; however, the specific pathway by which FGF10 promotes in vitro maturation of buffalo oocytes remains elusive. The present study was aimed at investigating the mechanism underlying effects of the FGF10-mediated extracellular regulated protein kinases (ERK) pathway on oocyte maturation and embryonic development in vitro. MEK1/2 (mitogen-activated protein kinase kinase) inhibitor U0126, alone or in combination with FGF10, was added to the maturation culture medium during maturation of the cumulus oocyte complex. Morphological observations, orcein staining, apoptosis detection, and quantitative real-time PCR were performed to evaluate oocyte maturation, embryonic development, and gene expression. U0126 affected oocyte maturation and embryonic development in vitro by substantially reducing the nuclear maturation of oocytes and expansion of the cumulus while increasing the apoptosis of cumulus cells. However, it did not have a considerable effect on glucose metabolism. These findings suggest that blocking the MEK/ERK pathway is detrimental to the maturation and embryonic development potential of buffalo oocytes. Overall, FGF10 may regulate the nuclear maturation of oocytes and cumulus cell expansion and apoptosis but not glucose metabolism through the MEK/ERK pathway. Our findings indicate that FGF10 regulates resumption of meiosis and expansion and survival of cumulus cells via MEK/ERK signaling during in vitro maturation of buffalo cumulus oocyte complexes. Elucidation of the mechanism of action of FGF10 and insights into oocyte maturation should advance buffalo breeding. Further studies should examine whether enhancement of MEK/ERK signaling improves embryonic development in buffalo.


Subject(s)
Buffaloes , Butadienes , Fibroblast Growth Factor 10 , In Vitro Oocyte Maturation Techniques , Nitriles , Oocytes , Animals , Buffaloes/embryology , Fibroblast Growth Factor 10/pharmacology , Butadienes/pharmacology , Oocytes/drug effects , In Vitro Oocyte Maturation Techniques/veterinary , Nitriles/pharmacology , Female , Oogenesis/drug effects , Cumulus Cells/drug effects , Apoptosis/drug effects , MAP Kinase Signaling System/drug effects , Embryonic Development/drug effects , MAP Kinase Kinase 2/antagonists & inhibitors , MAP Kinase Kinase 2/metabolism
17.
J Pediatr Surg ; 59(10): 161611, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39048421

ABSTRACT

BACKGROUND: The cause of duodenal atresia (DA) is not known. Tandler's "solid cord" hypothesis conflicts with current biological evidence. In humans, a genetic aetiology is supported by the association with Trisomy 21. Interruption of Fgf10 is the strongest genetic link to DA in mice, demonstrating an increased incidence and severity as embryos mature. This project aimed to develop an organoid model to facilitate ex vivo DA research on the FGF10/FGFR2b signalling pathway. We hypothesised that DA morphology represents an evolving spectrum of disease and that Fgf10 knockout organoids would vary in growth pattern compared to wild-type. METHODS: Organoids were cultured from the duodenum of E12.5 Fgf10 knockout, heterozygous and wild-type embryos, using an air-liquid interface with Growth Factor reduced Matrigel. Organoids were photographed every 48 h to observe growth. Organoids were isolated and fixed after 14 days, then stained with DAPI, KI-67, and cytokeratin to demonstrate proliferation and differentiation. RESULTS: Wild-type duodenum developed into crypt-forming organoids. Fgf10 heterozygous duodenum failed to progress beyond the development stage of spheroids. Fgf10 knockout duodenum failed to demonstrate any growth. Wholemount staining showed the greatest cell proliferation and differentiation in wild-type tissue. CONCLUSION: This research presents a novel concept for the growth of embryonic gastrointestinal tissue to inform normal biology. The small sample numbers and restricted culture duration limit longer-term growth analysis. While this model serves as a potential ex vivo setting for future research, that research should consider organoid models with greater standardisation and other gastrointestinal regions. LEVEL OF EVIDENCE: Animal/laboratory study.


Subject(s)
Duodenum , Fibroblast Growth Factor 10 , Intestinal Atresia , Mice, Knockout , Organoids , Intestinal Atresia/embryology , Animals , Fibroblast Growth Factor 10/genetics , Mice , Duodenum/embryology , Duodenum/abnormalities , Organ Culture Techniques/methods , Duodenal Obstruction/embryology , Duodenal Obstruction/genetics , Cell Proliferation , Signal Transduction , Cell Differentiation , Receptor, Fibroblast Growth Factor, Type 2/genetics
18.
Int Immunopharmacol ; 134: 112165, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38692017

ABSTRACT

Particulate matter (PM) is considered the fundamental component of atmospheric pollutants and is associated with the pathogenesis of many respiratory diseases. Fibroblast growth factor 10 (FGF10) mediates mesenchymal-epithelial signaling and has been linked with the repair process of PM-induced lung injury (PMLI). However, the pathogenic mechanism of PMLI and the specific FGF10 protective mechanism against this injury are still undetermined. PM was administered in vivo into murine airways or in vitro to human bronchial epithelial cells (HBECs), and the inflammatory response and ferroptosis-related proteins SLC7A11 and GPX4 were assessed. The present research investigates the FGF10-mediated regulation of ferroptosis in PMLI mice models in vivo and HBECs in vitro. The results showed that FGF10 pretreatment reduced PM-mediated oxidative damage and ferroptosis in vivo and in vitro. Furthermore, FGF10 pretreatment led to reduced oxidative stress, decreased secretion of inflammatory mediators, and activation of the Nrf2-dependent antioxidant signaling. Additionally, silencing of Nrf2 using siRNA in the context of FGF10 treatment attenuated the effect on ferroptosis. Altogether, both in vivo and in vitro assessments confirmed that FGF10 protects against PMLI by inhibiting ferroptosis via the Nrf2 signaling. Thus, FGF10 can be used as a novel ferroptosis suppressor and a potential treatment target in PMLI.


Subject(s)
Ferroptosis , Fibroblast Growth Factor 10 , Lung Injury , Mice, Inbred C57BL , NF-E2-Related Factor 2 , Oxidative Stress , Particulate Matter , Signal Transduction , Ferroptosis/drug effects , NF-E2-Related Factor 2/metabolism , Animals , Particulate Matter/toxicity , Humans , Signal Transduction/drug effects , Fibroblast Growth Factor 10/metabolism , Fibroblast Growth Factor 10/genetics , Mice , Oxidative Stress/drug effects , Lung Injury/chemically induced , Lung Injury/metabolism , Lung Injury/pathology , Lung Injury/prevention & control , Male , Epithelial Cells/drug effects , Epithelial Cells/metabolism , Cell Line , Phospholipid Hydroperoxide Glutathione Peroxidase/metabolism , Phospholipid Hydroperoxide Glutathione Peroxidase/genetics , Disease Models, Animal , Amino Acid Transport System y+
19.
Cell Biol Int ; 37(11): 1246-58, 2013 Nov.
Article in English | MEDLINE | ID: mdl-23852953

ABSTRACT

Chondrogenic differentiation of embryonic stem cells (ESCs) via embryoid bodies (EBs) is an established model to investigate chondrogenesis signaling pathways and molecular mechanisms in vitro. Our aim has been to improve upon the number of differentiated cells needed for the in vitro development of functional cartilage. Chondrogenic differentiation of buffalo ESCs was modulated by bone morphogenetic protein 2 (BMP-2), fibroblast growth factor 10 (FGF-10), transforming growth factor-beta1 (TGF-ß1 ) individually and their combination. ESCs differentiation into chondrocytes was characterized by the appearance of Alcian blue-stained nodules and the expression of cartilage-associated genes (RT-PCR) and protein (immunocytochemistry). BMP-2 or FGF-10 treatment enhanced chondrogenic differentiation, whereas TGF-ß1 treatment inhibited buffalo ESC-derived chondrogenesis. The combination of BMP-2 and FGF-10 was the most effective treatment. This treatment resulted in a higher number of Alcian blue-positive nodules by 15.2-fold, expression of the mesenchymal cell marker scleraxis gene by 3.25-fold, and the cartilage matrix protein collagen II gene and protein 1.9- and 7-fold, respectively, compared to the untreated control group. Chondrogenesis was also recapitulated from mesenchymal and chondrogenic progenitor cells, resulting in the establishment of mature chondrocytes. Thus, buffalo ESCs can be successfully triggered in vitro to differentiate into chondrocyte-like cells by specific growth factors, which may provide a novel in vitro model for further investigation of the regulatory mechanism(s) involved.


Subject(s)
Buffaloes/embryology , Chondrogenesis/drug effects , Embryonic Stem Cells/cytology , Intercellular Signaling Peptides and Proteins/pharmacology , Models, Biological , Animals , Basic Helix-Loop-Helix Transcription Factors/genetics , Basic Helix-Loop-Helix Transcription Factors/metabolism , Biomarkers/metabolism , Bone Morphogenetic Protein 2/pharmacology , Cartilage/drug effects , Cartilage/metabolism , Cell Differentiation/drug effects , Cell Differentiation/genetics , Cell Shape/drug effects , Chondrocytes/cytology , Chondrocytes/drug effects , Chondrocytes/metabolism , Chondrogenesis/genetics , Collagen Type II/genetics , Collagen Type II/metabolism , Embryoid Bodies/cytology , Embryoid Bodies/drug effects , Embryoid Bodies/metabolism , Embryonic Stem Cells/drug effects , Embryonic Stem Cells/metabolism , Gene Expression Regulation/drug effects , Haplorhini , Humans , SOX9 Transcription Factor/genetics , SOX9 Transcription Factor/metabolism
20.
Aging Cell ; 22(9): e13937, 2023 09.
Article in English | MEDLINE | ID: mdl-37503695

ABSTRACT

Alzheimer's disease (AD) is characterized with senile plaques formed by Aß deposition, and neurofibrillary tangles composed of hyperphosphorylated tau protein, which ultimately lead to cognitive impairment. Despite the heavy economic and life burdens faced by the patients with AD, effective treatments are still lacking. Previous studies have reported the neuroprotective effects of FGF10 in CNS diseases, but its role in AD remains unclear. In this study, we demonstrated that FGF10 levels were reduced in the serum of AD patients, as well as in the brains of 3xTg-AD mice and APPswe-transfected HT22 cells, suggesting a close relationship between FGF10 and AD. Further investigations revealed that intranasal delivery of FGF10 improved cognitive functions in 3xTg-AD mice. Additionally, FGF10 treatment reduced tau hyperphosphorylation and neuronal apoptosis, thereby mitigating neuronal cell damage and synaptic deficits in the cortex and hippocampus of 3xTg-AD mice, as well as APPswe-transfected HT22 cells. Furthermore, we evaluated the therapeutic potential of FGF10 gene delivery for treating AD symptoms and pathologies. Tail vein delivery of the FGF10 gene using AAV9 improved cognitive and neuronal functions in 3xTg-AD mice. Similarly, endogenous FGF10 overexpression ameliorated tau hyperphosphorylation and neuronal apoptosis in the cortex and hippocampus of 3xTg-AD mice. Importantly, we confirmed that the FGFR2/PI3K/AKT signaling pathway was activated following intranasal FGF10 delivery and AAV9-mediated FGF10 gene delivery in 3xTg-AD mice and APPswe-transfected HT22 cells. Knockdown of FGFR2 attenuated the protective effect of FGF10. Collectively, these findings suggest that intranasal delivery of FGF10 and AAV9-mediated FGF10 gene delivery could be a promising disease-modifying therapy for AD.


Subject(s)
Alzheimer Disease , Mice , Animals , Alzheimer Disease/genetics , Alzheimer Disease/therapy , Alzheimer Disease/metabolism , tau Proteins/metabolism , Fibroblast Growth Factor 10/therapeutic use , Phosphatidylinositol 3-Kinases/therapeutic use , Apoptosis , Disease Models, Animal , Mice, Transgenic , Amyloid beta-Peptides/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL