Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
1.
Glob Chang Biol ; 30(8): e17445, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39166455

ABSTRACT

Due to various human activities, including intensive agriculture, traffic, and the burning of fossil fuels, in many parts of the world, current levels of reactive nitrogen emissions strongly exceed pre-industrial levels. Previous studies have shown that the atmospheric deposition of these excess nitrogen compounds onto semi-natural terrestrial environments has negative consequences for plant diversity. However, these previous studies mostly investigated biodiversity loss at local spatial scales, that is, at the scales of plots of typically a few square meters. Whether increased atmospheric nitrogen deposition also affects plant diversity at larger spatial scales remains unknown. Here, using grassland plant community data collected in 765 plots, across 153 different sites and 9 countries in northwestern Europe, we investigate whether relationships between atmospheric nitrogen deposition and plant biodiversity are scale-dependent. We found that high levels of atmospheric nitrogen deposition were associated with low levels of plant species richness at the plot scale but also at the scale of sites and regions. The presence of 39% of plant species was negatively associated with increasing levels of nitrogen deposition at large (site) scales, while only 1.5% of the species became more common with increasing nitrogen deposition, indicating that large-scale biodiversity changes were mostly driven by "loser" species, while "winner" species profiting from high N deposition were rare. Some of the "loser" species whose site presence was negatively associated with atmospheric nitrogen deposition are listed as "threatened" in at least some EU member states, suggesting that nitrogen deposition may be a key contributor to their threat status. Hence, reductions in reactive nitrogen emissions will likely benefit plant diversity not only at local but also at larger spatial scales.


Subject(s)
Atmosphere , Biodiversity , Nitrogen , Plants , Nitrogen/analysis , Nitrogen/metabolism , Plants/metabolism , Europe , Atmosphere/chemistry , Grassland
2.
J Nematol ; 54(1): 20220025, 2022 Feb.
Article in English | MEDLINE | ID: mdl-36060475

ABSTRACT

Plant-parasitic nematodes (PPN) are harmful pests that have become a severe threat to crop production worldwide. Diversity of PPN at horizontal and spatial scales influence the effectiveness of control strategies. This study evaluated the vertical distribution of PPN genera at 0 cm to 30 cm and 30 cm to 60 cm in sweet potato fields in Central, Manyatta, and Nembure regions of Embu County, Kenya. A significant region × depth interaction was observed for Tylenchus. For all the other nematode genera, there were no significant variations in the abundance at 0 cm to 30 cm and 30 cm to 60 cm depths. However, Helicotylenchus, Meloidogyne, and Scutellonema occurred in greater numbers at both depths in all regions. Shannon and Simpson diversity indices were higher at 0 cm to 30 cm depth while Pielou's evenness was similar at both depths in the three regions. Diversity partitioning of genus richness, Shannon, and Simpson diversities across all regions at 0 cm to 30 cm, indicated that ß component contributed 61.9%, 35.6%, and 22.6% of γ diversity, respectively. Coinertia analysis indicated a significant covariation between nematode genera and soil properties. The results show that management of PPN in sweet potato fields should be targeted at soil depths that are not less than 60 cm.

3.
Proc Biol Sci ; 288(1948): 20203045, 2021 04 14.
Article in English | MEDLINE | ID: mdl-33849320

ABSTRACT

The decline in species richness at higher latitudes is among the most fundamental patterns in ecology. Whether changes in species composition across space (beta-diversity) contribute to this gradient of overall species richness (gamma-diversity) remains hotly debated. Previous studies that failed to resolve the issue suffered from a well-known tendency for small samples in areas with high gamma-diversity to have inflated measures of beta-diversity. Here, we provide a novel analytical test, using beta-diversity metrics that correct the gamma-diversity and sampling biases, to compare beta-diversity and species packing across a latitudinal gradient in tree species richness of 21 large forest plots along a large environmental gradient in East Asia. We demonstrate that after accounting for topography and correcting the gamma-diversity bias, tropical forests still have higher beta-diversity than temperate analogues. This suggests that beta-diversity contributes to the latitudinal species richness gradient as a component of gamma-diversity. Moreover, both niche specialization and niche marginality (a measure of niche spacing along an environmental gradient) also increase towards the equator, after controlling for the effect of topographical heterogeneity. This supports the joint importance of tighter species packing and larger niche space in tropical forests while also demonstrating the importance of local processes in controlling beta-diversity.


Subject(s)
Biodiversity , Trees , Ecology , Asia, Eastern
4.
Mol Ecol ; 30(18): 4353-4367, 2021 09.
Article in English | MEDLINE | ID: mdl-34216497

ABSTRACT

Genetic diversity shapes the evolutionary potential of plant populations. For outcrossing plants, genetic diversity is influenced by effective population size and by dispersal, first of paternal gametes through pollen, and then of paternal and maternal gametes through seeds. Forest loss often reduces genetic diversity, but the degree to which it differentially impacts the paternal and maternal contributions to genetic diversity and the spatial scale at which these impacts are most pronounced are poorly understood. To address these questions, we genotyped 504 seedlings of the animal-dispersed palm Oenocarpus bataua collected from 29 widely distributed sites across Ecuador and decomposed the contribution of paternal and maternal gametes to overall genetic diversity. The amount of forest cover at a landscape scale (>10 km radius) had an equally significant positive association with both male and female gametic diversity. In addition, there was a significant positive association between forest cover and effective population size. Stronger fine-scale spatial genetic structure for female versus male gametes was observed at sites with low forest cover, but this did not scale up to differences in male versus female gametic diversity. These findings show that reductions in forest cover at spatial scales much larger than those typically evaluated in ecological studies lead to significant, and equivalent, decreases of diversity in both male and female gametes, and that this association between landscape level forest loss and genetic diversity may be driven directly by reductions in effective population size of O. bataua, rather than by indirect disruptions to local dispersal processes.


Subject(s)
Arecaceae , Seedlings , Animals , Arecaceae/genetics , Forests , Genetic Variation , Pollen/genetics , Seedlings/genetics , Seeds/genetics
5.
Ecol Lett ; 23(2): 370-380, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31773839

ABSTRACT

Plant spectral diversity - how plants differentially interact with solar radiation - is an integrator of plant chemical, structural, and taxonomic diversity that can be remotely sensed. We propose to measure spectral diversity as spectral variance, which allows the partitioning of the spectral diversity of a region, called spectral gamma (γ) diversity, into additive alpha (α; within communities) and beta (ß; among communities) components. Our method calculates the contributions of individual bands or spectral features to spectral γ-, ß-, and α-diversity, as well as the contributions of individual plant communities to spectral diversity. We present two case studies illustrating how our approach can identify 'hotspots' of spectral α-diversity within a region, and discover spectrally unique areas that contribute strongly to ß-diversity. Partitioning spectral diversity and mapping its spatial components has many applications for conservation since high local diversity and distinctiveness in composition are two key criteria used to determine the ecological value of ecosystems.


Subject(s)
Biodiversity , Ecosystem , Ecology , Plants
6.
Glob Ecol Biogeogr ; 28(5): 548-556, 2019 May.
Article in English | MEDLINE | ID: mdl-31217748

ABSTRACT

ISSUE: Geodiversity (i.e., the variation in Earth's abiotic processes and features) has strong effects on biodiversity patterns. However, major gaps remain in our understanding of how relationships between biodiversity and geodiversity vary over space and time. Biodiversity data are globally sparse and concentrated in particular regions. In contrast, many forms of geodiversity can be measured continuously across the globe with satellite remote sensing. Satellite remote sensing directly measures environmental variables with grain sizes as small as tens of metres and can therefore elucidate biodiversity-geodiversity relationships across scales. EVIDENCE: We show how one important geodiversity variable, elevation, relates to alpha, beta and gamma taxonomic diversity of trees across spatial scales. We use elevation from NASA's Shuttle Radar Topography Mission (SRTM) and c. 16,000 Forest Inventory and Analysis plots to quantify spatial scaling relationships between biodiversity and geodiversity with generalized linear models (for alpha and gamma diversity) and beta regression (for beta diversity) across five spatial grains ranging from 5 to 100 km. We illustrate different relationships depending on the form of diversity; beta and gamma diversity show the strongest relationship with variation in elevation. CONCLUSION: With the onset of climate change, it is more important than ever to examine geodiversity for its potential to foster biodiversity. Widely available satellite remotely sensed geodiversity data offer an important and expanding suite of measurements for understanding and predicting changes in different forms of biodiversity across scales. Interdisciplinary research teams spanning biodiversity, geoscience and remote sensing are well poised to advance understanding of biodiversity-geodiversity relationships across scales and guide the conservation of nature.

7.
Biol Conserv ; 236: 79-91, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31496538

ABSTRACT

Knowledge gaps in spatiotemporal changes in mangrove diversity and composition have obstructed mangrove conservation programs across the tropics, but particularly in the Sundarbans (10,017 km2), the world's largest remaining natural mangrove ecosystem. Using mangrove tree data collected from Earth's largest permanent sample plot network at four historical time points (1986, 1994, 1999 and 2014), this study establishes spatially explicit baseline biodiversity information for the Sundarbans. We determined the spatial and temporal differences in alpha, beta, and gamma diversity in three ecological zones (hypo-, meso-, and hypersaline) and also uncovered changes in the mangroves' overall geographic range and abundances therein. Spatially, the hyposaline mangrove communities were the most diverse and heterogeneous in species composition while the hypersaline communities were the least diverse and most homogeneous at all historical time points. Since 1986, we detect an increasing trend of compositional homogeneity (between-site similarity in species composition) and a significant spatial contraction of distinct and diverse areas over the entire ecosystem. Temporally, the western and southern hypersaline communities have undergone radical shifts in species composition due to population increase and range expansion of the native invasive species Ceriops decandra and local extinction or range contraction of specialists including the globally endangered Heritiera fomes. The surviving biodiversity hotspots are distributed outside the legislated protected area network. In addition to suggesting the immediate coverage of these hotspots under protected area management, our novel biodiversity insights and spatial maps can form the basis for spatial conservation planning, biodiversity monitoring and protection initiatives for the Sundarbans.

8.
Mol Ecol ; 27(15): 3055-3069, 2018 08.
Article in English | MEDLINE | ID: mdl-29900620

ABSTRACT

Habitat loss and fragmentation often reduce gene flow and genetic diversity in plants by disrupting the movement of pollen and seed. However, direct comparisons of the contributions of pollen vs. seed dispersal to genetic variation in fragmented landscapes are lacking. To address this knowledge gap, we partitioned the genetic diversity contributed by male gametes from pollen sources and female gametes from seed sources within established seedlings of the palm Oenocarpus bataua in forest fragments and continuous forest in northwest Ecuador. This approach allowed us to quantify the separate contributions of each of these two dispersal processes to genetic variation. Compared to continuous forest, fragments had stronger spatial genetic structure, especially among female gametes, and reduced effective population sizes. We found that within and among fragments, allelic diversity was lower and genetic structure higher for female gametes than for male gametes. Moreover, female gametic allelic diversity in fragments decreased with decreasing surrounding forest cover, while male gametic allelic diversity did not. These results indicate that limited seed dispersal within and among fragments restricts genetic diversity and strengthens genetic structure in this system. Although pollen movement may also be impacted by habitat loss and fragmentation, it nonetheless serves to promote gene flow and diversity within and among fragments. Pollen and seed dispersal play distinctive roles in determining patterns of genetic variation in fragmented landscapes, and maintaining the integrity of both dispersal processes will be critical to managing and conserving genetic variation in the face of continuing habitat loss and fragmentation in tropical landscapes.


Subject(s)
Arecaceae/physiology , Ecosystem , Gene Flow/genetics , Alleles , Arecaceae/genetics , Genetics, Population , Seed Dispersal/genetics , Seed Dispersal/physiology
9.
Ecol Lett ; 19(7): 743-51, 2016 Jul.
Article in English | MEDLINE | ID: mdl-27146846

ABSTRACT

Does variation in environmental harshness explain local and regional species diversity gradients? We hypothesise that for a given life form like trees, greater harshness leads to a smaller range of traits that are viable and thereby also to lower species diversity. On the basis of a strong dependence of maximum tree height on site productivity and other measures of site quality, we propose maximum tree height as an inverse measure of environmental harshness for trees. Our results show that tree species richness is strongly positively correlated with maximum tree height across multiple spatial scales in forests of both eastern and western North America. Maximum tree height co-varied with species richness along gradients from benign to harsh environmental conditions, which supports the hypothesis that harshness may be a general mechanism limiting local diversity and explaining diversity gradients within a biogeographic region.


Subject(s)
Biodiversity , Forests , Trees/classification , North America , Stress, Physiological
10.
Ecol Lett ; 19(12): 1496-1505, 2016 12.
Article in English | MEDLINE | ID: mdl-27882703

ABSTRACT

Invasion should decline with species richness, yet the relationship is inconsistent. Species richness, however, is a product of species pool size and biotic filtering. Invasion may increase with richness if large species pools represent weaker environmental filters. Measuring species pool size and the proportion realised locally (completeness) may clarify diversity-invasion relationships by separating environmental and biotic effects, especially if species' life-history stage and origin are accounted for. To test these relationships, we added seeds and transplants of 15 native and alien species into 29 grasslands. Species pool size and completeness explained more variation in invasion than richness alone. Although results varied between native and alien species, seed establishment and biotic resistance to transplants increased with species pool size, whereas transplant growth and biotic resistance to seeds increased with completeness. Consequently, species pools and completeness represent multiple independent processes affecting invasion; accounting for these processes improves our understanding of invasion.


Subject(s)
Biodiversity , Introduced Species , Plants/classification , Plants/genetics , Grassland , Species Specificity
11.
J Theor Biol ; 409: 133-147, 2016 11 21.
Article in English | MEDLINE | ID: mdl-27596530

ABSTRACT

Admissible measures of diversity allow specification of the number of types (species, alleles, etc.) that are "effectively" involved in producing the diversity (the "diversity effective number", also referred to as "true diversity") of a community or population. In metacommunities, effective numbers additionally serve in partitioning the total diversity (symbolized by γ) into one component summarizing the diversity within communities (symbolized by α) and an independent component summarizing the differences between communities (symbolized by ß). There is growing consensus that the ß-component should be treated in terms of an effective number of "distinct" communities in the metacommunity. Yet, the notion of distinctness is shown in the present paper to remain conceptually ambiguous at least with respect to the diversity within the "distinct" communities. To overcome this ambiguity and to provide the means for designing further desirable effective numbers, a new approach is taken that involves a generalized concept of effective number. The approach relies on first specifying the distributional characteristics of partitioning diversity among communities (among which are differentiation, where the same types tend to occur in the same communities, and apportionment, where different types tend to occur in different communities), then developing the indices which measure these characteristics, and finally inferring the effective numbers from these indices. MAJOR RESULTS: (1) The ß-component reflects apportionment characteristics of metacommunity structure and is quantified by the "apportionment effective number" of communities (number of effectively monomorphic communities). Since differentiation between communities arises only as a side effect of apportionment, the common interpretation of the ß-component in terms of differentiation is unwarranted. (2) Multiplicative as well as additive methods of partitioning the total type diversity (γ) involve apportionment effective numbers of communities that are based on different apportionment indices. (3) "Differentiation effective numbers" of communities exist but do not conform with the classical concept of partitioning total type diversity into components within and between communities. (4) Differentiation characteristics are measured as effective numbers of distinct types (rather than communities) from the dual perspective, in which the roles of type and community membership are exchanged. This is relevant e.g. in studies of endemism and competitive exclusion. (5) For Shannon-Wiener diversity, all of the differentiation and apportionment effective numbers are equal, with the exception of those representing additive partitioning. (6) Under either perspective, that is dual or non-dual, measures of compositional differentiation (as originally suggested for the assessment of ß-diversity) do not figure in the partitioning of total diversity into components, since they do not build on the intrinsic concept of diversity.


Subject(s)
Biodiversity , Models, Biological
12.
Proc Natl Acad Sci U S A ; 110(25): 10219-22, 2013 Jun 18.
Article in English | MEDLINE | ID: mdl-23733963

ABSTRACT

Society values landscapes that reliably provide many ecosystem functions. As the study of ecosystem functioning expands to include more locations, time spans, and functions, the functional importance of individual species is becoming more apparent. However, the functional importance of individual species does not necessarily translate to the functional importance of biodiversity measured in whole communities of interacting species. Furthermore, ecological diversity at scales larger than neighborhood species richness could also influence the provision of multiple functions over extended time scales. We created experimental landscapes based on whole communities from the world's longest running biodiversity-functioning field experiment to investigate how local species richness (α diversity), distinctness among communities (ß diversity), and larger scale species richness (γ diversity) affected eight ecosystem functions over 10 y. Using both threshold-based and unique multifunctionality metrics, we found that α diversity had strong positive effects on most individual functions and multifunctionality, and that positive effects of ß and γ diversity emerged only when multiple functions were considered simultaneously. Higher ß diversity also reduced the variability in multifunctionality. Thus, in addition to conserving important species, maintaining ecosystem multifunctionality will require diverse landscape mosaics of diverse communities.


Subject(s)
Biodiversity , Ecology , Ecosystem , Models, Biological , Animals , Computer Simulation , Conservation of Energy Resources , Humans , Social Values
13.
FEMS Microbiol Lett ; 3712024 Jan 09.
Article in English | MEDLINE | ID: mdl-38419294

ABSTRACT

Autism spectrum disorder (ASD) is estimated to influence as many as 1% children worldwide, but its etiology is still unclear. It has been suggested that gut microbiomes play an important role in regulating abnormal behaviors associated with ASD. A de facto standard analysis on the microbiome-associated diseases has been diversity analysis, and nevertheless, existing studies on ASD-microbiome relationship have not produced a consensus. Here, we perform a comprehensive analysis of the diversity changes associated with ASD involving alpha-, beta-, and gamma-diversity metrics, based on 8 published data sets consisting of 898 ASD samples and 467 healthy controls (HC) from 16S-rRNA sequencing. Our findings include: (i) In terms of alpha-diversity, in approximately 1/3 of the studies cases, ASD patients exhibited significantly higher alpha-diversity than the HC, which seems to be consistent with the "1/3 conjecture" of diversity-disease relationship (DDR). (ii) In terms of beta-diversity, the AKP (Anna Karenina principle) that predict all healthy microbiomes should be similar, and every diseased microbiome should be dissimilar in its own way seems to be true in approximately 1/2 to 3/4 studies cases. (iii) In terms of gamma-diversity, the DAR (diversity-area relationship) modeling suggests that ASD patients seem to have large diversity-area scaling parameter than the HC, which is consistent with the AKP results. However, the MAD (maximum accrual diversity) and RIP (ratio of individual to population diversity) parameters did not suggest significant differences between ASD patients and HC. Throughout the study, we adopted Hill numbers to measure diversity, which stratified the diversity measures in terms of the rarity-commonness-dominance spectrum. It appears that the differences between ASD patients and HC are more propounding on rare-species side than on dominant-species side. Finally, we discuss the apparent inconsistent diversity-ASD relationships among different case studies and postulate that the relationships are not monotonic.


Subject(s)
Autism Spectrum Disorder , Gastrointestinal Microbiome , Microbiota , Child , Humans , Gastrointestinal Microbiome/genetics
14.
PeerJ ; 12: e17713, 2024.
Article in English | MEDLINE | ID: mdl-39006017

ABSTRACT

Background: Biodiversity, crucial for understanding ecosystems, encompasses species richness, composition, and distribution. Ecological and environmental factors, such as habitat type, resource availability, and climate conditions, play pivotal roles in shaping species diversity within and among communities, categorized into alpha (within habitat), beta (between habitats), and gamma (total regional) diversity. Hummingbird communities are influenced by habitat, elevation, and seasonality, making them an ideal system for studying these diversities, shedding light on mutualistic community dynamics and conservation strategies. Methods: Over a year-long period, monthly surveys were conducted to record hummingbird species and their visited flowering plants across four habitat types (oak forest, juniper forest, pine forest, and xerophytic shrubland) in Tlaxcala, Mexico. Three locations per habitat type were selected based on conservation status and distance from urban areas. True diversity measures were used to assess alpha, beta, and gamma diversity of hummingbirds and their floral resources. Environmental factors such as altitude and bioclimatic variables were explored for their influence on beta diversity. Results: For flowering plants, gamma diversity encompassed 34 species, with oak forests exhibiting the highest richness, while xerophytic shrublands had the highest alpha diversity. In contrast, for hummingbirds, 11 species comprised the gamma diversity, with xerophytic shrublands having the highest richness and alpha diversity. Our data reveal high heterogeneity in species abundance among habitats. Notably, certain floral resources like Loeselia mexicana and Bouvardia ternifolia emerge as key species in multiple habitats, while hummingbirds such as Basilinna leucotis, Selasphorus platycercus, and Calothorax lucifer exhibit varying levels of abundance and habitat preferences. Beta diversity analyses unveil habitat-specific patterns, with species turnover predominantly driving dissimilarity in composition. Moreover, our study explores the relationships between these diversity components and environmental factors such as altitude and climate variables. Climate variables, in particular, emerge as significant contributors to dissimilarity in floral resource and hummingbird communities, highlighting the influence of environmental conditions on species distribution. Conclusions: Our results shed light on the complex dynamics of hummingbird-flower mutualistic communities within diverse habitats and underscore the importance of understanding how habitat-driven shifts impact alpha, beta, and gamma diversity. Such insights are crucial for conservation strategies aimed at preserving the delicate ecological relationships that underpin biodiversity in these communities.


Subject(s)
Biodiversity , Birds , Ecosystem , Birds/physiology , Animals , Mexico , Flowers
15.
Ecol Evol ; 13(4): e10015, 2023 Apr.
Article in English | MEDLINE | ID: mdl-37091575

ABSTRACT

Studies have shown negative impacts of increased human pressures on biodiversity at local (alpha-diversity) and regional (gamma-diversity) scales. However, the diversity between local sites (beta-diversity) has received less attention. This is an important shortcoming since beta-diversity acts as a linkage between the local and regional scales. Decreased beta-diversity means that local sites lose their distinctiveness, becoming more similar to each other. This process is known as biotic homogenization. However, the mechanisms causing biotic homogenization have not been fully studied nor its impacts on different facets of biodiversity. We examined if land-use change due to human actions causes biotic homogenization of taxonomic, functional, and phylogenetic diversity in bird communities of forested habitats in the state of Minnesota, USA. We address if forest loss and increased human domination in a region were associated with decreased beta-diversity. Our results showed that elevated human pressure was not related to increased biotic homogenization in this study region. Effects of landscape change were incongruent among taxonomic, functional, and phylogenetic diversity. At all spatial scales, taxonomic diversity was unrelated to forest loss or human domination. Interestingly, increased human domination appeared to increase the functional beta-diversity of bird communities. This association was driven by a decrease in local diversity. Forest habitat loss was associated with decreasing functional and phylogenetic diversity in local communities (alpha-diversity) and in regional species pool (gamma-diversity), but not in beta-diversity. We highlight the importance of considering multiple facets of biodiversity as their responses to human land-use is varied. Conservation significance of beta-diversity hinges on local and regional diversity responses to human land-use intensification, and organization of biodiversity should therefore be analyzed at multiple spatial scales.

16.
Trends Ecol Evol ; 37(9): 777-788, 2022 09.
Article in English | MEDLINE | ID: mdl-35660115

ABSTRACT

Extensive evidence shows that regional (gamma) diversity is often lower across restored landscapes than in reference landscapes, in part due to common restoration practices that favor widespread species through selection of easily-grown species with high survival and propagation practices that reduce genetic diversity. We discuss approaches to counteract biotic homogenization, such as reintroducing species that are adapted to localized habitat conditions and are unlikely to colonize naturally; periodically reintroducing propagules from remnant populations to increase genetic diversity; and reintroducing higher trophic level fauna to restore interaction networks and processes that promote habitat heterogeneity. Several policy changes would also increase regional diversity; these include regional coordination amongst restoration groups, financial incentives to organizations producing conservation-valued species, and experimental designations for rare species introductions.


Subject(s)
Biodiversity , Conservation of Natural Resources , Ecosystem
17.
Biodivers Data J ; 10: e90281, 2022.
Article in English | MEDLINE | ID: mdl-36761646

ABSTRACT

Plant species diversity of black alder-dominated forests was studied in three biogeographical regions (Alpine, Continental and Pannonian) of Central Europe. They were represented by regions of the Polish Plain (Continental), the High Western Carpathians and Matricum of the Western Carpathians (Alpine) and the Pannonian lowland (Pannonian). We analysed 35 plots per region in order to identify: i) local alpha (α) diversity defined as the counted number of plant taxa occurring in a single sampling plot, ii) amongst-site beta (ß) diversity, iii) regional (γ) diversity defined as the total species richness of all sampling plots and iv) zeta diversity (ζ) as a generalisation of beta diversity. We recorded a total of 432 vascular plant taxa in all bioregions; more than 13% were alien plants. Statistically significant differences in species richness (α) of both native and alien plants were found between assemblages of the regions. The High Western Carpathians showed the highest native and the lowest alien plant species richness. Total ß-diversity was high in all regions, but significantly differed amongst regions only for alien plant species. Cumulative native and alien species richness (γ) was the highest and lowest in the High Western Carpathians and Matricum of Western Carpathians, respectively. Our results identified the High Western Carpathians as a hotspot for diversity of native plants in Central European black alder-dominated forests.

18.
Ecol Evol ; 11(20): 13912-13919, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34707827

ABSTRACT

Measuring commonness and rarity is pivotal to ecology and conservation. Zeta diversity, the average number of species shared by multiple sets of assemblages, and Dark diversity, the number of species that could occur in an assemblage but are missing, have been recently proposed to capture two aspects of the commonness-rarity spectrum. Despite a shared focus on commonness and rarity, thus far, Zeta and Dark diversities have been assessed separately. Here, we review these two frameworks and suggest their integration into a unified paradigm of the "rarity facets of biodiversity." This can be achieved by partitioning Alpha and Beta diversities into five components (the Zeta, Eta, Theta, Iota, and Kappa rarity facets) defined based on the commonness and rarity of species. Each facet is assessed in traditional and multiassemblage fashions to bridge conceptual differences between Dark diversity and Zeta diversity. We discuss applications of the rarity facets including comparing the taxonomic, functional, and phylogenetic diversity of rare and common species, or measuring species' prevalence in different facets as a metric of species rarity. The rarity facets integrate two emergent paradigms in biodiversity science to better understand the ecology of commonness and rarity, an important endeavor in a time of widespread changes in biodiversity across the Earth.

19.
Ecol Evol ; 11(21): 14715-14732, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34765136

ABSTRACT

AIM: Drastic changes in fire regimes are altering plant communities, inspiring ecologists to better understand the relationship between fire and plant species diversity. We examined the impact of a 90,000-ha wildfire on woody plant species diversity in an arid mountain range in southern Arizona, USA. We tested recent fire-diversity hypotheses by addressing the impacts on diversity of fire severity, fire variability, historical fire regimes, and topography. LOCATION: Chiricahua National Monument, Chiricahua Mountains, Arizona, USA, part of the Sky Islands of the US-Mexico borderlands. TAXON: Woody plant species. METHODS: We sampled woody plant diversity in 138 plots before (2002-2003) and after (2017-2018) the 2011 Horseshoe Two Fire in three vegetation types and across fire severity and topographic gradients. We calculated gamma, alpha, and beta diversity and examined changes over time in burned versus unburned plots and the shapes of the relationships of diversity with fire severity and topography. RESULTS: Alpha species richness declined, and beta and gamma diversity increased in burned but not unburned plots. Fire-induced enhancement of gamma diversity was confined to low fire severity plots. Alpha diversity did not exhibit a clear continuous relationship with fire severity. Beta diversity was enhanced by variation in fire severity among plots and increased with fire severity up to very high severity, where it declined slightly. MAIN CONCLUSIONS: The results reject the intermediate disturbance hypothesis for alpha diversity but weakly support it for gamma diversity. Spatial variation in fire severity promoted variation among plant assemblages, supporting the pyrodiversity hypothesis. Long-term drought probably amplified fire-driven diversity changes. Despite the apparent benign impact of the fire on diversity, the replacement of two large conifer species with a suite of drought-tolerant shrubs signals the potential loss of functional diversity, a pattern that may warrant restoration efforts to retain these important compositional elements.

20.
Ecol Evol ; 10(14): 7551-7559, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32760548

ABSTRACT

The island species-area relationship (ISAR) describes how the number of species increases with increasing size of an island (or island-like habitat), and is of fundamental importance in island biogeography and conservation. Here, we use a framework based on individual-based rarefaction to infer whether ISARs result from passive sampling, or whether some processes are acting beyond sampling (e.g., disproportionate effects and/or habitat heterogeneity). Using data on total and relative abundances of four taxa (birds, butterflies, amphibians, and reptiles) from multiple islands in the Andaman and Nicobar archipelago, we examine how different metrics of biodiversity (total species richness, rarefied species richness, and abundance-weighted effective numbers of species emphasizing common species) vary with island area. Total species richness increased for all taxa, as did rarefied species richness controlling for a given sampling effort. This indicates that the ISAR did not result because of passive sampling, but that instead, some species were disproportionately favored on larger islands. For birds, frogs, and lizards, this disproportionate effect was only associated with species that were rarer in the samples, but for butterflies, both more common and rarer species were affected. Furthermore, for the two taxa for which we had plot-level data (reptiles and amphibians), within-island ß-diversity did not increase with island size, suggesting that within-island compositional effects were unlikely to be driving these ISARs. Overall, our results indicate that the ISARs of these taxa are most likely driven by disproportionate effects, that is, where larger islands are important sources of biodiversity beyond a simple sampling expectation, especially through their influence on rarer species, thus emphasizing their role in the preservation and conservation of species.

SELECTION OF CITATIONS
SEARCH DETAIL