Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 483
Filter
1.
Cell ; 170(4): 736-747.e9, 2017 Aug 10.
Article in English | MEDLINE | ID: mdl-28802043

ABSTRACT

Ants exhibit cooperative behaviors and advanced forms of sociality that depend on pheromone-mediated communication. Odorant receptor neurons (ORNs) express specific odorant receptors (ORs) encoded by a dramatically expanded gene family in ants. In most eusocial insects, only the queen can transmit genetic information, restricting genetic studies. In contrast, workers in Harpegnathos saltator ants can be converted into gamergates (pseudoqueens) that can found entire colonies. This feature facilitated CRISPR-Cas9 generation of germline mutations in orco, the gene that encodes the obligate co-receptor of all ORs. orco mutations should significantly impact olfaction. We demonstrate striking functions of Orco in odorant perception, reproductive physiology, and social behavior plasticity. Surprisingly, unlike in other insects, loss of OR functionality also dramatically impairs development of the antennal lobe to which ORNs project. Therefore, the development of genetics in Harpegnathos establishes this ant species as a model organism to study the complexity of eusociality.


Subject(s)
Ants/growth & development , Ants/genetics , Insect Proteins/genetics , Receptors, Odorant/genetics , Social Behavior , Amino Acid Sequence , Animals , Ants/anatomy & histology , Ants/physiology , Arthropod Antennae/anatomy & histology , Arthropod Antennae/metabolism , Base Sequence , Behavior, Animal , Clustered Regularly Interspaced Short Palindromic Repeats , Female , Gene Knockout Techniques , Insect Proteins/chemistry , Male , Mutation , Pheromones/metabolism , Receptors, Odorant/chemistry
2.
Immunol Rev ; 313(1): 327-338, 2023 01.
Article in English | MEDLINE | ID: mdl-36369971

ABSTRACT

The glomerulus is often the prime target of dysregulated alternative pathway (AP) activation. In particular, AP activation is the key driver of two severe kidney diseases: atypical hemolytic uremic syndrome and C3 glomerulopathy. Both conditions are associated with a variety of predisposing molecular defects in AP regulation, such as genetic variants in complement regulators, autoantibodies targeting AP proteins, or autoantibodies that stabilize the AP convertases (C3- and C5-activating enzymes). It is noteworthy that these are systemic AP defects, yet in both diseases pathologic complement activation primarily affects the kidneys. In particular, AP activation is often limited to the glomerular capillaries. This tropism of AP-mediated inflammation for the glomerulus points to a unique interaction between AP proteins in plasma and this particular anatomic structure. In this review, we discuss the pre-clinical and clinical data linking the molecular causes of aberrant control of the AP with activation in the glomerulus, and the possible causes of this tropism. Based on these data, we propose a model for why the kidney is so uniquely and frequently targeted in patients with AP defects. Finally, we discuss possible strategies for preventing pathologic AP activation in the kidney.


Subject(s)
Atypical Hemolytic Uremic Syndrome , Complement Pathway, Alternative , Humans , Complement Pathway, Alternative/genetics , Complement C3/genetics , Complement C3/metabolism , Kidney , Kidney Glomerulus/metabolism , Kidney Glomerulus/pathology , Atypical Hemolytic Uremic Syndrome/genetics , Atypical Hemolytic Uremic Syndrome/pathology , Autoantibodies
3.
Physiol Genomics ; 56(1): 98-111, 2024 Jan 01.
Article in English | MEDLINE | ID: mdl-37955135

ABSTRACT

Salt sensitivity impacts a significant portion of the population and is an important contributor to the development of chronic kidney disease. One of the significant early predictors of salt-induced damage is albuminuria, which reflects the deterioration of the renal filtration barrier: the glomerulus. Despite significant research efforts, there is still a gap in knowledge regarding the molecular mechanisms and signaling networks contributing to instigating and/or perpetuating salt-induced glomerular injury. To address this gap, we used 8-wk-old male Dahl salt-sensitive rats fed a normal-salt diet (0.4% NaCl) or challenged with a high-salt diet (4% NaCl) for 3 wk. At the end of the protocol, a pure fraction of renal glomeruli obtained by differential sieving was used for next-generation RNA sequencing and comprehensive semi-automatic transcriptomic data analyses, which revealed 149 differentially expressed genes (107 and 42 genes were downregulated and upregulated, respectively). Furthermore, a combination of predictive gene correlation networks and computational bioinformatic analyses revealed pathways impacted by a high salt dietary challenge, including renal metabolism, mitochondrial function, apoptotic signaling and fibrosis, cell cycle, inflammatory and immune responses, circadian clock, cytoskeletal organization, G protein-coupled receptor signaling, and calcium transport. In conclusion, we report here novel transcriptomic interactions and corresponding predicted pathways affecting glomeruli under salt-induced stress.NEW & NOTEWORTHY Our study demonstrated novel pathways affecting glomeruli under stress induced by dietary salt. Predictive gene correlation networks and bioinformatic semi-automatic analysis revealed changes in the pathways relevant to mitochondrial function, inflammatory, apoptotic/fibrotic processes, and cell calcium transport.


Subject(s)
Hypertension , Sodium Chloride, Dietary , Rats , Animals , Male , Sodium Chloride, Dietary/adverse effects , Sodium Chloride/metabolism , Hypertension/genetics , Rats, Inbred Dahl , Blood Pressure , Calcium/metabolism , Transcriptome/genetics , Gene Expression Profiling , Kidney/metabolism
4.
Am J Physiol Renal Physiol ; 326(5): F681-F693, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38205540

ABSTRACT

Intermittent fasting has become of interest for its possible metabolic benefits and reduction of inflammation and oxidative damage, all of which play a role in the pathophysiology of diabetic nephropathy. We tested in a streptozotocin (60 mg/kg)-induced diabetic apolipoprotein E knockout mouse model whether repeated fasting mimicking diet (FMD) prevents glomerular damage. Diabetic mice received 5 FMD cycles in 10 wk, and during cycles 1 and 5 caloric measurements were performed. After 10 wk, glomerular endothelial morphology was determined together with albuminuria, urinary heparanase-1 activity, and spatial mass spectrometry imaging to identify specific glomerular metabolic dysregulation. During FMD cycles, blood glucose levels dropped while a temporal metabolic switch was observed to increase fatty acid oxidation. Overall body weight at the end of the study was reduced together with albuminuria, although urine production was dramatically increased without affecting urinary heparanase-1 activity. Weight loss was found to be due to lean mass and water, not fat mass. Although capillary loop morphology and endothelial glycocalyx heparan sulfate contents were preserved, hyaluronan surface expression was reduced together with the presence of UDP-glucuronic acid. Mass spectrometry imaging further revealed reduced protein catabolic breakdown products and increased oxidative stress, not different from diabetic mice. In conclusion, although FMD preserves partially glomerular endothelial glycocalyx, loss of lean mass and increased glomerular oxidative stress argue whether such diet regimes are safe in patients with diabetes.NEW & NOTEWORTHY Repeated fasting mimicking diet (FMD) partially prevents glomerular damage in a diabetic mouse model; however, although endothelial glycocalyx heparan sulfate contents were preserved, hyaluronan surface expression was reduced in the presence of UDP-glucuronic acid. The weight loss observed was of lean mass, not fat mass, and increased glomerular oxidative stress argue whether such a diet is safe in patients with diabetes.


Subject(s)
Diabetes Mellitus, Experimental , Diabetic Nephropathies , Fasting , Glycocalyx , Kidney Glomerulus , Oxidative Stress , Animals , Glycocalyx/metabolism , Glycocalyx/pathology , Diabetic Nephropathies/metabolism , Diabetic Nephropathies/pathology , Diabetic Nephropathies/physiopathology , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Experimental/pathology , Kidney Glomerulus/metabolism , Kidney Glomerulus/pathology , Male , Blood Glucose/metabolism , Albuminuria/metabolism , Mice , Glucuronidase/metabolism , Mice, Knockout, ApoE , Mice, Inbred C57BL , Diet
5.
Am J Physiol Renal Physiol ; 326(5): F862-F875, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38511222

ABSTRACT

IgA nephropathy (IgAN) is characterized by glomerular deposition of immune complexes (ICs) consisting of IgA1 with O-glycans deficient in galactose (Gd-IgA1) and Gd-IgA1-specific IgG autoantibodies. These ICs induce kidney injury, and in the absence of disease-specific therapy, up to 40% of patients with IgAN progress to kidney failure. IgA1 with its clustered O-glycans is unique to humans, which hampered development of small-animal models of IgAN. Here, we used a model wherein engineered ICs (EICs) formed from human Gd-IgA1 and recombinant human IgG autoantibody are injected into nude mice to induce glomerular injury mimicking human IgAN. In this model, we assessed the protective effects of sparsentan, a single-molecule dual endothelin angiotensin receptor antagonist (DEARA) versus vehicle on EIC-induced glomerular proliferation and dysregulation of gene expression in the kidney. Oral administration of sparsentan (60 or 120 mg/kg daily) to mice intravenously injected with EIC attenuated the EIC-induced glomerular hypercellularity. Furthermore, analysis of changes in the whole kidney transcriptome revealed that key inflammatory and proliferative biological genes and pathways that are upregulated in this EIC model of IgAN were markedly reduced by sparsentan, including complement genes, integrin components, members of the mitogen-activated protein kinase family, and Fc receptor elements. Partial overlap between mouse and human differentially expressed genes in IgAN further supported the translational aspect of the immune and inflammatory components from our transcriptional findings. In conclusion, our data indicate that in the mouse model of IgAN, sparsentan targets immune and inflammatory processes leading to protection from mesangial hypercellularity.NEW & NOTEWORTHY The mechanisms by which deposited IgA1 immune complexes cause kidney injury during early phases of IgA nephropathy are poorly understood. We used an animal model we recently developed that involves IgA1-IgG immune complex injections and determined pathways related to the induced mesangioproliferative changes. Treatment with sparsentan, a dual inhibitor of endothelin type A and angiotensin II type 1 receptors, ameliorated the induced mesangioproliferative changes and the associated alterations in the expression of inflammatory genes and networks.


Subject(s)
Antigen-Antibody Complex , Disease Models, Animal , Glomerulonephritis, IGA , Immunoglobulin A , Immunoglobulin G , Kidney Glomerulus , Animals , Glomerulonephritis, IGA/immunology , Glomerulonephritis, IGA/drug therapy , Glomerulonephritis, IGA/genetics , Glomerulonephritis, IGA/pathology , Glomerulonephritis, IGA/metabolism , Immunoglobulin A/metabolism , Immunoglobulin A/immunology , Kidney Glomerulus/pathology , Kidney Glomerulus/metabolism , Kidney Glomerulus/drug effects , Kidney Glomerulus/immunology , Antigen-Antibody Complex/metabolism , Gene Regulatory Networks , Mice, Nude , Humans , Mice , Cell Proliferation/drug effects
6.
Article in English | MEDLINE | ID: mdl-38867675

ABSTRACT

Positioned at the head of the nephron, the renal corpuscle generates a plasma ultrafiltrate to initiate urine formation. Three major cell types within the renal corpuscle, the glomerular mesangial cells, podocytes, and glomerular capillary endothelial cells communicate via endocrine and paracrine signaling mechanisms to maintain structure and function of the glomerular capillary network and filtration barrier. Ca2+ signaling mediated by several distinct plasma membrane Ca2+ channels modulates the functions of all three cell types. The last two decades have witnessed pivotal advances in understanding of Ca2+ channel function and regulation in glomerular cells, particularly non-voltage gated Ca2+ channels, in health and renal disease. This review summarizes the current knowledge of the physiological and pathological impact of non-voltage gated Ca2+ channel signaling in glomerular capillary endothelium, mesangial cells and podocytes. The main focus is on transient receptor potential and store-operated Ca2+ channels, but ionotropic N-methyl-D-aspartate receptors and purinergic 2X receptors also are discussed. This update of Ca2+ channel functions in the renal corpuscle and their cellular signaling cascades is intended to inform development of therapeutic strategies targeting these channels to treat kidney diseases, particularly diabetic nephropathy.

7.
Kidney Int ; 105(3): 473-483, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38142037

ABSTRACT

Complement activation has long been recognized as a central feature of membranous nephropathy (MN). Evidence for its role has been derived from the detection of complement products in biopsy tissue and urine from patients with MN and from mechanistic studies primarily based on the passive Heymann nephritis model. Only recently, more detailed insights into the exact mechanisms of complement activation and effector pathways have been gained from patient data, animal models, and in vitro models based on specific target antigens relevant to the human disease. These data are of clinical relevance, as they parallel the recent development of numerous specific complement therapeutics for clinical use. Despite efficient B-cell depletion, many patients with MN achieve only partial remission of proteinuria, which may be explained by the persistence of subepithelial immune complexes and ongoing complement-mediated podocyte injury. Targeting complement, therefore, represents an attractive adjunct treatment for MN, but it will need to be tailored to the specific complement pathways relevant to MN. This review summarizes the different lines of evidence for a central role of complement in MN and for the relevance of distinct complement activation and effector pathways, with a focus on recent developments.


Subject(s)
Glomerulonephritis, Membranous , Podocytes , Animals , Humans , Complement Activation , Podocytes/pathology , Complement System Proteins , Antigen-Antibody Complex
8.
Small ; : e2310781, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38488770

ABSTRACT

Improving target versus off-target ratio in nanomedicine remains a major challenge for increasing drug bioavailability and reducing toxicity. Active targeting using ligands on nanoparticle surfaces is a key approach but has limited clinical success. A potential issue is the integration of targeting ligands also changes the physicochemical properties of nanoparticles (passive targeting). Direct studies to understand the mechanisms of active targeting and off-targeting in vivo are limited by the lack of suitable tools. Here, the biodistribution of a representative active targeting liposome is analyzed, modified with an apolipoprotein E (ApoE) peptide that binds to the low-density lipoprotein receptor (LDLR), using zebrafish embryos. The ApoE liposomes demonstrated the expected liver targeting effect but also accumulated in the kidney glomerulus. The ldlra-/- zebrafish is developed to explore the LDLR-specificity of ApoE liposomes. Interestingly, liver targeting depends on the LDLR-specific interaction, while glomerular accumulation is independent of LDLR and peptide sequence. It is found that cationic charges of peptides and the size of liposomes govern glomerular targeting. Increasing the size of ApoE liposomes can avoid this off-targeting. Taken together, the study shows the potential of the zebrafish embryo model for understanding active and passive targeting mechanisms, that can be used to optimize the design of nanoparticles.

9.
J Transl Med ; 22(1): 397, 2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38684996

ABSTRACT

BACKGROUND: Glomerular lesions are the main injuries of diabetic nephropathy (DN) and are used as a crucial index for pathologic classification. Manual quantification of these morphologic features currently used is semi-quantitative and time-consuming. Automatically quantifying glomerular morphologic features is urgently needed. METHODS: A series of convolutional neural networks (CNN) were designed to identify and classify glomerular morphologic features in DN patients. Associations of these digital features with pathologic classification and prognosis were further analyzed. RESULTS: Our CNN-based model achieved a 0.928 F1-score for global glomerulosclerosis and 0.953 F1-score for Kimmelstiel-Wilson lesion, further obtained a dice of 0.870 for the mesangial area and F1-score beyond 0.839 for three glomerular intrinsic cells. As the pathologic classes increased, mesangial cell numbers and mesangial area increased, and podocyte numbers decreased (p for all < 0.001), while endothelial cell numbers remained stable (p = 0.431). Glomeruli with Kimmelstiel-Wilson lesion showed more severe podocyte deletion compared to those without (p < 0.001). Furthermore, CNN-based classifications showed moderate agreement with pathologists-based classification, the kappa value between the CNN model 3 and pathologists reached 0.624 (ranging from 0.529 to 0.688, p < 0.001). Notably, CNN-based classifications obtained equivalent performance to pathologists-based classifications on predicting baseline and long-term renal function. CONCLUSION: Our CNN-based model is promising in assisting the identification and pathologic classification of glomerular lesions in DN patients.


Subject(s)
Artificial Intelligence , Diabetic Nephropathies , Kidney Glomerulus , Humans , Diabetic Nephropathies/pathology , Diabetic Nephropathies/classification , Kidney Glomerulus/pathology , Male , Female , Middle Aged , Neural Networks, Computer
10.
Adv Exp Med Biol ; 1450: 77-92, 2024.
Article in English | MEDLINE | ID: mdl-37610657

ABSTRACT

A significant hurdle for kidney tissue engineering is reproducing the complex three-dimensional structure of the kidney. In our study, a stepwise approach of generating a reproducible Xeno kidney scaffold from a goat kidney is described, which can be implanted and recellularized by host cells. We have proposed a combination of sodium dodecyl sulfate and Triton-X-100-based protocol to generate a reproducible Xeno kidney scaffold, which was then analyzed by histology, DNA quantification, SEM, and renal angiography. Further, a small portion from the cortico-medullar region of the acellular scaffold was implanted in the rat's kidney subcapsular pocket for a period of 1 month, to check the recruitment of host cells into the scaffold. Post implantation, the extracellular matrix of the scaffold was well preserved and it did not induce any damage or inflammation in the native kidney. Implantation of the Xeno scaffold resulted in apparent early vascularization which helped in the recruitment of the host cells, which was characterized by histology, immunohistochemistry, and scanning electron microscopy. Implanted Xeno scaffold showed AQP-1, Nephrin, α-SMA, and VEGF expression in proximal tubules and renal glomerulus. Importantly, Ki-67 and WTAP-expressing cells were also observed near proximal tubules suggesting a high level of proliferation in the scaffold. Thus, showing the potential of Xeno kidney development that can be recellularized by the host cell to engineer into a functional kidney.


Subject(s)
Tissue Engineering , Tissue Scaffolds , Rats , Animals , Tissue Scaffolds/chemistry , Tissue Engineering/methods , Extracellular Matrix/chemistry , Kidney , DNA/metabolism
11.
Int J Mol Sci ; 25(10)2024 May 08.
Article in English | MEDLINE | ID: mdl-38791159

ABSTRACT

Glomerulonephritis (GN) is characterized by podocyte injury or glomerular filtration dysfunction, which results in proteinuria and eventual loss of kidney function. Progress in studying the mechanism of GN, and developing an effective therapy, has been limited by the absence of suitable in vitro models that can closely recapitulate human physiological responses. We developed a microfluidic glomerulus-on-a-chip device that can recapitulate the physiological environment to construct a functional filtration barrier, with which we investigated biological changes in podocytes and dynamic alterations in the permeability of the glomerular filtration barrier (GFB) on a chip. We also evaluated the potential of GN-mimicking devices as a model for predicting responses to human GN. Glomerular endothelial cells and podocytes successfully formed intact monolayers on opposite sides of the membrane in our chip device. Permselectivity analysis confirmed that the chip was constituted by a functional GFB that could accurately perform differential clearance of albumin and dextran. Reduction in cell viability resulting from damage was observed in all serum-induced GN models. The expression of podocyte-specific marker WT1 was also decreased. Albumin permeability was increased in most models of serum-induced IgA nephropathy (IgAN) and membranous nephropathy (MN). However, sera from patients with minimal change disease (MCD) or lupus nephritis (LN) did not induce a loss of permeability. This glomerulus-on-a-chip system may provide a platform of glomerular cell culture for in vitro GFB in formation of a functional three-dimensional glomerular structure. Establishing a disease model of GN on a chip could accelerate our understanding of pathophysiological mechanisms of glomerulopathy.


Subject(s)
Glomerulonephritis , Kidney Glomerulus , Lab-On-A-Chip Devices , Podocytes , Humans , Podocytes/metabolism , Podocytes/pathology , Kidney Glomerulus/metabolism , Kidney Glomerulus/pathology , Glomerulonephritis/metabolism , Glomerulonephritis/physiopathology , Glomerulonephritis/pathology , Glomerular Filtration Barrier/metabolism , Glomerulonephritis, Membranous/metabolism , Glomerulonephritis, Membranous/pathology , Glomerulonephritis, Membranous/physiopathology , Glomerulonephritis, IGA/metabolism , Glomerulonephritis, IGA/pathology , Glomerulonephritis, IGA/physiopathology , Permeability , Endothelial Cells/metabolism , Endothelial Cells/pathology , Lupus Nephritis/metabolism , Lupus Nephritis/pathology , Lupus Nephritis/physiopathology , Cell Survival , Nephrosis, Lipoid/metabolism , Nephrosis, Lipoid/pathology , Nephrosis, Lipoid/physiopathology
12.
J Environ Sci (China) ; 145: 75-87, 2024 Nov.
Article in English | MEDLINE | ID: mdl-38844325

ABSTRACT

Prednisone is a synthetic glucocorticoid that is commonly used in both human and veterinary medication. Now, it is also recognized as an emerging environmental contaminant. Pregnant women may be exposed to prednisone actively or passively through multiple pathways and cause developmental toxicity to the fetus. However, the impact of prenatal prednisone exposure (PPE) on fetal kidney development remains unclear. In this study, pregnant mice were administered prednisone intragastrically during full-term pregnancy with different doses (0.25, 0.5, or 1 mg/(kg·day)), or at the dose of 1 mg/(kg·day) in different gestational days (GD) (GD0-9, GD10-18, or GD0-18). The pregnant mice were euthanized on GD18. HE staining revealed fetal kidney dysplasia, with an enlarged glomerular Bowman's capsule space and a reduced capillary network in the PPE groups. The expression of the podocyte and the mesangial cell marker genes was significantly reduced in the PPE groups. However, overall gene expression in renal tubules and collecting ducts were markedly increased. All of the above effects were more pronounced in high-dose, full-term pregnancy, and female fetuses. Studies on the mechanism of the female fetal kidney have revealed that PPE reduced the expression of Six2, increased the expression of Hnf1ß, Hnf4α, and Wnt9b, and inhibited the expression of glial cell line-derived neurotrophic factor (GDNF) and Notch signaling pathways. In conclusion, this study demonstrated that there is a sex difference in the developmental toxicity of PPE to the fetal kidney, and the time effect is manifested as full-term pregnancy > early pregnancy > mid-late pregnancy.


Subject(s)
Kidney , Prednisone , Female , Animals , Pregnancy , Mice , Kidney/drug effects , Kidney/embryology , Prednisone/toxicity , Fetal Development/drug effects , Male , Prenatal Exposure Delayed Effects/chemically induced , Maternal Exposure/adverse effects
13.
Soins Gerontol ; 29(165): 10-20, 2024.
Article in French | MEDLINE | ID: mdl-38331520

ABSTRACT

The kidney performs several major functions: it eliminates toxins produced by cellular or xenobiotic metabolism, regulates the homeostasis of the internal environment and plays a hormonal role, producing erythropoietin, calcitriol and renin. Maintaining the body's homeostasis (hydric, ionic [sodium, potassium, calcium, phosphorus, etc.] or acid-base balance) requires the successive action of plasma filtration, followed by reabsorption/secretion mechanisms, which take place in the various portions of the kidney's functional unit known as the nephron. The initial part of the nephron, the glomerulus, is the site of filtration, while the tubule, which collects the glomerular filtrate, is the site of reabsorption/secretion, leading to the composition of the final urine. It's important to understand how these different structures work, before tackling the various disorders that can affect the kidney.


Subject(s)
Kidney Glomerulus , Kidney , Humans , Kidney/anatomy & histology , Kidney/metabolism , Kidney Glomerulus/anatomy & histology , Kidney Glomerulus/physiology
14.
Am J Physiol Renal Physiol ; 324(1): F91-F105, 2023 01 01.
Article in English | MEDLINE | ID: mdl-36395385

ABSTRACT

Microvascular dysfunction is a key driver of kidney disease. Pathophysiological changes in the kidney vasculature are regulated by vascular endothelial growth factor receptors (VEGFRs), supporting them as potential therapeutic targets. The tyrosine kinase receptor VEGFR-3, encoded by FLT4 and activated by the ligands VEGF-C and VEGF-D, is best known for its role in lymphangiogenesis. Therapeutically targeting VEGFR-3 to modulate lymphangiogenesis has been proposed as a strategy to treat kidney disease. However, outside the lymphatics, VEGFR-3 is also expressed in blood vascular endothelial cells in several tissues including the kidney. Here, we show that Vegfr-3 is expressed in fenestrated microvascular beds within the developing and adult mouse kidney, which include the glomerular capillary loops. We found that expression levels of VEGFR-3 are dynamic during glomerular capillary loop development, with the highest expression observed during endothelial cell migration into the S-shaped glomerular body. We developed a conditional knockout mouse model for Vegfr-3 and found that loss of Vegfr-3 resulted in a striking glomerular phenotype characterized by aneurysmal dilation of capillary loops, absence of mesangial structure, abnormal interendothelial cell junctions, and poor attachment between glomerular endothelial cells and the basement membrane. In addition, we demonstrated that expression of the VEGFR-3 ligand VEGF-C by podocytes and mesangial cells is dispensable for glomerular development. Instead, VEGFR-3 in glomerular endothelial cells attenuates VEGFR-2 phosphorylation. Together, the results of our study support a VEGF-C-independent functional role for VEGFR-3 in the kidney microvasculature outside of lymphatic vessels, which has implications for clinical therapies that target this receptor.NEW & NOTEWORTHY Targeting VEGFR-3 in kidney lymphatics has been proposed as a method to treat kidney disease. However, expression of VEGFR-3 is not lymphatic-specific. We demonstrated developmental expression of VEGFR-3 in glomerular endothelial cells, with loss of Vegfr-3 leading to malformation of glomerular capillary loops. Furthermore, we showed that VEGFR-3 attenuates VEGFR-2 activity in glomerular endothelial cells independent of paracrine VEGF-C signaling. Together, these data provide valuable information for therapeutic development targeting these pathways.


Subject(s)
Kidney Diseases , Vascular Endothelial Growth Factor Receptor-3 , Mice , Animals , Vascular Endothelial Growth Factor Receptor-3/genetics , Vascular Endothelial Growth Factor Receptor-3/metabolism , Vascular Endothelial Growth Factor Receptor-2/genetics , Vascular Endothelial Growth Factor Receptor-2/metabolism , Vascular Endothelial Growth Factor C/genetics , Vascular Endothelial Growth Factor C/metabolism , Endothelial Cells/metabolism , Vascular Endothelial Growth Factor A/metabolism , Capillaries/metabolism
15.
Am J Physiol Endocrinol Metab ; 324(1): E24-E41, 2023 01 01.
Article in English | MEDLINE | ID: mdl-36383637

ABSTRACT

The prevalence of obesity has increased dramatically during the past decades, which has been a major health problem. Since 1975, the number of people with obesity worldwide has nearly tripled. An increasing number of studies find obesity as a driver of chronic kidney disease (CKD) progression, and the mechanisms are complex and include hemodynamic changes, inflammation, oxidative stress, and activation of the renin-angiotensin-aldosterone system (RAAS). Obesity-related kidney disease is characterized by glomerulomegaly, which is often accompanied by localized and segmental glomerulosclerosis lesions. In these patients, the early symptoms are atypical, with microproteinuria being the main clinical manifestation and nephrotic syndrome being rare. Weight loss and RAAS blockers have a protective effect on obesity-related CKD, but even so, a significant proportion of patients eventually progress to end-stage renal disease despite treatment. Thus, it is critical to comprehend the mechanisms underlying obesity-related CKD to create new tactics for slowing or stopping disease progression. In this review, we summarize current knowledge on the mechanisms of obesity-related kidney disease, its pathological changes, and future perspectives on its treatment.


Subject(s)
Glomerulosclerosis, Focal Segmental , Kidney Diseases , Renal Insufficiency, Chronic , Humans , Renal Insufficiency, Chronic/complications , Obesity/complications , Renin-Angiotensin System/physiology , Glomerulosclerosis, Focal Segmental/complications , Chronic Disease , Kidney , Disease Progression
16.
Kidney Int ; 104(6): 1164-1169, 2023 12.
Article in English | MEDLINE | ID: mdl-37774923

ABSTRACT

Mammalian kidneys filter enormous volumes of water and small solutes, a filtration driven by the hydrostatic pressure in glomerular capillaries, which is considerably higher than in most other tissues. Interdigitating cellular processes of podocytes form the slits for fluid filtration connected by the membrane-like slit diaphragm cell junction containing a mechanosensitive ion channel complex and allow filtration while counteracting hydrostatic pressure. Several previous publications speculated that podocyte processes may display a preferable orientation on glomerular capillaries instead of a random distribution. However, for decades, the controversy over spatially oriented filtration slits could not be resolved due to technical limitations of imaging technologies. Here, we used advanced high-resolution, three-dimensional microscopy with high data throughput to assess spatial orientation of podocyte processes and filtration slits quantitatively. Filtration-slit-generating secondary processes preferentially align along the capillaries' longitudinal axis while primary processes are preferably perpendicular to the longitudinal direction. This preferential orientation required maturation in development of the mice but was lost in mice with kidney disease due to treatment with nephrotoxic serum or with underlying heterologous mutations in the podocyte foot process protein podocin. Thus, the observation that podocytes maintain a preferred spatial orientation of their processes on glomerular capillaries goes well in line with the role of podocyte foot processes as mechanical buttresses to counteract mechanical forces resulting from pressurized capillaries. Future studies are needed to establish how podocytes establish and maintain their orientation and why orientation is lost under pathological conditions.


Subject(s)
Podocytes , Animals , Mice , Capillaries , Orientation, Spatial , Kidney Glomerulus , Renal Artery , Mammals
17.
Kidney Int ; 104(3): 455-462, 2023 09.
Article in English | MEDLINE | ID: mdl-37290603

ABSTRACT

The majority of podocyte disorders are progressive in nature leading to chronic kidney disease and often kidney failure. The scope of current therapies is typically nonspecific immunosuppressant medications, which are accompanied by unwanted and serious side effects. However, many exciting clinical trials are underway to reduce the burden of podocyte diseases in our patients. Major advances and discoveries have recently been made experimentally in our understanding of the molecular and cellular mechanisms underlying podocyte injury in disease. This begs the question of how best to take advantage of these impressive strides. One approach to consider is the repurposing of therapeutics that have already been approved by the Food and Drug Administration, European Medicines Agency, and other regulatory agencies for indications beyond the kidney. The advantages of therapy repurposing include known safety profiles, drug development that has already been completed, and overall reduced costs for studying alternative indications for selected therapies. The purpose of this mini review is to examine the experimental literature of podocyte damage and determine if there are mechanistic targets in which prior approved therapies can be considered for repurposing to podocyte disorders.


Subject(s)
Podocytes , Renal Insufficiency, Chronic , Humans , Pharmaceutical Preparations , Drug Repositioning , Kidney , Renal Insufficiency, Chronic/drug therapy
18.
Microcirculation ; 30(7): e12823, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37494581

ABSTRACT

OBJECTIVE: The endothelial surface layer (ESL), a layer of macromolecules on the surface of endothelial cells, can both impede and facilitate leukocyte recruitment. However, its role in monocyte and neutrophil recruitment in glomerular capillaries is unknown. METHODS: We used multiphoton intravital microscopy to examine monocyte and neutrophil behavior in the glomerulus following ESL disruption with hyaluronidase. RESULTS: Constitutive retention and migration of monocytes and neutrophils within the glomerular microvasculature was unaltered by hyaluronidase. Consistent with this, inhibition of the hyaluronan-binding molecule CD44 also failed to modulate glomerular trafficking of these immune cells. To investigate the contribution of the ESL during acute inflammation, we induced glomerulonephritis via in situ immune complex deposition. This resulted in increases in glomerular retention of monocytes and neutrophils but did not induce marked reduction in the glomerular ESL. Furthermore, hyaluronidase treatment did not modify the prolonged retention of monocytes and neutrophils in the acutely inflamed glomerular microvasculature. CONCLUSIONS: These observations indicate that, despite evidence that the ESL has the capacity to inhibit leukocyte-endothelial cell interactions while also containing adhesive ligands for immune cells, neither of these functions modulate trafficking of monocytes and neutrophils in steady-state or acutely-inflamed glomeruli.


Subject(s)
Monocytes , Neutrophils , Hyaluronoglucosaminidase , Endothelial Cells , Endothelium
19.
Inflamm Res ; 72(8): 1603-1620, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37474625

ABSTRACT

OBJECTIVE: We aimed to reveal a spatial proteomic and immune signature of kidney function regions in lupus nephritis (LN). MATERIAL AND METHODS: The laser capture microdissection (LCM) was used to isolate the glomerulus, tubules, and interstitial of the kidney from paraffin samples. The data-independent acquisition (DIA) method was used to collect proteomics data. The bioinformatic analysis was performed. RESULTS: A total of 49,658 peptides and 4056 proteins were quantitated. Our results first showed that a high proportion of activated NK cells, naive B cells, and neutrophils in the glomerulus, activated NK cells in interstitial, and resting NK cells were accumulated in tubules in LN. The immune-related function analysis of differential expression proteins in different regions indicated that the glomerulus and interstitial were major sites of immune disturbance and regulation connected with immune response activation. Furthermore, we identified 7, 8, and 9 hub genes in LN's glomerulus, renal interstitial, and tubules. These hub genes were significantly correlated with the infiltration of immune cell subsets. We screened out ALB, CTSB, LCN2, A2M, CDC42, VIM, LTF, and CD14, which show higher performance as candidate biomarkers after correlation analysis with clinical indexes. The function within three regions of the kidney was analyzed. The differential expression proteins (DEGs) between interstitial and glomerulus were significantly enriched in the immune-related biological processes, and myeloid leukocyte-mediated immunity and cellular response to hormone stimulus. The DEGs between tubules and glomerulus were significantly enriched in cell activation and leukocyte-mediated immunity. While the DEGs between tubules and interstitial were enriched in response to lipid, antigen processing, and presentation of peptide antigen response to oxygen-containing compound, the results indicated a different function within kidney regions. CONCLUSIONS: Collectively, we revealed spatial proteomics and immune signature of LN kidney regions by combined using LCM and DIA.


Subject(s)
Lupus Nephritis , Humans , Lupus Nephritis/metabolism , Proteomics , Kidney/metabolism , Kidney Glomerulus/metabolism , Lasers
20.
J Am Soc Nephrol ; 33(9): 1641-1648, 2022 09.
Article in English | MEDLINE | ID: mdl-35853715

ABSTRACT

The glomerular vascular pole is the gate for the afferent and efferent arterioles and mesangial cells and a frequent location of peripolar cells with an unclear function. It has been studied in definitive detail for >30 years, and functionally interrogated in the context of signal transduction from the macula densa to the mesangial cells and afferent arteriolar smooth muscle cells from 10 to 20 years ago. Two recent discoveries shed additional light on the vascular pole, with possibly far-reaching implications. One, which uses novel serial section electron microscopy, reveals a shorter capillary pathway between the basins of the afferent and efferent arterioles. Such a pathway, when patent, may short-circuit the multitude of capillaries in the glomerular tuft. Notably, this shorter capillary route is enclosed within the glomerular mesangium. The second study used anti-Thy1.1-induced mesangiolysis and intravital microscopy to unequivocally establish in vivo the long-suspected contractile function of mesangial cells, which have the ability to change the geometry and curvature of glomerular capillaries. These studies led me to hypothesize the existence of a glomerular perfusion rheostat, in which the shorter path periodically fluctuates between being more and less patent. This action reduces or increases blood flow through the entire glomerular capillary tuft. A corollary is that the GFR is a net product of balance between the states of capillary perfusion, and that deviations from the balanced state would increase or decrease GFR. Taken together, these studies may pave the way to a more profound understanding of glomerular microcirculation under basal conditions and in progression of glomerulopathies.


Subject(s)
Glomerular Mesangium , Kidney Glomerulus , Microcirculation , Kidney Glomerulus/blood supply , Arterioles , Kidney Tubules
SELECTION OF CITATIONS
SEARCH DETAIL