Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.058
Filter
1.
Proc Natl Acad Sci U S A ; 121(5): e2313096121, 2024 Jan 30.
Article in English | MEDLINE | ID: mdl-38261613

ABSTRACT

Ether solvents are suitable for formulating solid-electrolyte interphase (SEI)-less ion-solvent cointercalation electrolytes in graphite for Na-ion and K-ion batteries. However, ether-based electrolytes have been historically perceived to cause exfoliation of graphite and cell failure in Li-ion batteries. In this study, we develop strategies to achieve reversible Li-solvent cointercalation in graphite through combining appropriate Li salts and ether solvents. Specifically, we design 1M LiBF4 1,2-dimethoxyethane (G1), which enables natural graphite to deliver ~91% initial Coulombic efficiency and >88% capacity retention after 400 cycles. We captured the spatial distribution of LiF at various length scales and quantified its heterogeneity. The electrolyte shows self-terminated reactivity on graphite edge planes and results in a grainy, fluorinated pseudo-SEI. The molecular origin of the pseudo-SEI is elucidated by ab initio molecular dynamics (AIMD) simulations. The operando synchrotron analyses further demonstrate the reversible and monotonous phase transformation of cointercalated graphite. Our findings demonstrate the feasibility of Li cointercalation chemistry in graphite for extreme-condition batteries. The work also paves the foundation for understanding and modulating the interphase generated by ether electrolytes in a broad range of electrodes and batteries.

2.
Proc Natl Acad Sci U S A ; 119(16): e2201451119, 2022 04 19.
Article in English | MEDLINE | ID: mdl-35412901

ABSTRACT

It is a key challenge to prepare large-area diamonds by using the methods of high-pressure high-temperature and normal chemical vapor deposition (CVD). The formation mechanism of thermodynamically metastable diamond compared to graphite in low-pressure CVD possibly implies a distinctive way to synthesize large-area diamonds, while it is an intriguing problem due to the limitation of in situ characterization in this complex growth environment. Here, we design a series of short-term growth on the margins of cauliflower-like nanocrystalline diamond particles, allowing us to clearly observe the diamond formation process. The results show that vertical graphene sheets and nanocrystalline diamonds alternatively appear, in which vertical graphene sheets evolve into long ribbons and graphite needles, and they finally transform into diamonds. A transition process from graphite (200) to diamond (110) verifies the transformation, and Ta atoms from hot filaments are found to atomically disperse in the films. First principle calculations confirm that Ta-added H- or O-terminated bilayer graphene spontaneously transforms into diamond. This reveals that in the H, O, and Ta complex atmosphere of the CVD environment, diamond is formed by phase transformation from graphite. This subverts the general knowledge that graphite is etched by hydrogen and sp3 carbon species pile up to form diamond and supplies a way to prepare large-area diamonds based on large-sized graphite under normal pressure. This also provides an angle to understand the growth mechanism of materials with sp2 and sp3 electronic configurations.

3.
Nano Lett ; 24(22): 6529-6537, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38789104

ABSTRACT

Contact resistance is a multifaceted challenge faced by the 2D materials community. Large Schottky barrier heights and gap-state pinning are active obstacles that require an integrated approach to achieve the development of high-performance electronic devices based on 2D materials. In this work, we present semiconducting PtSe2 field effect transistors with all-van-der-Waals electrode and dielectric interfaces. We use graphite contacts, which enable high ION/IOFF ratios up to 109 with currents above 100 µA µm-1 and mobilities of 50 cm2 V-1 s-1 at room temperature and over 400 cm2 V-1 s-1 at 10 K. The devices exhibit high stability with a maximum hysteresis width below 36 mV nm-1. The contact resistance at the graphite-PtSe2 interface is found to be below 700 Ω µm. Our results present PtSe2 as a promising candidate for the realization of high-performance 2D circuits built solely with 2D materials.

4.
Nano Lett ; 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38989861

ABSTRACT

The design space of two-dimensional materials is undergoing significant expansion through the stacking of layers in non-equilibrium configurations. However, the lack of quantitative insights into twist dynamics impedes the development of such heterostructures. Herein, we utilize the lateral force sensitivity of an atomic force microscope cantilever and specially designed rotational bearing structures to measure the torque in graphite and MoS2 interfaces. While the extracted torsional energies are virtually zero across all angular misfit configurations, commensurate interfaces of graphite and MoS2 are characterized by values of 0.1533 and 0.6384 N-m/m2, respectively. Furthermore, we measured the adhesion energies of graphite and MoS2 to elucidate the interplay between twist and slide. The adhesion energy dominates over the torsional energy for the graphitic interface, suggesting a tendency to twist prior to superlubric sliding. Conversely, MoS2 displays an increased torsional energy exceeding its adhesion energy. Consequently, our findings demonstrate a fundamental disparity between the sliding-to-twisting dynamics at MoS2 and graphite interfaces.

5.
Nano Lett ; 2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38525903

ABSTRACT

The c-axis piezoresistivity is a fundamental and important parameter of graphite, but its value near zero pressure has not been well determined. Herein, a new method for studying the c-axis piezoresistivity of van der Waals materials near zero pressure is developed on the basis of in situ scanning electron microscopy and finite element simulation. The c-axis piezoresistivity of microscale highly oriented pyrolytic graphite (HOPG) is found to show a large value of 5.68 × 10-5 kPa-1 near zero pressure and decreases by 2 orders of magnitude to the established value of ∼10-7 kPa-1 when the pressure increases to 200 MPa. By modulating the serial tunneling barrier model on the basis of the stacking faults, we describe the c-axis electrical transport of HOPG under compression. The large c-axis piezoresistivity near zero pressure and its large decrease in magnitude with pressure are attributed to the rapid stiffening of the electromechanical properties under compression.

6.
J Comput Chem ; 2024 May 25.
Article in English | MEDLINE | ID: mdl-38795379

ABSTRACT

The previously introduced workflow to achieve an energetically and structurally optimized description of frontier bonds in quantum mechanical/molecular mechanics (QM/MM)-type applications was extended into the regime of computational material sciences at the example of a layered carbon model systems. Optimized QM/MM link bond parameters at HSEsol/6-311G(d,p) and self-consistent density functional tight binding (SCC-DFTB) were derived for graphitic systems, enabling detailed investigation of specific structure motifs occurring in graphene-derived structures v i a $$ via $$ quantum-chemical calculations. Exemplary molecular dynamics (MD) simulations in the isochoric-isothermic (NVT) ensemble were carried out to study the intercalation of lithium and the properties of the Stone-Thrower-Wales defect. The diffusivity of lithium as well as hydrogen and proton adsorption on a defective graphene surface served as additional example. The results of the QM/MM MD simulations provide detailed insight into the applicability of the employed link-bond strategy when studying intercalation and adsorption properties of graphitic materials.

7.
Small ; : e2403057, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38805740

ABSTRACT

Integrating lithium-ion and metal storage mechanisms to improve the capacity of graphite anode holds the potential to boost the energy density of lithium-ion batteries. However, this approach, typically plating lithium metal onto traditional graphite anodes, faces challenges of safety risks of severe lithium dendrite growth and short circuits due to restricted lithium metal accommodation space and unstable lithium plating in commercial carbonate electrolytes. Herein, a slightly expanded spherical graphite anode is developed with a precisely adjustable expanded structure to accommodate metallic lithium, achieving a well-balanced state of high capacity and stable lithium-ion/metal storage in commercial carbonate electrolytes. This structure also enables fast kinetics of both Li intercalation/de-intercalation and plating/stripping. With a total anode capacity of 1.5 times higher (558 mAh g-1) than graphite, the full cell coupled with a high-loading LiNi0.8Co0.1Mn0.1O2 cathode (13 mg cm-2) under a low N/P ratio (≈1.15) achieves long-term cycling stability (75% of capacity after 200 cycles, in contrast to the fast battery failure after 50 cycles with spherical graphite anode). Furthermore, the capacity of the full cell also reaches a low capacity decay rate of 0.05% per cycle at 0.2 C under the low temperature of -20 °C.

8.
Small ; 20(2): e2305639, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37658504

ABSTRACT

Prelithiation is an essential technology to compensate for the initial lithium loss of lithium-ion batteries due to the formation of solid electrolyte interphase (SEI) and irreversible structure change. However, the prelithiated materials/electrodes become more reactive with air and electrolyte resulting in unwanted side reactions and contaminations, which makes it difficult for the practical application of prelithiation technology. To address this problem, herein, interphase engineering through a simple solution treatment after chemical prelithiation is proposed to protect the prelithiated electrode. The used solutions are carefully selected, and the composition and nanostructure of the as-formed artificial SEIs are revealed by cryogenic electron microscopy and X-ray photoelectron spectroscopy. The electrochemical evaluation demonstrates the unique merits of this artificial SEI, especially for the fluorinated interphase, which not only enhances the interfacial ion transport but also increases the tolerance of the prelithiated electrode to the air. The treated graphite electrode shows an initial Coulombic efficiency of 129.4%, a high capacity of 170 mAh g-1 at 3 C, and negligible capacity decay after 200 cycles at 1 C. These findings not only provide a facile, universal, and controllable method to construct an artificial SEI but also enlighten the upgrade of battery fabrication and the alternative use of advanced electrolytes.

9.
Small ; 20(26): e2310201, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38243889

ABSTRACT

Enhancing the mobility of lithium-ions (Li+) through surface engineering is one of major challenges facing fast-charging lithium-ion batteries (LIBs). In case of demanding charging conditions, the use of a conventional artificial graphite (AG) anode leads to an increase in operating temperature and the formation of lithium dendrites on the anode surface. In this study, a biphasic zeolitic imidazolate framework (ZIF)-AG anode, designed strategically and coated with a mesoporous material, is verified to improve the pathways of Li+ and electrons under a high charging current density. In particular, the graphite surface is treated with a coating of a ZIF-8-derived carbon nanoparticles, which addresses sufficient surface porosity, enabling this material to serve as an electrolyte reservoir and facilitate Li+ intercalation. Moreover, the augmentation in specific surface area proves advantageous in reducing the overpotential for interfacial charge transfer reactions. In practical terms, employing a full-cell with the biphasic ZIF-AG anode results in a shorter charging time and improved cycling performance, demonstrating no evidence of Li plating during 300 cycles under 3.0 C-charging and 1.0 C-discharging. The research endeavors to contribute to the progress of anode materials by enhancing their charging capability, aligning with the increasing requirements of the electric vehicle applications.

10.
Small ; 20(28): e2400389, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38287734

ABSTRACT

Rechargeable Mn-metal batteries (MMBs) can attract considerable attention because Mn has the intrinsic merits including high energy density (976 mAh g-1), high air stability, and low toxicity. However, the application of Mn in rechargeable batteries is limited by the lack of proper cathodes for reversible Mn2+ intercalation/de-intercalation, thus leading to low working voltage (<1.8 V) and poor cycling stability (≤200 cycles). Herein, a high-voltage and durable MMB with graphite as the cathode is successfully constructed using a LiPF6-Mn(TFSI)2 hybrid electrolyte, which shows a high discharge voltage of 2.34 V and long-term stability of up to 1000 cycles. Mn(TFSI)2 can reduce the plating/stripping overpotential of Mn ions, while LiPF6 can efficiently improve the conductivity of the electrolyte. Electrochemical in-situ characterization implies the dual-anions intercalation/de-intercalation at the cathode and Mn2+ plating/stripping reaction at the anode. Theoretical calculations unveil the top site of graphite is the energetically favorable for anions intercalation and TFSI- shows the low migration barrier. This work paves an avenue for designing high-performance rechargeable MMBs towards electricity storage.

11.
Small ; : e2401675, 2024 Apr 21.
Article in English | MEDLINE | ID: mdl-38644329

ABSTRACT

Anodes with high capacity and long lifespan play an important role in the advanced batteries. However, none of the existing anodes can meet these two requirements simultaneously. Lithium (Li)-graphite composite anode presents great potential in balancing these two requirements. Herein, the working mechanism of Li-graphite composite anode is comprehensively investigated. The capacity decay features of the composite anode are different from those of Li ion intercalation in Li ion batteries and Li metal deposition in Li metal batteries. An intercalation and conversion hybrid storage mechanism are proposed by analyzing the capacity decay ratios in the composite anode with different initial specific capacities. The capacity decay models can be divided into four stages including Capacity Retention Stage, Relatively Independent Operation Stage, Intercalation & Conversion Coupling Stage, Pure Li Intercalation Stage. When the specific capacity is between 340 and 450 mAh g-1, its capacity decay ratio is between that of pure intercalation and conversion model. These results intensify the comprehensive understandings on the working principles in Li-graphite composite anode and present novel insights in the design of high-capacity and long-lifespan anode materials for the next-generation batteries.

12.
Small ; 20(22): e2305785, 2024 May.
Article in English | MEDLINE | ID: mdl-38143289

ABSTRACT

The increasing demand for graphite and the higher lithium content than environment abundance make the recycling of anode in spent lithium-ion batteries (LIBs) also become an inevitable trend. This work proposes a simple pathway to convert the retired graphite to high-performance expanded graphite (EG) under mild conditions. After the oxidation and intercalation by FeCl3 for the retired graphite, H2O2 molecules are more likely to penetrate into the extended layers. And the gas phase diffusion caused by the produced O2 from the redox reaction between FeCl3 and H2O2 further promotes lattice expansion of interlayers (0.535 nm), which is beneficial to the stripping of graphene oxide (GO) with fewer layers. The EG exhibits excellent electrochemical performances in both LIBs and sodium-ion batteries (SIBs). It delivers 331.5 mAh g-1 at 3C (1C = 372 mA g-1) in LIBs, while it achieves 176.8 mAh g-1 at 3C (1C = 120 mA g-1) in SIBs. Then the capacity retains 753.6 (LIBs) and 201.6 (SIBs) mAh g-1 after a long-term cycling of 500 times at 1C, respectively. The full cells with the EG electrodes after prelithium/presodiation also show excellent cycle stability. Thus, this work offers another referable strategy for the recycling of waste graphite in spent LIBs.

13.
Small ; 20(4): e2305841, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37712105

ABSTRACT

Pitch-derived carbon (PC) anode features the merits of low-cost, rich edge-defect sites, and tunable crystallization degree for potassium ion batteries (PIBs). However, gaining the PC anode with both rich edge-defect sites and robust structure remains challenging. Herein, micro-sized and robust PC/expanded-graphite (EG) composites (EGC) with rich edge-defect sites are massively synthesized via melting impregnation and confined pyrolysis. The PC is in situ encapsulated in micro-sized EG skeleton with robust chemical bonds between PC and EG after thermal treatment, endowing the structural stability as micro-sized carbon-carbon composites. The confinement effect originating from EG skeleton could suppress the crystallization degree of the PC and contribute rich edge-defect sites in EGC composites. Additionally, the EG skeleton inside EGC could form continuous electronic conduction nets and establish low-tortuosity carbonaceous electrodes, facilitating rapid electron/ion migration. While applied in PIBs, the EGC anode delivers a reversible capacity that up to 338.5 mAh g-1 at 0.1 A g-1 , superior rate performance of 127.5 mAh g-1 at 5.0 A g-1 , and long-term stability with 204.8 mAh g-1 retain after 700 cycles at 1.0 A g-1 . This novel strategy highlights an interesting category of heterogeneous carbon-carbon composite materials to keep pace with the demand for the future PIBs industry.

14.
Small ; 20(5): e2305309, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37752746

ABSTRACT

Dual-ion batteries (DIBs) are considered one of the promising energy storage devices in which graphite serves as a bi-functional electrode, i.e., anode and cathode in the aprotic organic solvents. Unlike conventional lithium-ion batteries (LIBs), DIBs reversibly store the cations and anions in the anode and cathodes during redox reactions, respectively. The electrolyte is a source for both cations and anions, so the choice of electrolyte plays a vital role. In the present work, the synthesis of SnO2 nanostructures is reported as a possible alternative for graphite anode, and the Li-storage performance is optimized in half-cell (Li/SnO2 ) assembly with varying amounts of conductive additive (acetylene black) and limited working potential (1 V vs Li). Finally, a DIB using recovered graphite (RG) fabricated from spent LIB as a cathode and SnO2 nanostructures as an anode under balanced loading conditions. Prior to the fabrication, both electrodes are pre-cycled to eliminate irreversibility. An in-situ impedance study has been employed to validate the passivation layer formation during the charge-discharge process. The high-performance SnO2 /RG-based DIB delivered a maximum discharge capacity of 380 mAh g-1 . The electrochemical performance of DIB has been assessed by varying temperature conditions to evaluate their suitability in different climatic conditions.

15.
Small ; 20(25): e2400653, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38385848

ABSTRACT

Self-organizing solid-binding peptides on atomically flat solid surfaces offer a unique bio/nano hybrid platform, useful for understanding the basic nature of biology/solid coupling and their practical applications. The surface behavior of peptides is determined by their molecular folding, which is influenced by various factors and is challenging to study. Here, the effect of charged amino acids is studied on the self-assembly behavior of a directed evolution selected graphite-binding dodecapeptide on graphite surface. Two mutations, M6 and M8, are designed to introduce negatively and positively charged moieties, respectively, at the anchoring domain of the wild-type (WT) peptide, affecting both binding and assembly. The questions addressed here are whether mutant peptides exhibit molecular crystal formation and demonstrate molecular recognition on the solid surface based on the specific mutations. Frequency-modulated atomic force microscopy is used for observations of the surface processes dynamically in water at molecular resolution over several hours at the ambient. The results indicate that while the mutants display distinct folding and surface behavior, each homogeneously nucleates and forms 2D self-organized patterns, akin to the WT peptide. However, their growth dynamics, domain formation, and crystalline lattice structures differ significantly. The results represent a significant step toward the rational design of bio/solid interfaces, potent facilitators of a variety of future implementations.


Subject(s)
Amino Acids , Microscopy, Atomic Force , Peptides , Point Mutation , Peptides/chemistry , Amino Acids/chemistry , Surface Properties , Graphite/chemistry
16.
Chemistry ; 30(21): e202303508, 2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38369596

ABSTRACT

Mastering graphene preparation is an essential step to its integration into practical applications. For large-scale purposes, full graphite exfoliation appears as a suitable route for graphene production. However, it requires overpowering attractive van der Waals forces demanding large energy input, with the risk of introducing defects in the material. This difficulty can be overcome by using graphite intercalation compounds (GICs) as starting material. The greater inter-sheet separation in GICs (compared with graphite) allows the gentler exfoliation of soluble graphenide (reduced graphene) flakes. A solvent exchange strategy, accompanied by the oxidation of graphenide to graphene, can be implemented to produce stable aqueous graphene dispersions (Eau de graphene, EdG), which can be readily incorporated into many processes or materials. In this work, we prove that electrostatic forces are responsible for the stability of fully exfoliated graphene in water, and explore the influence of the oxidation and solvent exchange procedures on the quality and stability of EdG. We show that the amount of defects in graphene is limited if graphenide oxidation is carried out before exposing the material to water, and that gas removal of water before the incorporation of pre-oxidized graphene is advantageous for the long-term stability of EdG.

17.
Chemistry ; 30(14): e202303632, 2024 Mar 07.
Article in English | MEDLINE | ID: mdl-38150289

ABSTRACT

The lithium-ion batteries (LIBs) with high nickel cathode have high specific energy, but as the nickel content in the cathode active material increases, batteries are suffering from temperature limitations, unstable performance, and transition metal dissolution during long cycling. In this work, a functional electrolyte with P-phenyl diisothiocyanate (PDITC) additive is developed to stabilize the performance of LiNi0.8 Co0.1 Mn0.1 O2 (NCM811)/graphite LIBs over a wide temperature range. Compared to the batteries without the additive, the capacity retention of the batteries with PDITC-containing electrolyte increases from 23 % to 74 % after 1400 cycles at 25 °C, and from 15 % to 85 % after 300 cycles at 45 °C. After being stored at 60 °C, the capacity retention rate and capacity recovery rate of the battery are also improved. In addition, the PDITC-containing battery has a higher discharge capacity at -20 °C, and the capacity retention rate increases from 79 % to 90 % after 500 cycles at 0 °C. Both theoretical calculations and spectroscopic results demonstrate that PDITC is involved in constructing a dense interphase, inhibiting the decomposition of the electrolyte and reducing the interfacial impedance. The application of PDITC provides a new strategy to improve the wide-temperature performance of the NCM811/graphite LIBs.

18.
J Microsc ; 295(2): 191-198, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38482774

ABSTRACT

A new method is proposed to measure the linear coefficient of thermal expansion (CTE) of solid metals and ceramics of micron-sized dimensions. This approach uses a focused ion beam (FIB) to extract and transfer a slab of the sample, typically (15-20) ×10 × (3-5) µm onto a Micro-Electro-Mechanical Systems (MEMS) in situ heating holder inside a scanning electron microscope (SEM). CTE is thereafter calculated by image correlating the change of length (ΔL) between the fiducial marks on the slab as a function of temperature, taking advantage of the temperature calibration of the MEMS heating holder and nanometre resolution of the scanning electron microscope. The CTE results are validated to be consistent with standard copper and silicon. We further demonstrate the method on a graphene platelet reinforced copper composite and a graphite filler phase isolated from a bulk sample, these represent materials that cannot be practically synthesised or isolated at the macro-scale. Errors associated with the measurement are discussed.

19.
J Microsc ; 294(1): 26-35, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38224001

ABSTRACT

We present the design and performance of a novel scanning tunnelling microscope (STM) operating in a cryogen-free superconducting magnet. Our home-built STM head is compact (51.5 mm long and 20 mm in diameter) and has a single arm that provides complete openness in the scanning area between the tip and sample. The STM head consists of two piezoelectric tubes (PTs), a piezoelectric scanning tube (PST) mounted on a well-polished zirconia shaft, and a large PT housed in a sapphire tube called the motor tube. The main body of the STM head is made of tantalum. In this design, we fixed the sapphire tube to the frame with screws so that the tube's position can be changed quickly. To analyse the stiffness of the STM head unit, we identified the lowest eigenfrequencies with 3 and 4 kHz in the bending modes, 8 kHz in a torsional mode, and 9 kHz in a longitudinal mode by finite element analysis, and also measured the low drift rates in the X-Y plane and in the Z direction. The high performance of the home-built STM was demonstrated by images of the hexagonal graphite lattice at 300 K and in a sweeping magnetic field from 0 T to 9 T. Our results confirm the high stability, vibration resistance, insensitivity to high magnetic fields and the application potential of our newly developed STM for the investigation of low-frequency systems with high static support stiffness in physics, chemistry, material and biological sciences.

20.
Nanotechnology ; 35(23)2024 Mar 18.
Article in English | MEDLINE | ID: mdl-38417173

ABSTRACT

Graphene and its derivatives are widely used in the field of energy conversion and management due to their excellent physical and chemical properties. In this paper, ultra-thin graphite film (GF) with thickness of 100-150 nm prepared by chemical vapor deposition was transferred to oxygen plasma-treated polyimide (PI) substrate as flexible heating film. The electrothermal and photothermal properties of GF on PI substrates with different treatment time were studied. The experimental results show that the PI substrate pretreated by oxygen plasma can change the surface morphology of GF, increase its electrical conductivity and light absorption capacity, and significantly improve the electrothermal and photothermal properties of GF heater. Under the low applied voltage of 5 V (power density of 0.81 W cm-2), the surface temperature of GF on 40 min plasma-treated PI substrate can rise to 250 °C, which is nearly 50 °C higher than that of GF on untreated PI substrate. When 100 nm thick commercial multilayer graphene film (MLG) is used, plasma-treated PI substrate can increase the electric heating temperature of MLG by 70 °C. In terms of photothermal performance, the surface temperature of GF on 50 min plasma-treated PI substrate can reach 73 °C under one Sun irradiation, which is 8 °C higher than that on untreated substrate. The experimental results are in good agreement with the simulation research. Our strategy has important implications for the development of efficient and energy-saving graphene/graphite-based heating films for advanced electrothermal and photothermal conversion devices.

SELECTION OF CITATIONS
SEARCH DETAIL