Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 327
Filter
1.
Mol Cell ; 83(20): 3659-3668.e10, 2023 10 19.
Article in English | MEDLINE | ID: mdl-37832547

ABSTRACT

The integrity of the nuclear envelope (NE) is essential for maintaining the structural stability of the nucleus. Rupture of the NE has been frequently observed in cancer cells, especially in the context of mechanical challenges, such as physical confinement and migration. However, spontaneous NE rupture events, without any obvious physical challenges to the cell, have also been described. The molecular mechanism(s) of these spontaneous NE rupture events remain to be explored. Here, we show that DNA damage and subsequent ATR activation leads to NE rupture. Upon DNA damage, lamin A/C is phosphorylated in an ATR-dependent manner, leading to changes in lamina assembly and, ultimately, NE rupture. In addition, we show that cancer cells with intrinsic DNA repair defects undergo frequent events of DNA-damage-induced NE rupture, which renders them extremely sensitive to further NE perturbations. Exploiting this NE vulnerability could provide a new angle to complement traditional, DNA-damage-based chemotherapy.


Subject(s)
Lamin Type A , Nuclear Envelope , Nuclear Envelope/metabolism , Lamin Type A/genetics , Lamin Type A/metabolism , Phosphorylation , DNA Damage , DNA/metabolism , Cell Nucleus/metabolism
2.
Am J Hum Genet ; 110(4): 648-662, 2023 04 06.
Article in English | MEDLINE | ID: mdl-36977412

ABSTRACT

Several breast cancer susceptibility genes have been discovered, but more are likely to exist. To identify additional breast cancer susceptibility genes, we used the founder population of Poland and performed whole-exome sequencing on 510 women with familial breast cancer and 308 control subjects. We identified a rare mutation in ATRIP (GenBank: NM_130384.3: c.1152_1155del [p.Gly385Ter]) in two women with breast cancer. At the validation phase, we found this variant in 42/16,085 unselected Polish breast cancer-affected individuals and in 11/9,285 control subjects (OR = 2.14, 95% CI = 1.13-4.28, p = 0.02). By analyzing the sequence data of the UK Biobank study participants (450,000 individuals), we identified ATRIP loss-of-function variants among 13/15,643 breast cancer-affected individuals versus 40/157,943 control subjects (OR = 3.28, 95% CI = 1.76-6.14, p < 0.001). Immunohistochemistry and functional studies showed the ATRIP c.1152_1155del variant allele is weakly expressed compared to the wild-type allele, and truncated ATRIP fails to perform its normal function to prevent replicative stress. We showed that tumors of women with breast cancer who have a germline ATRIP mutation have loss of heterozygosity at the site of ATRIP mutation and genomic homologous recombination deficiency. ATRIP is a critical partner of ATR that binds to RPA coating single-stranded DNA at sites of stalled DNA replication forks. Proper activation of ATR-ATRIP elicits a DNA damage checkpoint crucial in regulating cellular responses to DNA replication stress. Based on our observations, we conclude ATRIP is a breast cancer susceptibility gene candidate linking DNA replication stress to breast cancer.


Subject(s)
Adaptor Proteins, Signal Transducing , Breast Neoplasms , DNA-Binding Proteins , Female , Humans , Adaptor Proteins, Signal Transducing/genetics , Biological Specimen Banks , Breast Neoplasms/genetics , Cell Cycle Proteins/genetics , DNA Damage , DNA-Binding Proteins/genetics , Poland/epidemiology , Replication Protein A/genetics , Replication Protein A/metabolism , United Kingdom/epidemiology
3.
J Pathol ; 262(2): 137-146, 2024 02.
Article in English | MEDLINE | ID: mdl-37850614

ABSTRACT

The identification of causal BRCA1/2 pathogenic variants (PVs) in epithelial ovarian carcinoma (EOC) aids the selection of patients for genetic counselling and treatment decision-making. Current recommendations therefore stress sequencing of all EOCs, regardless of histotype. Although it is recognised that BRCA1/2 PVs cluster in high-grade serous ovarian carcinomas (HGSOC), this view is largely unsubstantiated by detailed analysis. Here, we aimed to analyse the results of BRCA1/2 tumour sequencing in a centrally revised, consecutive, prospective series including all EOC histotypes. Sequencing of n = 946 EOCs revealed BRCA1/2 PVs in 125 samples (13%), only eight of which were found in non-HGSOC histotypes. Specifically, BRCA1/2 PVs were identified in high-grade endometrioid (3/20; 15%), low-grade endometrioid (1/40; 2.5%), low-grade serous (3/67; 4.5%), and clear cell (1/64; 1.6%) EOCs. No PVs were identified in any mucinous ovarian carcinomas tested. By re-evaluation and using loss of heterozygosity and homologous recombination deficiency analyses, we then assessed: (1) whether the eight 'anomalous' cases were potentially histologically misclassified and (2) whether the identified variants were likely causal in carcinogenesis. The first 'anomalous' non-HGSOC with a BRCA1/2 PV proved to be a misdiagnosed HGSOC. Next, germline BRCA2 variants, found in two p53-abnormal high-grade endometrioid tumours, showed substantial evidence supporting causality. One additional, likely causal variant, found in a p53-wildtype low-grade serous ovarian carcinoma, was of somatic origin. The remaining cases showed retention of the BRCA1/2 wildtype allele, suggestive of non-causal secondary passenger variants. We conclude that likely causal BRCA1/2 variants are present in high-grade endometrioid tumours but are absent from the other EOC histotypes tested. Although the findings require validation, these results seem to justify a transition from universal to histotype-directed sequencing. Furthermore, in-depth functional analysis of tumours harbouring BRCA1/2 variants combined with detailed revision of cancer histotypes can serve as a model in other BRCA1/2-related cancers. © 2023 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.


Subject(s)
BRCA1 Protein , Ovarian Neoplasms , Female , Humans , BRCA1 Protein/genetics , BRCA2 Protein/genetics , BRCA2 Protein/metabolism , Ovarian Neoplasms/genetics , Ovarian Neoplasms/pathology , Tumor Suppressor Protein p53 , Carcinoma, Ovarian Epithelial/genetics
4.
Drug Resist Updat ; 76: 101115, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39002266

ABSTRACT

Pancreatic ductal adenocarcinoma (PDAC) is a lethal disease, notably resistant to existing therapies. Current research indicates that PDAC patients deficient in homologous recombination (HR) benefit from platinum-based treatments and poly-ADP-ribose polymerase inhibitors (PARPi). However, the effectiveness of PARPi in HR-deficient (HRD) PDAC is suboptimal, and significant challenges remain in fully understanding the distinct characteristics and implications of HRD-associated PDAC. We analyzed 16 PDAC patient-derived tissues, categorized by their homologous recombination deficiency (HRD) scores, and performed high-plex immunofluorescence analysis to define 20 cell phenotypes, thereby generating an in-situ PDAC tumor-immune landscape. Spatial phenotypic-transcriptomic profiling guided by regions-of-interest (ROIs) identified a crucial regulatory mechanism through localized tumor-adjacent macrophages, potentially in an HRD-dependent manner. Cellular neighborhood (CN) analysis further demonstrated the existence of macrophage-associated high-ordered cellular functional units in spatial contexts. Using our multi-omics spatial profiling strategy, we uncovered a dynamic macrophage-mediated regulatory axis linking HRD status with SIGLEC10 and CD52. These findings demonstrate the potential of targeting CD52 in combination with PARPi as a therapeutic intervention for PDAC.


Subject(s)
Carcinoma, Pancreatic Ductal , Homologous Recombination , Macrophages , Pancreatic Neoplasms , Humans , Carcinoma, Pancreatic Ductal/immunology , Carcinoma, Pancreatic Ductal/genetics , Carcinoma, Pancreatic Ductal/drug therapy , Carcinoma, Pancreatic Ductal/pathology , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/immunology , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/pathology , Macrophages/immunology , Macrophages/metabolism , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Poly(ADP-ribose) Polymerase Inhibitors/therapeutic use , Tumor Microenvironment/immunology
5.
Semin Cancer Biol ; 97: 70-85, 2023 12.
Article in English | MEDLINE | ID: mdl-37832751

ABSTRACT

Artificial Intelligence (AI)-enhanced histopathology presents unprecedented opportunities to benefit oncology through interpretable methods that require only one overall label per hematoxylin and eosin (H&E) slide with no tissue-level annotations. We present a structured review of these methods organized by their degree of verifiability and by commonly recurring application areas in oncological characterization. First, we discuss morphological markers (tumor presence/absence, metastases, subtypes, grades) in which AI-identified regions of interest (ROIs) within whole slide images (WSIs) verifiably overlap with pathologist-identified ROIs. Second, we discuss molecular markers (gene expression, molecular subtyping) that are not verified via H&E but rather based on overlap with positive regions on adjacent tissue. Third, we discuss genetic markers (mutations, mutational burden, microsatellite instability, chromosomal instability) that current technologies cannot verify if AI methods spatially resolve specific genetic alterations. Fourth, we discuss the direct prediction of survival to which AI-identified histopathological features quantitatively correlate but are nonetheless not mechanistically verifiable. Finally, we discuss in detail several opportunities and challenges for these one-label-per-slide methods within oncology. Opportunities include reducing the cost of research and clinical care, reducing the workload of clinicians, personalized medicine, and unlocking the full potential of histopathology through new imaging-based biomarkers. Current challenges include explainability and interpretability, validation via adjacent tissue sections, reproducibility, data availability, computational needs, data requirements, domain adaptability, external validation, dataset imbalances, and finally commercialization and clinical potential. Ultimately, the relative ease and minimum upfront cost with which relevant data can be collected in addition to the plethora of available AI methods for outcome-driven analysis will surmount these current limitations and achieve the innumerable opportunities associated with AI-driven histopathology for the benefit of oncology.


Subject(s)
Artificial Intelligence , Chromosomal Instability , Humans , Reproducibility of Results , Eosine Yellowish-(YS) , Medical Oncology
6.
BMC Bioinformatics ; 25(1): 236, 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-38997639

ABSTRACT

BACKGROUND: Homologous recombination deficiency (HRD) stands as a clinical indicator for discerning responsive outcomes to platinum-based chemotherapy and poly ADP-ribose polymerase (PARP) inhibitors. One of the conventional approaches to HRD prognostication has generally centered on identifying deleterious mutations within the BRCA1/2 genes, along with quantifying the genomic scars, such as Genomic Instability Score (GIS) estimation with scarHRD. However, the scarHRD method has limitations in scenarios involving tumors bereft of corresponding germline data. Although several RNA-seq-based HRD prediction algorithms have been developed, they mainly support cohort-wise classification, thereby yielding HRD status without furnishing an analogous quantitative metric akin to scarHRD. This study introduces the expHRD method, which operates as a novel transcriptome-based framework tailored to n-of-1-style HRD scoring. RESULTS: The prediction model has been established using the elastic net regression method in the Cancer Genome Atlas (TCGA) pan-cancer training set. The bootstrap technique derived the HRD geneset for applying the expHRD calculation. The expHRD demonstrated a notable correlation with scarHRD and superior performance in predicting HRD-high samples. We also performed intra- and extra-cohort evaluations for clinical feasibility in the TCGA-OV and the Genomic Data Commons (GDC) ovarian cancer cohort, respectively. The innovative web service designed for ease of use is poised to extend the realms of HRD prediction across diverse malignancies, with ovarian cancer standing as an emblematic example. CONCLUSIONS: Our novel approach leverages the transcriptome data, enabling the prediction of HRD status with remarkable precision. This innovative method addresses the challenges associated with limited available data, opening new avenues for utilizing transcriptomics to inform clinical decisions.


Subject(s)
Homologous Recombination , Neoplasms , Transcriptome , Humans , Transcriptome/genetics , Homologous Recombination/genetics , Neoplasms/genetics , Algorithms , Female , Gene Expression Profiling/methods
7.
Med Res Rev ; 44(6): 2774-2792, 2024 Nov.
Article in English | MEDLINE | ID: mdl-38922930

ABSTRACT

Breast cancer (BC) is a highly heterogeneous disease, and the presence of germline breast cancer gene mutation (gBRCAm) is associated with a poor prognosis. Triple-negative breast cancer (TNBC) is a BC subtype, characterized by the absence of hormone and growth factor receptor expression, making therapeutic decisions difficult. Defects in the DNA damage response pathway due to mutation in breast cancer genes (BRCA 1/2) lead to homologous recombination deficiency (HRD). However, in HRD conditions, poly (adenosine diphosphate-ribose) polymerase (PARP) proteins repair DNA damage and lead to tumor cell survival. Biological understanding of HRD leads to the development of PARP inhibitors (PARPi), which trap PARP proteins and cause genomic instability and tumor cell lysis. HRD assessment can be an important biomarker in identifying gBRCAm patients with BC who could benefit from PARPi therapy. HRD can be identified by homologous recombination repair (HRR) gene-based assays, genomic-scarring assays and mutational signatures, transcription and protein expression profiles, and functional assays. However, gold standard methodologies that are robust and reliable to assess HRD are not available currently. Hence, there is a pressing need to develop accurate biomarkers identifying HRD tumors to guide targeted therapies such as PARPi in patients with BC. HRD assessment has shown fruitful outcomes in chemotherapy studies and preliminary evidence on PARPi intervention as monotherapy and combination therapy in HRD-stratified patients. Furthermore, ongoing trials are exploring the potential of PARPi in BC and clinically complex TNBC settings, where HRD testing is used as an adjunct to stratify patients based on BRCA mutations.


Subject(s)
Poly(ADP-ribose) Polymerase Inhibitors , Triple Negative Breast Neoplasms , Humans , Triple Negative Breast Neoplasms/drug therapy , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Female , Recombinational DNA Repair
8.
Cancer Sci ; 115(2): 635-647, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38041241

ABSTRACT

Tumor sensitivity to platinum (Pt)-based chemotherapy and poly(adenosine diphosphate ribose) polymerase (PARP) inhibitors is increased by homologous recombination deficiency-causing mutations; in particular, reversion mutations cause drug resistance by restoring protein function. Treatment response is predicted by breast cancer susceptibility gene 1/2 (BRCA1/2) mutations; however, BRCA1/2 reversion mutations have not been comprehensively studied in pan-cancer cohorts. We aimed to characterize BRCA1/2 reversion mutations in a large pan-cancer cohort of Japanese patients by retrospectively analyzing sequencing data for BRCA1/2 pathogenic/likely pathogenic mutations in 3738 patients with 32 cancer types. We identified somatic mutations in tumors or circulating cell-free DNA that could restore the ORF of adverse alleles, including reversion mutations. We identified 12 (0.32%) patients with somatic BRCA1 (n = 3) and BRCA2 (n = 9) reversion mutations in breast (n = 4), ovarian/fallopian tube/peritoneal (n = 4), pancreatic (n = 2), prostate (n = 1), and gallbladder (n = 1) cancers. We identified 21 reversion events-BRCA1 (n = 3), BRCA2 (n = 18)-including eight pure deletions, one single-nucleotide variant, six multinucleotide variants, and six deletion-insertions. Seven (33.3%) reversion deletions showed a microhomology length greater than 1 bp, suggesting microhomology-mediated end-join repair. Disease course data were obtained for all patients with reversion events: four patients acquired mutations after PARP-inhibitor treatment failure, two showed somatic reversion mutations after disease progression, following Pt-based treatment, five showed mutations after both treatments, one patient with pancreatic cancer and BRCA1 reversion mutations had no history of either treatment. Although reversion mutations commonly occur in BRCA-associated cancers, our findings suggest that reversion mutations due to Pt-chemotherapy might be correlated with BRCA1/2-mediated tumorigenesis even in non-BRCA-associated histologies.


Subject(s)
Ovarian Neoplasms , Poly(ADP-ribose) Polymerase Inhibitors , Male , Female , Humans , Poly(ADP-ribose) Polymerase Inhibitors/therapeutic use , BRCA1 Protein/genetics , BRCA2 Protein/genetics , Ovarian Neoplasms/genetics , Germ-Line Mutation , Retrospective Studies , Mutation , Poly(ADP-ribose) Polymerases
9.
Cancer Sci ; 2024 Sep 24.
Article in English | MEDLINE | ID: mdl-39315592

ABSTRACT

Pancreatic ductal adenocarcinoma (PDAC) poses significant challenges due to its high mortality, making it a critical area of research. This retrospective observational study aimed to analyze real-world data from comprehensive genome profiling (CGP) of Japanese patients with PDAC, mainly focusing on differences in gene detection rates among panels and the implications for homologous recombination deficiency (HRD) status. This study enrolled 2568 patients with PDAC who had undergone CGP between June 2019 and December 2021 using data from the nationwide Center for Cancer Genomics and Advanced Therapeutics database. Two types of CGP assays (tissue and liquid biopsies) were compared and a higher detection rate of genetic abnormalities in tissue specimens was revealed. HRD-related gene alterations were detected in 23% of patients, with BRCA1/2 mutations accounting for 0.9% and 2.9% of patients, respectively. Treatment outcome analysis indicated that patients with BRCA1/2 mutations had a longer time to treatment discontinuation with FOLFIRINOX than gemcitabine plus nab-paclitaxel as first-line therapy (9.3 vs. 5.6 months, p = 0.028). However, no significant differences were observed in the treatment response among the other HRD-related genes. Logistic regression analysis identified younger age and family history of breast, prostate, and ovarian cancers as predictive factors for HRD-related gene alterations. Despite the lack of progression-free survival data and the inability to discriminate between germline and somatic mutations, this study provides valuable insights into the clinical implications of CGP in Japanese patients with PDAC. Further research is warranted to optimize panel selection and elucidate the efficacy of platinum-based therapies depending on the HRD status.

10.
Prostate ; 2024 Sep 09.
Article in English | MEDLINE | ID: mdl-39252459

ABSTRACT

BACKGROUND: The PARP inhibitor (PARPi) olaparib is approved for homologous recombination repair (HRR) gene-altered metastatic castration-resistant prostate cancer (mCRPC). However, there is significant heterogeneity in response to PARPi in patients with mCRPC. Better clinical biomarkers are needed to identify patients likely to benefit from PARPi. METHODS: Patients with prostate adenocarcinoma and panel sequencing at Dana-Farber Cancer Institute were identified. Mutational signature analysis was performed using SigMA to characterize tumors as HRR deficient (HRD). The validity of SigMA to identify patients likely to benefit from olaparib was compared to the current FDA label (presence of a deleterious alteration in one of 14 HRR genes). RESULTS: 546 patients were identified, of which 34% were HRD. Among patients with HRR gene alterations, only patients with BRCA2 two-copy loss (2CL) were more likely to be HRD compared to patients without HRR gene alterations (74% vs 31%; P = 9.1 × 10-7). 28 patients with mCRPC received olaparib, of which 13 were HRD and 9 had BRCA2 2CL. SigMA improved upon the current FDA label for predicting PSA50 (sensitivity: 100% vs 90%; specificity: 83% vs 44%; PPV: 77% vs 47%; NPV: 100% vs 89%) and rPFS > 6 months (sensitivity: both 92%; specificity: 93% vs 53%; PPV: 92% vs 63%; NPV: 93% vs 89%). On multivariate analysis, incorporating prognostic clinical factors and HR gene alterations, SigMA-predicted HRD independently associated with improved PSA-PFS (HR = 0.086, p = 0.00082) and rPFS (HR = 0.078, p = 0.0070). CONCLUSIONS: SigMA-predicted HRD may better identify patients likely to benefit from olaparib as compared to the current FDA label. Larger studies are needed for further validation.

SELECTION OF CITATIONS
SEARCH DETAIL