Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
1.
Eur J Immunol ; 53(6): e2250220, 2023 06.
Article in English | MEDLINE | ID: mdl-36946072

ABSTRACT

Vγ9Vδ2 T cells can recognize various molecules associated with cellular stress or transformation, providing a unique avenue for the treatment of cancers or infectious diseases. Nonetheless, Vγ9Vδ2 T-cell-based immunotherapies frequently achieve suboptimal efficacies in vivo. Enhancing the cytotoxic effector function of Vγ9Vδ2 T cells is one potential avenue through which the immunotherapeutic potential of this subset may be improved. We compared the use of four pro-inflammatory cytokines on the effector phenotype and functions of in vitro expanded Vγ9Vδ2 T cells, and demonstrated TCR-independent cytotoxicity mediated through CD26, CD16, and NKG2D, which could be further enhanced by IL-23, IL-18, and IL-15 stimulation throughout expansion. This work defines promising culture conditions that could improve Vγ9Vδ2 T-cell-based immunotherapies and furthers our understanding of how this subset might recognize and target transformed or infected cells.


Subject(s)
Receptors, Antigen , T-Lymphocytes , Humans , Cytokines/metabolism , Receptors, Antigen/immunology , Cell Proliferation , T-Lymphocytes/cytology , T-Lymphocytes/metabolism
2.
Immunol Rev ; 298(1): 134-152, 2020 11.
Article in English | MEDLINE | ID: mdl-33136294

ABSTRACT

As interest increases in harnessing the potential power of tissue-resident cells for human health and disease, γδ T cells have been thrust into the limelight due to their prevalence in peripheral tissues, their sentinel-like phenotypes, and their unique antigen recognition capabilities. This review focuses primarily on human γδ T cells, highlighting their distinctive characteristics including antigen recognition, function, and development, with an emphasis on where they differ from their αß T cell comparators, as well as from γδ T cell populations in the mouse. We review the antigens that have been identified thus far to regulate members of the human Vδ1 population and discuss what players are involved in transducing phosphoantigen-mediated signals to human Vγ9Vδ2 T cells. We also briefly review distinguishing features of these cells in terms of TCR signaling, use of coreceptor and costimulatory molecules and their development. These cells have great potential to be harnessed in a clinical setting, but caution must be taken to understand their unique capabilities and how they differ from the populations to which they are commonly compared.


Subject(s)
Receptors, Antigen, T-Cell, gamma-delta , T-Lymphocytes , Animals , Antigens , Humans , Mice , Signal Transduction
3.
Proc Natl Acad Sci U S A ; 113(50): 14378-14383, 2016 12 13.
Article in English | MEDLINE | ID: mdl-27911793

ABSTRACT

Human γδ T cells display potent responses to pathogens and malignancies. Of particular interest are those expressing a γδ T-cell receptor (TCR) incorporating TCRδ-chain variable-region-2 [Vδ2(+)], which are activated by pathogen-derived phosphoantigens (pAgs), or host-derived pAgs that accumulate in transformed cells or in cells exposed to aminobisphosphonates. Once activated, Vδ2(+) T cells exhibit multiple effector functions that have made them attractive candidates for immunotherapy. Despite this, clinical trials have reported mixed patient responses, highlighting a need for better understanding of Vδ2(+) T-cell biology. Here, we reveal previously unappreciated functional heterogeneity between the Vδ2(+) T-cell compartments of 63 healthy individuals. In this cohort, we identify distinct "Vδ2 profiles" that are stable over time; that do not correlate with age, gender, or history of phosphoantigen activation; and that develop after leaving the thymus. Multiple analyses suggest these Vδ2 profiles consist of variable proportions of two dominant but contrasting Vδ2(+) T-cell subsets that have divergent transcriptional programs and that display mechanistically distinct cytotoxic potentials. Importantly, an individual's Vδ2 profile predicts defined effector capacities, demonstrated by contrasting mechanisms and efficiencies of killing of a range of tumor cell lines. In short, these data support patient stratification to identify individuals with Vδ2 profiles that have effector mechanisms compatible with tumor killing and suggest that tailored Vδ2-profile-specific activation protocols may maximize the chances of future treatment success.


Subject(s)
Receptors, Antigen, T-Cell, gamma-delta/metabolism , T-Lymphocyte Subsets/immunology , T-Lymphocytes, Cytotoxic/immunology , Adolescent , Adult , Aged , CX3C Chemokine Receptor 1/metabolism , Child , Child, Preschool , Cytotoxicity, Immunologic , Female , Gene Expression Profiling , Genes, T-Cell Receptor delta , Healthy Volunteers , Humans , Immunophenotyping , Lymphocyte Activation/immunology , Male , Middle Aged , Receptors, Antigen, T-Cell, gamma-delta/genetics , Receptors, CCR6/metabolism , Young Adult
4.
Eur J Immunol ; 47(6): 982-992, 2017 06.
Article in English | MEDLINE | ID: mdl-28386905

ABSTRACT

Phosphoantigens (PAgs)-like HMBPP ((E)-4-hydroxy-3-methyl-but-2-enyl diphosphate) and butyrophilin 3 (BTN3A, CD277)-specific monoclonal antibody 20.1 induce TCR-mediated activation of Vγ9Vδ2 T cells. Here, we compared murine reporter cells transduced with Vγ9Vδ2 TCRs G115, D1C55, and MOP for the activation in culture with human RAJI cells and PAgs or mAb 20.1 and its single-chain (sc) derivative. All transductants responded readily to PAg but only TCR MOP γ-chain-expressing cells responded to mAb/sc 20.1. Furthermore, both antagonist and agonist mAb and sc of the agonist mAb inhibited the PAg response of TCR-transduced murine reporter cells. These findings suggest that, in contrast to stimulation by physiological stimulators (PAg), the responsiveness to mAb 20.1 depends strongly on CDR3 sequences of the TCR, and that mAb 20.1 can interfere with the PAg-response. Mouse or human origin of reporter cells might affect the mAb 20.1 response since all three TCR-mediated mAb 20.1-induced activation of TCR-transduced Jurkat cells. The pronounced differences between PAg and mAb 20.1-induced activation observed here help to understand the often contradictory published data. This study provides novel perspectives on the physiological mechanism of Vγ9Vδ2 T-cell activation, and highlights the complex mode of action of BTN3A-specific antibodies as agents in cancer immunotherapy.


Subject(s)
Antibodies, Monoclonal/immunology , Antigens, CD/immunology , Butyrophilins/immunology , Lymphocyte Activation , Receptors, Antigen, T-Cell, gamma-delta/immunology , T-Lymphocytes/immunology , Animals , Cell Line , HEK293 Cells , Humans , Mice
5.
J Leukoc Biol ; 112(6): 1701-1716, 2022 12.
Article in English | MEDLINE | ID: mdl-35770879

ABSTRACT

γδT cells recognize and exert cytotoxicity against tumor cells independently of MHC restriction and have antigen presentation and regulatory functions to promote adaptive immune responses. They are considered as potential immune cells for cellular immunotherapy in cancer patients. However, it is challenging to ex vivo expand human γδT cells that have superb effector functions and long-term survival for adoptive cancer therapy. We found that IL-12/18 combination could drastically promote IFN-γ secretion and cytotoxicity in human γδT cells. However, the enhanced activation of human γδT cells is accompanied by increased apoptosis and elevated expressions of co-inhibitory receptors under the stimulation of IL-12/18. We further demonstrated that IL-12/18 induced apoptosis of human γδT cells was in a phosphoantigen or IFN-γ-independent manner. Transcriptomic analysis suggested that IL-12/18-induced apoptosis of human γδT cells was mediated by the activation of JNK pathway. p-JNK inhibitor (SP-600125) treatment effectively revived human γδT cells from the apoptosis induced by IL-12/18 and maintained their enhanced IFN-γ production and cytotoxicity against tumor cells. Our results provide a novel and feasible strategy for ex vivo expansion of cytokine-activated human γδT cells, which could promote the efficacy of γδT cell adoptive immunotherapy in cancer patients.


Subject(s)
Neoplasms , Receptors, Antigen, T-Cell, gamma-delta , T-Lymphocytes , Humans , Apoptosis , Immunotherapy, Adoptive , Interleukin-12 , Interleukin-18 , T-Lymphocytes/immunology , MAP Kinase Kinase 4/antagonists & inhibitors
6.
Front Immunol ; 13: 891687, 2022.
Article in English | MEDLINE | ID: mdl-35757696

ABSTRACT

Circulating immune cell compartments have been extensively studied for decades, but limited access to peripheral tissue and cell yield have hampered our understanding of tissue-based immunity, especially in γδ T cells. γδ T cells are a unique subset of T cells that are rare in secondary lymphoid organs, but enriched in many peripheral tissues including the skin, uterus, and other epithelial tissues. In addition to immune surveillance activities, recent reports have revealed exciting new roles for γδ T cells in homeostatic tissue physiology in mice and humans. It is therefore important to investigate to what extent the developmental rules described using mouse models transfer to human γδ T cells. Besides, it will be necessary to understand the differences in the development and biogenesis of human and mouse γδ T cells; to understand how γδ T cells are maintained in physiological and pathological circumstances within different tissues, as well as characterize the progenitors of different tissue-resident γδ T cells. Here, we summarize current knowledge of the γδ T phenotype in various tissues in mice and humans, describing the similarities and differences of tissue-resident γδ T cells in mice and humans.


Subject(s)
Receptors, Antigen, T-Cell, gamma-delta , T-Lymphocytes , Animals , Female , Homeostasis , Humans , Lymphocyte Count , Mice , Skin
7.
Oncoimmunology ; 10(1): 1989789, 2021.
Article in English | MEDLINE | ID: mdl-34712512

ABSTRACT

Human Vγ2Vδ2 (also termed Vγ9Vδ2) T cells play important roles in microbial and tumor immunity by monitoring foreign- and self-prenyl pyrophosphate metabolites in isoprenoid biosynthesis. Accumulation of isoprenoid metabolites after bisphosphonate treatment allows Vγ2Vδ2 T cells to recognize and kill tumors independently of their MHC expression or burden of non-synonymous mutations. Clinical trials with more than 400 patients show that adoptive immunotherapy with Vγ2Vδ2 T cells has few side effects but has resulted in only a few partial and complete remissions. Here, we have tested Vγ2Vδ2 T cells for expression of inhibitory receptors and determined whether adding PD-1 checkpoint blockade to adoptively transferred Vγ2Vδ2 T cells enhances immunity to human PC-3 prostate tumors in an NSG mouse model. We find that Vγ2Vδ2 T cells express PD-1, CTLA-4, LAG-3, and TIM-3 inhibitory receptors during the 14-day ex vivo expansion period, and PD-1, LAG-3, and TIM-3 upon subsequent stimulation by pamidronate-treated tumor cells. Expression of PD-L1 on PC-3 prostate cancer cells was increased by co-culture with activated Vγ2Vδ2 T cells. Importantly, anti-PD-1 mAb treatment enhanced Vγ2Vδ2 T cell immunity to PC-3 tumors in immunodeficient NSG mice, reducing tumor volume nearly to zero after 5 weeks. These results demonstrate that PD-1 checkpoint blockade can enhance the effectiveness of adoptive immunotherapy with human γδ T cells in treating prostate tumors in a preclinical model.


Subject(s)
Immunotherapy, Adoptive , Prostatic Neoplasms , Animals , Humans , Lymphocyte Activation , Male , Mice , Programmed Cell Death 1 Receptor , Prostatic Neoplasms/drug therapy , Receptors, Antigen, T-Cell, gamma-delta , T-Lymphocytes
8.
J Leukoc Biol ; 107(6): 1081-1095, 2020 06.
Article in English | MEDLINE | ID: mdl-31833593

ABSTRACT

Epithelial ovarian cancer displays the highest mortality of all gynecological tumors. A relapse of the disease even after successful surgical treatment is a significant problem. Resistance against the current platinum-based chemotherapeutic standard regime requires a detailed ex vivo immune profiling of tumor-infiltrating cells and the development of new therapeutic strategies. In this study, we phenotypically and functionally characterize tumor cells and autologous tumor-derived αß and γδ T lymphocyte subsets. Tumor-infiltrating (TIL) and tumor-ascites lymphocytes (TAL) were ex vivo isolated out of tumor tissue and ascites, respectively, from high-grade ovarian carcinoma patients (FIGO-stage IIIa-IV). We observed an increased γδ T cell percentage in ascites compared to tumor-tissue and blood of these patients, whereas CD8+ αß T cells were increased within TAL and TIL. The number of Vδ1 and non-Vδ1/Vδ2-expressing γδ T cells was increased in the ascites and in the tumor tissue compared to the blood of the same donors. Commonly in PBL, the Vγ9 chain of the γδ T cell receptor is usually associated exclusively with the Vδ2 chain. Interestingly, we detected Vδ1 and non-Vδ1/Vδ2 T cells co-expressing Vγ9, which is so far not described for TAL and TIL. Importantly, our data demonstrated an expression of human epidermal growth factor receptor (HER)-2 on high-grade ovarian tumors, which can serve as an efficient tumor antigen to target CD3 TIL or selectively Vγ9-expressing γδ T cells by bispecific antibodies (bsAbs) to ovarian cancer cells. Our bsAbs efficiently enhance cytotoxicity of TIL and TAL against autologous HER-2-expressing ovarian cells.


Subject(s)
Antibodies, Bispecific/pharmacology , Antineoplastic Agents, Immunological/pharmacology , Carcinoma, Ovarian Epithelial/immunology , Lymphocytes, Tumor-Infiltrating/drug effects , Ovarian Neoplasms/immunology , Receptor, ErbB-2/genetics , T-Lymphocytes, Cytotoxic/drug effects , Adult , Ascites/genetics , Ascites/immunology , Ascites/pathology , Ascites/surgery , CD3 Complex/genetics , CD3 Complex/immunology , Carcinoma, Ovarian Epithelial/genetics , Carcinoma, Ovarian Epithelial/pathology , Carcinoma, Ovarian Epithelial/surgery , Coculture Techniques , Cytotoxicity, Immunologic/drug effects , Female , Gene Expression , Humans , Lymphocyte Count , Lymphocytes, Tumor-Infiltrating/immunology , Lymphocytes, Tumor-Infiltrating/pathology , Middle Aged , Neoplasm Grading , Ovarian Neoplasms/genetics , Ovarian Neoplasms/pathology , Ovarian Neoplasms/surgery , Primary Cell Culture , Receptor, ErbB-2/immunology , Receptors, Antigen, T-Cell, alpha-beta/genetics , Receptors, Antigen, T-Cell, alpha-beta/immunology , Receptors, Antigen, T-Cell, gamma-delta/genetics , Receptors, Antigen, T-Cell, gamma-delta/immunology , T-Lymphocytes, Cytotoxic/immunology , T-Lymphocytes, Cytotoxic/pathology
9.
Clin Transl Immunology ; 8(9): e1079, 2019.
Article in English | MEDLINE | ID: mdl-31559018

ABSTRACT

BACKGROUND: Although γδ T cells comprise up to 10% of human peripheral blood T cells, questions remain regarding their role in disease states and T-cell receptor (TCR) clonal expansions. We dissected anti-viral functions of human γδ T cells towards influenza viruses and defined influenza-reactive γδ TCRs in the context of γδ-TCRs across the human lifespan. METHODS: We performed 51Cr-killing assay and single-cell time-lapse live video microscopy to define mechanisms underlying γδ T-cell-mediated killing of influenza-infected targets. We assessed cytotoxic profiles of γδ T cells in influenza-infected patients and IFN-γ production towards influenza-infected lung epithelial cells. Using single-cell RT-PCR, we characterised paired TCRγδ clonotypes for influenza-reactive γδ T cells in comparison with TCRs from healthy neonates, adults, elderly donors and tissues. RESULTS: We provide the first visual evidence of γδ T-cell-mediated killing of influenza-infected targets and show distinct features to those reported for CD8+ T cells. γδ T cells displayed poly-cytotoxic profiles in influenza-infected patients and produced IFN-γ towards influenza-infected cells. These IFN-γ-producing γδ T cells were skewed towards the γ9δ2 TCRs, particularly expressing the public GV9-TCRγ, capable of pairing with numerous TCR-δ chains, suggesting their significant role in γδ T-cell immunity. Neonatal γδ T cells displayed extensive non-overlapping TCRγδ repertoires, while adults had enriched γ9δ2-pairings with diverse CDR3γδ regions. Conversely, the elderly showed distinct γδ-pairings characterised by large clonal expansions, a profile also prominent in adult tissues. CONCLUSION: Human TCRγδ repertoire is shaped by age, tissue compartmentalisation and the individual's history of infection, suggesting that these somewhat enigmatic γδ T cells indeed respond to antigen challenge.

10.
Front Immunol ; 9: 814, 2018.
Article in English | MEDLINE | ID: mdl-29725336

ABSTRACT

An enhanced expression of human epidermal growth factor receptor 2 (HER2, ErbB2) often occurs in an advanced stage of breast, ovarian, gastric or esophageal cancer, and pancreatic ductal adenocarcinoma (PDAC). Commonly, HER2 expression is associated with poor clinical outcome or chemoresistance in ovarian and breast cancer patients. Treatment with humanized anti-HER2 monoclonal antibodies, such as trastuzumab or pertuzumab, has improved the outcome of patients with HER2-positive metastatic gastric or breast cancer, but not all patients benefit. In this study, the bispecific antibody [(HER2)2xCD16] in the tribody format was employed to re-direct CD16-expressing γδ T lymphocytes as well as natural killer (NK) cells to the tumor-associated cell surface antigen HER2 to enhance their cytotoxic anti-tumor activity. Tribody [(HER2)2xCD16] comprises two HER2-specific single chain fragment variable fused to a fragment antigen binding directed to the CD16 (FcγRIII) antigen expressed on γδ T cells and NK cells. Our results revealed the superiority of tribody [(HER2)2xCD16] compared to trastuzumab in triggering γδ T cell and NK cell-mediated lysis of HER2-expressing tumor cells, such as PDAC, breast cancer, and autologous primary ovarian tumors. The increased efficacy of [(HER2)2xCD16] can be explained by an enhanced degranulation of immune cells. Although CD16 expression was decreased on γδ T cells in several PDAC patients and the number of tumor-infiltrating NK cells and γδ T cells was impaired in ovarian cancer patients, [(HER2)2xCD16] selectively enhanced cytotoxicity of cells from these patients. Here, unique anti-tumor properties of tribody [(HER2)2xCD16] are identified which beyond addressing HER2 overexpressing solid tumors may allow to treat with similar immunoconstructs combined with the adoptive transfer of γδ T cells and NK cells refractory hematological malignancies. A major advantage of γδ T cells and NK cells in the transplant situation of refractory hematological malignancies is given by their HLA-independent killing and a reduced graft-versus-host disease.


Subject(s)
Antibodies, Bispecific/immunology , Antibody-Dependent Cell Cytotoxicity , Intraepithelial Lymphocytes/immunology , Killer Cells, Natural/immunology , Receptor, ErbB-2/immunology , Receptors, IgG/immunology , Aged , Aged, 80 and over , Antibodies, Bispecific/pharmacology , Antibodies, Monoclonal/therapeutic use , Breast Neoplasms/drug therapy , Cell Line, Tumor , Female , Humans , Immunotherapy , Male , Middle Aged , Ovarian Neoplasms/drug therapy , Pancreatic Neoplasms/drug therapy , Receptors, IgG/genetics , Trastuzumab/pharmacology , Trastuzumab/therapeutic use
11.
Front Immunol ; 5: 650, 2014.
Article in English | MEDLINE | ID: mdl-25566261

ABSTRACT

Human γδ T cells expressing the Vγ9Vδ2 T cell receptor can induce maturation of dendritic cells (DC) into antigen-presenting cells (APC) and B cells into antibody-secreting plasma cells. Since B cells are capable of presenting antigens to T cells, we investigated if Vγ9Vδ2 T cells can influence antigen-presentation by these cells. We report that Vγ9Vδ2 T cells induced expression of CD86, HLA-DR, and CD40 by B cells and stimulated the release of IL-4, IL-6, TNF-α, and IgG, IgA, and IgM. Vγ9Vδ2 T cells also augmented the ability of B cells to stimulate proliferation but not IFN-γ or IL-4 release by alloreactive T cells. In contrast, Vγ9Vδ2 T cells induced expression of CD86 and HLA-DR and the release of IFN-γ, IL-6, and TNF-α by DC and these DC stimulated proliferation and IFN-γ production by conventional T cells. Furthermore, CD86, TNF-α, IFN-γ, and cell contact were found to be important in DC activation by Vγ9Vδ2 T cells but not in the activation of B cells. These data suggest that Vγ9Vδ2 T cells can induce maturation of B cells and DC into APC, but while they prime DC to stimulate T helper 1 (TH1) responses, they drive maturation of B cells into APC that can stimulate different T cell responses. Thus, Vγ9Vδ2 T cells can control different arms of the immune system through selective activation of B cells and DC in vitro, which may have important applications in immunotherapy and for vaccine adjuvants.

SELECTION OF CITATIONS
SEARCH DETAIL