Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 108
Filter
1.
Cell ; 187(16): 4246-4260.e16, 2024 Aug 08.
Article in English | MEDLINE | ID: mdl-38964326

ABSTRACT

The human seasonal coronavirus HKU1-CoV, which causes common colds worldwide, relies on the sequential binding to surface glycans and transmembrane serine protease 2 (TMPRSS2) for entry into target cells. TMPRSS2 is synthesized as a zymogen that undergoes autolytic activation to process its substrates. Several respiratory viruses, in particular coronaviruses, use TMPRSS2 for proteolytic priming of their surface spike protein to drive membrane fusion upon receptor binding. We describe the crystal structure of the HKU1-CoV receptor binding domain in complex with TMPRSS2, showing that it recognizes residues lining the catalytic groove. Combined mutagenesis of interface residues and comparison across species highlight positions 417 and 469 as determinants of HKU1-CoV host tropism. The structure of a receptor-blocking nanobody in complex with zymogen or activated TMPRSS2 further provides the structural basis of TMPRSS2 activating conformational change, which alters loops recognized by HKU1-CoV and dramatically increases binding affinity.


Subject(s)
Serine Endopeptidases , Serine Endopeptidases/metabolism , Serine Endopeptidases/chemistry , Humans , Crystallography, X-Ray , Coronavirus/metabolism , Coronavirus/chemistry , Enzyme Precursors/metabolism , Enzyme Precursors/chemistry , Spike Glycoprotein, Coronavirus/metabolism , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics , Models, Molecular , Protein Binding , HEK293 Cells , Animals , Enzyme Activation , Virus Internalization
2.
Brief Bioinform ; 25(3)2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38653491

ABSTRACT

Coronaviruses have threatened humans repeatedly, especially COVID-19 caused by SARS-CoV-2, which has posed a substantial threat to global public health. SARS-CoV-2 continuously evolves through random mutation, resulting in a significant decrease in the efficacy of existing vaccines and neutralizing antibody drugs. It is critical to assess immune escape caused by viral mutations and develop broad-spectrum vaccines and neutralizing antibodies targeting conserved epitopes. Thus, we constructed CovEpiAb, a comprehensive database and analysis resource of human coronavirus (HCoVs) immune epitopes and antibodies. CovEpiAb contains information on over 60 000 experimentally validated epitopes and over 12 000 antibodies for HCoVs and SARS-CoV-2 variants. The database is unique in (1) classifying and annotating cross-reactive epitopes from different viruses and variants; (2) providing molecular and experimental interaction profiles of antibodies, including structure-based binding sites and around 70 000 data on binding affinity and neutralizing activity; (3) providing virological characteristics of current and past circulating SARS-CoV-2 variants and in vitro activity of various therapeutics; and (4) offering site-level annotations of key functional features, including antibody binding, immunological epitopes, SARS-CoV-2 mutations and conservation across HCoVs. In addition, we developed an integrated pipeline for epitope prediction named COVEP, which is available from the webpage of CovEpiAb. CovEpiAb is freely accessible at https://pgx.zju.edu.cn/covepiab/.


Subject(s)
Antibodies, Neutralizing , Antibodies, Viral , COVID-19 , Epitopes , SARS-CoV-2 , Humans , SARS-CoV-2/immunology , SARS-CoV-2/genetics , Antibodies, Viral/immunology , COVID-19/immunology , COVID-19/virology , Antibodies, Neutralizing/immunology , Epitopes/immunology , Epitopes/chemistry , Epitopes/genetics , Coronavirus/immunology , Coronavirus/genetics , Databases, Factual , Cross Reactions/immunology
3.
Semin Immunol ; 55: 101507, 2021 06.
Article in English | MEDLINE | ID: mdl-34716096

ABSTRACT

Coronaviruses are evolutionarily successful RNA viruses, common to multiple avian, amphibian and mammalian hosts. Despite their ubiquity and potential impact, knowledge of host immunity to coronaviruses remains incomplete, partly owing to the lack of overt pathogenicity of endemic human coronaviruses (HCoVs), which typically cause common colds. However, the need for deeper understanding became pressing with the zoonotic introduction of three novel coronaviruses in the past two decades, causing severe acute respiratory syndromes in humans, and the unfolding pandemic of coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). This renewed interest not only triggered the discovery of two of the four HCoVs, but also uncovered substantial cellular and humoral cross-reactivity with shared or related coronaviral antigens. Here, we review the evidence for cross-reactive B cell memory elicited by HCoVs and its potential impact on the puzzlingly variable outcome of SARS-CoV-2 infection. The available data indicate targeting of highly conserved regions primarily in the S2 subunits of the spike glycoproteins of HCoVs and SARS-CoV-2 by cross-reactive B cells and antibodies. Rare monoclonal antibodies reactive with conserved S2 epitopes and with potent virus neutralising activity have been cloned, underscoring the potential functional relevance of cross-reactivity. We discuss B cell and antibody cross-reactivity in the broader context of heterologous humoral immunity to coronaviruses, as well as the limits of protective immune memory against homologous re-infection. Given the bidirectional nature of cross-reactivity, the unprecedented current vaccination campaign against SARS-CoV-2 is expected to impact HCoVs, as well as future zoonotic coronaviruses attempting to cross the species barrier. However, emerging SARS-CoV-2 variants with resistance to neutralisation by vaccine-induced antibodies highlight a need for targeting more constrained, less mutable parts of the spike. The delineation of such cross-reactive areas, which humoral immunity can be trained to attack, may offer the key to permanently shifting the balance of our interaction with current and future coronaviruses in our favour.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Antibodies, Viral , Humans , Immunity, Humoral
4.
J Infect Dis ; 2024 Jan 16.
Article in English | MEDLINE | ID: mdl-38227786

ABSTRACT

BACKGROUND: Factors influencing susceptibility to SARS-CoV-2 remain to be resolved. Using data of the Swiss HIV Cohort Study (SHCS) on 6,270 people with HIV (PWH) and serologic assessment for SARS-CoV-2 and circulating-human-coronavirus (HCoV) antibodies, we investigated the association of HIV-related and general parameters with SARS-CoV-2 infection. METHODS: We analyzed SARS-CoV-2 PCR-tests, COVID-19 related hospitalizations, and deaths reported to the SHCS between January 1, 2020 and December 31, 2021. Antibodies to SARS-CoV-2 and HCoVs were determined in pre-pandemic (2019) and pandemic (2020) bio-banked plasma and compared to HIV-negative individuals. We applied logistic regression, conditional logistic regression, and Bayesian multivariate regression to identify determinants of SARS-CoV-2 infection and Ab responses to SARS-CoV-2 in PWH. RESULTS: No HIV-1-related factors were associated with SARS-CoV-2 acquisition. High pre-pandemic HCoV antibodies were associated with a lower risk of subsequent SARS-CoV-2 infection and with higher SARS-CoV-2 antibody responses upon infection. We observed a robust protective effect of smoking on SARS-CoV-2-infection risk (aOR= 0.46 [0.38,0.56], p=2.6*10-14), which occurred even in previous smokers, and was highest for heavy smokers. CONCLUSIONS: Our findings of two independent protective factors, smoking and HCoV antibodies, both affecting the respiratory environment, underscore the importance of the local immune milieu in regulating susceptibility to SARS-CoV-2.

5.
J Med Virol ; 96(1): e29396, 2024 01.
Article in English | MEDLINE | ID: mdl-38235848

ABSTRACT

The RNA-dependent RNA polymerase (RdRp) is a crucial element in the replication and transcription of RNA viruses. Although the RdRps of lethal human coronaviruses severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), SARS-CoV, and Middle East respiratory syndrome coronavirus (MERS-CoV) have been extensively studied, the molecular mechanism of the catalytic subunit NSP12, which is involved in pathogenesis, remains unclear. In this study, the biochemical and cell biological results demonstrate the interactions between SARS-CoV-2 NSP12 and seven host proteins, including three splicing factors (SLU7, PPIL3, and AKAP8). The entry efficacy of SARS-CoV-2 considerably decreased when SLU7 or PPIL3 was knocked out, indicating that abnormal splicing of the host genome was responsible for this occurrence. Furthermore, the polymerase activity and stability of SARS-CoV-2 RdRp were affected by the three splicing factors to varying degrees. In addition, NSP12 and its homologues from SARS-CoV and MERS-CoV suppressed the alternative splicing of cellular genes, which were influenced by the three splicing factors. Overall, our research illustrates that SARS-CoV-2 NSP12 can engage with various splicing factors, thereby impacting virus entry, replication, and gene splicing. This not only improves our understanding of how viruses cause diseases but also lays the foundation for the development of antiviral therapies.


Subject(s)
COVID-19 , Middle East Respiratory Syndrome Coronavirus , Humans , SARS-CoV-2/genetics , SARS-CoV-2/metabolism , COVID-19/genetics , RNA-Dependent RNA Polymerase/metabolism , Middle East Respiratory Syndrome Coronavirus/genetics , RNA Splicing Factors
6.
J Med Virol ; 95(6): e28861, 2023 06.
Article in English | MEDLINE | ID: mdl-37310144

ABSTRACT

The seasonal human coronaviruses (HCoVs) have zoonotic origins, repeated infections, and global transmission. The objectives of this study are to elaborate the epidemiological and evolutionary characteristics of HCoVs from patients with acute respiratory illness. We conducted a multicenter surveillance at 36 sentinel hospitals of Beijing Metropolis, China, during 2016-2019. Patients with influenza-like illness (ILI) and severe acute respiratory infection (SARI) were included, and submitted respiratory samples for screening HCoVs by multiplex real-time reverse transcription-polymerase chain reaction assays. All the positive samples were used for metatranscriptomic sequencing to get whole genomes of HCoVs for genetical and evolutionary analyses. Totally, 321 of 15 677 patients with ILI or SARI were found to be positive for HCoVs, with an infection rate of 2.0% (95% confidence interval, 1.8%-2.3%). HCoV-229E, HCoV-NL63, HCoV-OC43, and HCoV-HKU1 infections accounted for 18.7%, 38.3%, 40.5%, and 2.5%, respectively. In comparison to ILI cases, SARI cases were significantly older, more likely caused by HCoV-229E and HCoV-OC43, and more often co-infected with other respiratory pathogens. A total of 179 full genome sequences of HCoVs were obtained from 321 positive patients. The phylogenetical analyses revealed that HCoV-229E, HCoV-NL63 and HCoV-OC43 continuously yielded novel lineages, respectively. The nonsynonymous to synonymous ratio of all key genes in each HCoV was less than one, indicating that all four HCoVs were under negative selection pressure. Multiple substitution modes were observed in spike glycoprotein among the four HCoVs. Our findings highlight the importance of enhancing surveillance on HCoVs, and imply that more variants might occur in the future.


Subject(s)
Coronavirus 229E, Human , Coronavirus NL63, Human , Coronavirus OC43, Human , Humans , Seasons , Betacoronavirus , China , Coronavirus OC43, Human/genetics
7.
Trends Immunol ; 41(5): 355-359, 2020 05.
Article in English | MEDLINE | ID: mdl-32249063

ABSTRACT

Coronavirus (CoV) disease 2019 (COVID-19) caused by severe acute respiratory syndrome (SARS)-CoV-2 (also known as 2019-nCoV) is threatening global public health, social stability, and economic development. To meet this challenge, this article discusses advances in the research and development of neutralizing antibodies (nAbs) for the prevention and treatment of infection by SARS-CoV-2 and other human CoVs.


Subject(s)
Antibodies, Neutralizing/therapeutic use , Antibodies, Viral/therapeutic use , Betacoronavirus/immunology , Coronavirus Infections/immunology , Coronavirus/immunology , Pneumonia, Viral/immunology , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19 , Coronavirus Infections/prevention & control , Coronavirus Infections/therapy , Humans , Pandemics/prevention & control , Pneumonia, Viral/prevention & control , Pneumonia, Viral/therapy , Research/trends , SARS-CoV-2
8.
Microbiol Immunol ; 67(9): 404-412, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37415325

ABSTRACT

Coronaviruses (CoVs) have long been known to infect humans, mainly alpha-CoV and beta-CoV. The vaccines developed for SARS-CoV-2 are likely not effective against other coronavirus species, whereas the risk of the emergence of new strains that may cause the next epidemic/pandemic is high. The development of antiviral drugs that are effective across different CoVs represents a viable strategy for improving pandemic preparedness. In this study, we aim to identify pan-coronaviral agents by targeting the conserved main protease (Mpro). For drug screening, the catalytic dyad of four human CoVs (HCoVs: SARS-CoV-2, and seasonal CoV NL63, OC43, and 229E) was targeted by molecular docking. The identified leading candidate theobromine, a xanthine derivative, was further tested in cell culture models of coronavirus infection. Theobromine binds strongly with the catalytic dyad (His41 and Cys144/145) of SARS-CoV-2 and HCoV-NL63 Mpro, mildly with HCoV-OC43, but not with HCoV-229E. However, theobromine only shows dose-dependent inhibition in Calu3 cells inoculated with SARS-CoV-2, but not in cells inoculated with seasonal CoVs. Theobromine exerts antiviral activity against coronavirus infections potentially through targeting Mpro. However, the antiviral potency is distinct among different CoVs.


Subject(s)
COVID-19 , Theobromine , Humans , Theobromine/pharmacology , SARS-CoV-2 , Molecular Docking Simulation , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use
9.
Rev Med Virol ; 32(4): e2310, 2022 07.
Article in English | MEDLINE | ID: mdl-34726308

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a novel human coronavirus and the causative agent of coronavirus disease 2019 (Covid-19). There is an urgent need for effective antivirals to treat current Covid-19 cases and protect those unable to be vaccinated against SARS-CoV-2. Marine molluscs live in an environment containing high virus densities (>107 virus particles per ml), and there are an estimated 100,000 species in the phylum Mollusca, demonstrating the success of their innate immune system. Mollusc-derived antivirals are yet to be used clinically despite the activity of many extracts, including against human viruses, being demonstrated in vitro. Hemolymph of the Pacific oyster (Crassostrea gigas) has in vitro antiviral activity against herpes simplex virus and human adenovirus, while antiviral action against SARS-CoV-2 has been proposed by in silico studies. Such evidence suggests that molluscs, and in particular C. gigas hemolymph, may represent a source of antivirals for human coronaviruses.


Subject(s)
COVID-19 Drug Treatment , SARS-CoV-2 , Animals , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Humans
10.
Rev Med Virol ; 32(6): e2363, 2022 11.
Article in English | MEDLINE | ID: mdl-35584273

ABSTRACT

Human coronaviruses (HCoVs) were first described in 1960s for patients experiencing common cold. Since then, increasing number of HCoVs have been discovered, including those causing severe acute respiratory syndrome (SARS), Middle East respiratory syndrome (MERS), and the circulating coronavirus disease 2019 (COVID-19), which can cause fatal respiratory disease in humans on infection. HCoVs are believed to spread mainly through respiratory droplets and close contact. However, studies have shown that a large proportion of patients with HCoV infection develop gastrointestinal (GI) symptoms, and many patients with confirmed HCoV infection have shown detectable viral RNA in their faecal samples. Furthermore, multiple in vitro and in vivo animal studies have provided direct evidence of intestinal HCoV infection. These data highlight the nature of HCoV GI infection and its potential faecal-oral transmission. Here, we summarise the current findings on GI manifestations of HCoVs. We also discuss how HCoV GI infection might occur and the current evidence to establish the occurrence of faecal-oral transmission.


Subject(s)
COVID-19 , Common Cold , Middle East Respiratory Syndrome Coronavirus , Severe acute respiratory syndrome-related coronavirus , Animals , Humans , SARS-CoV-2
11.
Rev Med Virol ; 32(2): e2282, 2022 03.
Article in English | MEDLINE | ID: mdl-34339073

ABSTRACT

To date, seven human coronaviruses (HCoVs) have been detected: HCoV-NL63, HCoV-229E, HCoV-HKU1, HCoV-OC43, severe acute respiratory syndrome coronavirus (SARS-CoV), Middle East respiratory syndrome coronavirus (MERS-CoV) and SARS-CoV-2. Four of these viruses, including HCoV-NL63, -229E, -HKU1 and -OC43, usually cause mild-to-moderate respiratory diseases with a seasonal pattern. Since 2000, three new HCoVs have emerged with a significant mortality rate. Although SARS-CoV and MERS-CoV caused an epidemic in some countries, SARS-CoV-2 escalated into a pandemic. All HCoVs can cause severe complications in the elderly and immunocompromised individuals. The bat origin of HCoVs, the presence of intermediate hosts and the nature of their viral replication suggest that other new coronaviruses may emerge in the future. Despite the fact that all HCoVs share similarities in viral replication, they differ in their accessory proteins, incubation period and pathogenicity. This study aims to review these differences between the seven HCoVs.


Subject(s)
COVID-19 , Coronavirus 229E, Human , Coronavirus NL63, Human , Coronavirus OC43, Human , Aged , Humans , SARS-CoV-2
12.
J Infect Dis ; 226(3): 474-484, 2022 08 26.
Article in English | MEDLINE | ID: mdl-35091739

ABSTRACT

BACKGROUND: A protective antibody response to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is crucial to decrease morbidity and mortality from severe coronavirus disease 2019 (COVID-19) disease. The effects of preexisting anti-human coronavirus (HCoV) antibodies on the SARS-CoV-2-specific immunoglobulin G (IgG) responses and severity of disease are currently unclear. METHODS: We profiled anti-spike (S), S1, S2, and receptor-binding domain IgG antibodies against SARS-CoV-2 and 6 HCoVs using a multiplex assay (mPLEX-CoV) with serum samples from SARS-CoV-2 infected (n = 155) and pre-COVID-19 (n = 188) cohorts. RESULTS: COVID-19 subjects showed significantly increased anti-S SARS-CoV-2 IgG levels that were highly correlated with IgG antibodies against OC43 and HKU1 S proteins. However, OC43 and HKU1 anti-S antibodies in pre-COVID-19 era sera did not cross-react with SARS-CoV-2. Unidirectional cross-reactive antibodies elicited by SARS-CoV-2 infection were distinct from the bidirectional cross-reactive antibodies recognizing homologous strains RaTG13 and SARS-CoV-1. High anti-OC43 and anti-S2 antibody levels were associated with both a rapid anti-SARS-CoV-2 antibody response and increased disease severity. Subjects with increased sequential organ failure assessment (SOFA) scores developed a higher ratio of S2- to S1-reactive antibodies. CONCLUSIONS: Early and rapid emergence of OC43 S- and S2-reactive IgG after SARS-CoV-2 infection correlates with COVID-19 disease severity.


Subject(s)
COVID-19 , Antibodies, Viral , Cross Reactions , Humans , Immunoglobulin G , SARS-CoV-2 , Severity of Illness Index , Spike Glycoprotein, Coronavirus
13.
Clin Infect Dis ; 75(Suppl 2): S271-S284, 2022 10 03.
Article in English | MEDLINE | ID: mdl-35684961

ABSTRACT

BACKGROUND: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and influenza viruses continue to co-circulate, representing 2 major public health threats from respiratory infections with similar clinical presentations. SARS-CoV-2 and influenza vaccines can also now be co-administered. However, data on antibody responses to SARS-CoV-2 and influenza coinfection and vaccine co-administration remain limited. METHODS: We developed a 41-plex antibody immunity assay that can simultaneously characterize antibody landscapes to SARS-CoV-2/influenza/common human coronaviruses. We analyzed sera from 840 individuals (11-93 years), including sera from reverse transcription-polymerase chain reaction (RT-PCR)-confirmed SARS-CoV-2-positive (n = 218) and -negative (n = 120) cases, paired sera from SARS-CoV-2 vaccination (n = 29) and infection (n = 11), and paired sera from influenza vaccination (n = 56) and RT-PCR-confirmed influenza infection (n = 158) cases. Last, we analyzed sera collected from 377 individuals who exhibited acute respiratory illness (ARI) in 2020. RESULTS: This 41-plex assay has high sensitivity and specificity in detecting SARS-CoV-2 infections. It differentiated SARS-CoV-2 vaccination (antibody responses only to spike protein) from infection (antibody responses to both spike and nucleoprotein). No cross-reactive antibodies were induced to SARS-CoV-2 from influenza vaccination and infection, and vice versa, suggesting no interaction between SARS-CoV-2 and influenza antibody responses. However, cross-reactive antibodies were detected between spike proteins of SARS-CoV-2 and common human coronaviruses that were removed by serum adsorption. Among 377 individuals who exhibited ARI in 2020, 129 were influenza positive; none had serological evidence of SARS-CoV-2/influenza coinfections. CONCLUSIONS: Multiplex detection of antibody landscapes can provide in-depth analysis of the antibody protective immunity to SARS-CoV-2 in the context of other respiratory viruses, including influenza.


Subject(s)
COVID-19 , Coinfection , Influenza Vaccines , Influenza, Human , Antibodies, Viral , COVID-19/diagnosis , COVID-19 Vaccines , Humans , Influenza, Human/diagnosis , Influenza, Human/prevention & control , Nucleoproteins , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Vaccination
14.
Anal Bioanal Chem ; 414(24): 7069-7084, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35781591

ABSTRACT

The outbreak rate of human coronaviruses (CoVs) especially highly pathogenic CoVs is increasing alarmingly. Early detection of these viruses allows treatment interventions to be provided more quickly to people at higher risk, as well as helping to identify asymptomatic carriers and isolate them as quickly as possible, thus preventing the disease transmission chain. The current diagnostic methods such as RT-PCR are not ideal due to high cost, low accuracy, low speed, and probability of false results. Therefore, a reliable and accurate method for the detection of CoVs in biofluids can become a front-line tool in order to deal with the spread of these deadly viruses. Currently, the nanomaterial-based sensing devices for detection of human coronaviruses from laboratory diagnosis to point-of-care (PoC) diagnosis are progressing rapidly. Gold nanoparticles (AuNPs) have revolutionized the field of biosensors because of the outstanding optical and electrochemical properties. In this review paper, a detailed overview of AuNP-based biosensing strategies with the varied transducers (electrochemical, optical, etc.) and also different biomarkers (protein antigens and nucleic acids) was presented for the detection of human coronaviruses including SARS-CoV-2, SARS-CoV-1, and MERS-CoV and lowly pathogenic CoVs. The present review highlights the newest trends in the SARS-CoV-2 nanobiosensors from the beginning of the COVID-19 epidemic until 2022. We hope that the presented examples in this review paper convince readers that AuNPs are a suitable platform for the designing of biosensors.


Subject(s)
Biosensing Techniques , COVID-19 , Metal Nanoparticles , Nucleic Acids , COVID-19/diagnosis , COVID-19/epidemiology , COVID-19 Testing , Gold , Humans , Pandemics , SARS-CoV-2
15.
Chem Biodivers ; 19(10): e202200632, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36097361

ABSTRACT

The current pandemic threat presented by viral pathogens like SARS-CoV-2 (COVID-19) suggests that virus emergence and dissemination are not geographically confined. As a result, the quest for antiviral agents has become critical to control this pandemic. In the current study, we provide a novel family of spirocyclic thiopyrimidinone derivatives whose cytotoxicity and antiviral efficacy were investigated against human coronavirus 229E (HCoV-229E) as a model for the Coronaviridae family. We utilized MTT and cytopathic effect (CPE) inhibitory tests on green monkey kidney (vero-E6) cell lines. The new molecules showed varied degrees of antiviral activity against the vero-E6 cell lines with minimal cytotoxicity. With a high level of a selective index (SI=14.8), compound 9 showed outstanding inhibitory ability and could effectively suppress the human coronavirus 229E. Molecular dynamics simulation (MD) studies were performed to measure the interaction and stability of the protein-ligand complex in motion. The MD results for the most active compound 9 explored remarkable interactions with the binding pockets of the main protease (Mpro) of SARS-CoV-2 enzyme confirming the results gained from in vitro experiments. ADMET properties were also predicted for all the tested compounds. All these results demonstrated that the novel spirocyclic thiopyrimidinone derivatives would have the potential to be safe, low-cost chemical compounds that might be used as a novel therapeutic option for Coronaviridae viruses like COVID-19.


Subject(s)
COVID-19 Drug Treatment , Coronavirus 229E, Human , Chlorocebus aethiops , Humans , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , SARS-CoV-2 , Molecular Dynamics Simulation , Ligands , Peptide Hydrolases
16.
Molecules ; 27(23)2022 Nov 30.
Article in English | MEDLINE | ID: mdl-36500468

ABSTRACT

Almost one-third of all infectious diseases are caused by viruses, and these diseases account for nearly 20% of all deaths globally. It is becoming increasingly clear that highly contagious viral infections pose a significant threat to global health and economy around the world. The need for innovative, affordable, and safe antiviral therapies is a must. Zinc oxide nanoparticles are novel materials of low toxicity and low cost and are known for their antiviral activity. The genus Pelargonium was previously reported for its antiviral and antimicrobial activity. In this work, Pelargonium zonale leaf extract chemical profile was studied via high-performance liquid chromatography (HPLC) and was used for the biosynthesis of zinc oxide nanoparticles. Furthermore, the antiviral activity of the combination of P. zonale extract and the biosynthesized nanoparticles of ZnO against the human corona 229E virus was investigated. Results revealed that ZnONPs had been biosynthesized with an average particle size of about 5.5 nm and characterized with UV, FTIR, TEM, XRD, and SEM. The antiviral activity showed significant activity and differences among the tested samples in favor of the combination of P. zonale extract and ZnONPs (ZnONPs/Ex). The lowest IC50, 2.028 µg/mL, and the highest SI, 68.4 of ZnONPs/Ex, assert the highest antiviral activity of the combination against human coronavirus (229E).


Subject(s)
Metal Nanoparticles , Nanoparticles , Pelargonium , Viruses , Zinc Oxide , Humans , Zinc Oxide/pharmacology , Zinc Oxide/chemistry , Antiviral Agents/pharmacology , Plant Extracts/pharmacology , Plant Extracts/chemistry , Nanoparticles/chemistry , Metal Nanoparticles/chemistry
17.
Emerg Infect Dis ; 27(6): 1685-1688, 2021.
Article in English | MEDLINE | ID: mdl-34013875

ABSTRACT

We compared weekly positivity rates of 8 respiratory viruses in South Korea during 2010-2019 and 2020. The overall mean positivity rate for these viruses decreased from 54.7% in 2010-2019 to 39.1% in 2020. Pandemic control measures might have reduced the incidence of many, but not all, viral respiratory infections.


Subject(s)
COVID-19/epidemiology , Pandemics , Respiratory Tract Infections/virology , Humans , Incidence , Population Surveillance , Republic of Korea/epidemiology , Respiratory Tract Infections/epidemiology , SARS-CoV-2
18.
Small ; 17(30): e2101770, 2021 07.
Article in English | MEDLINE | ID: mdl-34190409

ABSTRACT

COVID-19 pandemic, caused by severe acute respiratory syndrome coronavirus 2, has resulted in global social and economic disruption, putting the world economy to the largest global recession since the Great Depression. To control the spread of COVID-19, cutting off the transmission route is a critical step. In this work, the efficient inactivation of human coronavirus with photodynamic therapy (PDT) by employing photosensitizers with aggregation-induced emission characteristics (DTTPB) is reported. DTTPB is designed to bear a hydrophilic head and two hydrophobic tails, mimicking the structure of phospholipids on biological membranes. DTTPB demonstrates a broad absorption band covering the whole visible light range and high molar absorptivity, as well as excellent reactive oxygen species sensitizing ability, making it an excellent candidate for PDT. Besides, DTTPB can target membrane structure, and bind to the envelope of human coronaviruses. Upon light irradiation, DTTPB demonstrates highly effective antiviral behavior: human coronavirus treated with DTTPB and white-light irradiation can be efficiently inactivated with complete loss of infectivity, as revealed by the significant decrease of virus RNA and proteins in host cells. Thus, DTTPB sensitized PDT can efficiently prevent the infection and the spread of human coronavirus, which provides a new avenue for photodynamic combating of COVID-19.


Subject(s)
COVID-19 , Photochemotherapy , Humans , Pandemics , Photosensitizing Agents/pharmacology , Photosensitizing Agents/therapeutic use , SARS-CoV-2
19.
Virol J ; 18(1): 90, 2021 04 30.
Article in English | MEDLINE | ID: mdl-33931099

ABSTRACT

BACKGROUND: The Middle East Respiratory Syndrome-related Coronavirus (MERS-CoV) continues to exist in the Middle East sporadically. Thorough investigations of the evolution of human coronaviruses (HCoVs) are urgently required. In the current study, we studied amplified fragments of ORF1a/b, Spike (S) gene, ORF3/4a, and ORF4b of four human MERS-CoV strains for tracking the evolution of MERS-CoV over time. METHODS: RNA isolated from nasopharyngeal aspirate, sputum, and tracheal swabs/aspirates from hospitalized patients with suspected MERS-CoV infection were analyzed for amplification of nine variable genomic fragments. Sequence comparisons were done using different bioinformatics tools available. RESULTS: Several mutations were identified in ORF1a/b, ORF3/4a and ORF4b, with the highest mutation rates in the S gene. Five codons; 4 in ORF1a and 1 in the S gene, were found to be under selective pressure. Characteristic amino acid changes, potentially hosted and year specific were defined across the S protein and in the receptor-binding domain Phylogenetic analysis using S gene sequence revealed clustering of MERS-CoV strains into three main clades, A, B and C with subdivision of with clade B into B1 to B4. CONCLUSIONS: In conclusion, MERS-CoV appears to continuously evolve. It is recommended that the molecular and pathobiological characteristics of future MERS-CoV strains should be analyzed on regular basis to prevent potential future outbreaks at early phases.


Subject(s)
Coronavirus Infections/virology , Middle East Respiratory Syndrome Coronavirus/genetics , Spike Glycoprotein, Coronavirus/genetics , Amino Acid Sequence , Codon/genetics , Computational Biology , Coronavirus Infections/physiopathology , Coronavirus Infections/prevention & control , Evolution, Molecular , Genomics , Humans , Middle East Respiratory Syndrome Coronavirus/isolation & purification , Mutation , Open Reading Frames/genetics , Phylogeny , Real-Time Polymerase Chain Reaction , Saudi Arabia , Sputum/virology
20.
BMC Infect Dis ; 21(1): 585, 2021 Jun 16.
Article in English | MEDLINE | ID: mdl-34134656

ABSTRACT

BACKGROUND: Human coronaviruses are causative agents of respiratory infections with several subtypes being prevalent worldwide. They cause respiratory illnesses of varying severity and have been described to be continuously emerging but their prevalence is not well documented in Uganda. This study assessed the seroprevalence of antibodies against the previously known human coronaviruses prior 2019 in Uganda. METHODS: A total 377 serum samples collected from volunteers that showed influenza like illness in five hospital-based sentinel sites and archived were analyzed using a commercial Qualitative Human Coronavirus Antibody IgG ELISA kit. Although there is no single kit available that can detect the presence of all the circulating coronaviruses, this kit uses a nucleoprotein, aa 340-390 to coat the wells and since there is significant homology among the various human coronavirus strains with regards to the coded for proteins, there is significant cross reactivity beyond HCoV HKU-39849 2003. This gives the kit a qualitative ability to detect the presence of human coronavirus antibodies in a sample. RESULTS: The overall seroprevalence for all the sites was 87.53% with no significant difference in the seroprevalence between the Hospital based sentinel sites (p = 0.8). Of the seropositive, the age group 1-5 years had the highest percentage (46.97), followed by 6-10 years (16.67) and then above 20 (16.36). An odds ratio of 1.6 (CI 0.863-2.97, p = 0.136) showed that those volunteers below 5 years of age were more likely to be seropositive compared to those above 5 years. The seropositivity was generally high throughout the year with highest being recorded in March and the lowest in February and December. CONCLUSIONS: The seroprevalence of Human coronaviruses is alarmingly high which calls for need to identify and characterize the circulating coronavirus strains so as to guide policy on the control strategies.


Subject(s)
Antibodies, Viral/blood , Coronavirus Infections/epidemiology , Coronavirus , Immunoglobulin G/blood , Adolescent , Adult , Child , Child, Preschool , Cross Reactions , Enzyme-Linked Immunosorbent Assay , Female , Hospitals , Humans , Infant , Male , Sentinel Surveillance , Seroepidemiologic Studies , Uganda/epidemiology , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL