Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 93.251
Filter
Add more filters

Publication year range
1.
Annu Rev Immunol ; 42(1): 83-102, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38941606

ABSTRACT

Circadian rhythms of approximately 24 h have emerged as important modulators of the immune system. These oscillations are important for mounting short-term, innate immune responses, but surprisingly also long-term, adaptive immune responses. Recent data indicate that they play a central role in antitumor immunity, in both mice and humans. In this review, we discuss the evolving literature on circadian antitumor immune responses and the underlying mechanisms that control them. We further provide an overview of circadian treatment regimens-chrono-immunotherapies-that harness time-of-day differences in immunity for optimal efficacy. Our aim is to provide an overview for researchers and clinicians alike, for a better understanding of the circadian immune system and how to best harness it for chronotherapeutic interventions. This knowledge is important for a better understanding of immune responses per se and could revolutionize the way we approach the treatment of cancer and a range of other diseases, ultimately improving clinical practice.


Subject(s)
Circadian Rhythm , Neoplasms , Humans , Circadian Rhythm/immunology , Animals , Neoplasms/immunology , Neoplasms/therapy , Immunotherapy/methods , Immunity, Innate , Adaptive Immunity
2.
Annu Rev Immunol ; 42(1): 207-233, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38211945

ABSTRACT

The immune system and the kidneys are closely related. Immune components mediate acute kidney disease and are crucial to the progression of chronic kidney disease. Beyond its pathogenic functions, the immune system supports immunological homeostasis in healthy kidneys. The kidneys help maintain immune equilibrium by removing metabolic waste products and toxins, thereby limiting local and systemic inflammation. In this review, we describe the close relationship between the immune system and the kidneys. We discuss how the imbalance in the immune response can be deleterious to the kidneys and how immunomodulation can be important in preventing end-stage renal disease. In addition, recent tools such as in silico platforms and kidney organoids can help unveil the relationship between immune cells and kidney homeostasis.


Subject(s)
Kidney Diseases , Humans , Animals , Kidney Diseases/immunology , Kidney Diseases/etiology , Kidney Diseases/metabolism , Kidney/immunology , Kidney/metabolism , Homeostasis , Immunomodulation , Disease Susceptibility
3.
Annu Rev Immunol ; 42(1): 427-53, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38360547

ABSTRACT

The role of the autoimmune regulator (Aire) in central immune tolerance and thymic self-representation was first described more than 20 years ago, but fascinating new insights into its biology continue to emerge, particularly in the era of advanced single-cell genomics. We briefly describe the role of human genetics in the discovery of Aire, as well as insights into its function gained from genotype-phenotype correlations and the spectrum of Aire-associated autoimmunity-including insights from patients with Aire mutations with broad and diverse implications for human health. We then highlight emerging trends in Aire biology, focusing on three topic areas. First, we discuss medullary thymic epithelial diversity and the role of Aire in thymic epithelial development. Second, we highlight recent developments regarding the molecular mechanisms of Aire and its binding partners. Finally, we describe the rapidly evolving biology of the identity and function of extrathymic Aire-expressing cells (eTACs), and a novel eTAC subset called Janus cells, as well as their potential roles in immune homeostasis.


Subject(s)
AIRE Protein , Autoimmunity , Transcription Factors , Humans , Transcription Factors/metabolism , Transcription Factors/genetics , Animals , Thymus Gland/immunology , Thymus Gland/metabolism , Mutation , Immune Tolerance , Epithelial Cells/metabolism , Epithelial Cells/immunology , Autoimmune Diseases/immunology , Autoimmune Diseases/genetics , Autoimmune Diseases/metabolism
4.
Annu Rev Immunol ; 42(1): 551-584, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38941604

ABSTRACT

Poxviruses have evolved a wide array of mechanisms to evade the immune response, and we provide an overview of the different immunomodulatory strategies. Poxviruses prevent the recognition of viral DNA that triggers the immune responses and inhibit signaling pathways within the infected cell. A unique feature of poxviruses is the production of secreted proteins that mimic cytokines and cytokine receptors, acting as decoy receptors to neutralize the activity of cytokines and chemokines. The capacity of these proteins to evade cellular immune responses by inhibiting cytokine activation is complemented by poxviruses' strategies to block natural killer cells and cytotoxic T cells, often through interfering with antigen presentation pathways. Mechanisms that target complement activation are also encoded by poxviruses. Virus-encoded proteins that target immune molecules and pathways play a major role in immune modulation, and their contribution to viral pathogenesis, facilitating virus replication or preventing immunopathology, is discussed.


Subject(s)
Immune Evasion , Poxviridae Infections , Poxviridae , Humans , Poxviridae/immunology , Poxviridae/physiology , Animals , Poxviridae Infections/immunology , Cytokines/metabolism , Signal Transduction , Viral Proteins/metabolism , Viral Proteins/immunology , Antigen Presentation/immunology , Host-Pathogen Interactions/immunology
5.
Annu Rev Immunol ; 42(1): 521-550, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38382538

ABSTRACT

Immune checkpoint blockade (ICB) induces a remarkable and durable response in a subset of cancer patients. However, most patients exhibit either primary or acquired resistance to ICB. This resistance arises from a complex interplay of diverse dynamic mechanisms within the tumor microenvironment (TME). These mechanisms include genetic, epigenetic, and metabolic alterations that prevent T cell trafficking to the tumor site, induce immune cell dysfunction, interfere with antigen presentation, drive heightened expression of coinhibitory molecules, and promote tumor survival after immune attack. The TME worsens ICB resistance through the formation of immunosuppressive networks via immune inhibition, regulatory metabolites, and abnormal resource consumption. Finally, patient lifestyle factors, including obesity and microbiome composition, influence ICB resistance. Understanding the heterogeneity of cellular, molecular, and environmental factors contributing to ICB resistance is crucial to develop targeted therapeutic interventions that enhance the clinical response. This comprehensive overview highlights key mechanisms of ICB resistance that may be clinically translatable.


Subject(s)
Drug Resistance, Neoplasm , Immune Checkpoint Inhibitors , Immunotherapy , Neoplasms , Tumor Microenvironment , Humans , Tumor Microenvironment/immunology , Neoplasms/immunology , Neoplasms/therapy , Neoplasms/metabolism , Neoplasms/etiology , Drug Resistance, Neoplasm/immunology , Animals , Immunotherapy/methods , Immune Checkpoint Inhibitors/therapeutic use , Immune Checkpoint Inhibitors/pharmacology , Epigenesis, Genetic
6.
Annu Rev Immunol ; 40: 121-141, 2022 04 26.
Article in English | MEDLINE | ID: mdl-35007128

ABSTRACT

Invasive fungal diseases are rare in individuals with intact immunity. This, together with the fact that there are only a few species that account for most mycotic diseases, implies a remarkable natural resistance to pathogenic fungi. Mammalian immunity to fungi rests on two pillars, powerful immune mechanisms and elevated temperatures that create a thermal restriction zone for most fungal species. Conditions associated with increased susceptibility generally reflect major disturbances of immune function involving both the cellular and humoral innate and adaptive arms, which implies considerable redundancy in host defense mechanisms against fungi. In general, tissue fungal invasion is controlled through either neutrophil or granulomatous inflammation, depending on the fungal species. Neutrophils are critical against Candida spp. and Aspergillus spp. while macrophages are essential for controlling mycoses due to Cryptococcus spp., Histoplasma spp., and other fungi. The increasing number of immunocompromised patients together with climate change could significantly increase the prevalence of fungal diseases.


Subject(s)
Mycoses , Animals , Fungi , Humans , Immunity, Innate , Immunocompromised Host , Macrophages , Mammals
7.
Annu Rev Immunol ; 40: 195-220, 2022 04 26.
Article in English | MEDLINE | ID: mdl-35044795

ABSTRACT

Tissue-resident immune cells span both myeloid and lymphoid cell lineages, have been found in multiple human tissues, and play integral roles at all stages of the immune response, from maintaining homeostasis to responding to infectious challenges to resolution of inflammation to tissue repair. In humans, studying immune cells and responses in tissues is challenging, although recent advances in sampling and high-dimensional profiling have provided new insights into the ontogeny, maintenance, and functional role of tissue-resident immune cells. Each tissue contains a specific complement of resident immune cells. Moreover, resident immune cells for each lineage share core properties, along with tissue-specific adaptations. Here we propose a five-point checklist for defining resident immune cell types in humans and describe the currently known features of resident immune cells, their mechanisms of development, and their putative functional roles within various human organs. We also consider these aspects of resident immune cells in the context of future studies and therapeutics.


Subject(s)
Immunity, Innate , Lymphocytes , Animals , Cell Lineage , Homeostasis , Humans , Inflammation
8.
Annu Rev Immunol ; 40: 525-557, 2022 04 26.
Article in English | MEDLINE | ID: mdl-35130030

ABSTRACT

Macrophages and conventional dendritic cells (cDCs) are distributed throughout the body, maintaining tissue homeostasis and tolerance to self and orchestrating innate and adaptive immunity against infection and cancer. As they complement each other, it is important to understand how they cooperate and the mechanisms that integrate their functions. Both are exposed to commensal microbes, pathogens, and other environmental challenges that differ widely among anatomical locations and over time. To adjust to these varying conditions, macrophages and cDCs acquire spatiotemporal adaptations (STAs) at different stages of their life cycle that determine how they respond to infection. The STAs acquired in response to previous infections can result in increased responsiveness to infection, termed training, or in reduced responses, termed paralysis, which in extreme cases can cause immunosuppression. Understanding the developmental stage and location where macrophages and cDCs acquire their STAs, and the molecular and cellular players involved in their induction, may afford opportunities to harness their beneficial outcomes and avoid or reverse their deleterious effects. Here we review our current understanding of macrophage and cDC development, life cycle, function, and STA acquisition before, during, and after infection.We propose a unified framework to explain how these two cell types adjust their activities to changing conditions over space and time to coordinate their immunosurveillance functions.


Subject(s)
Adaptive Immunity , Dendritic Cells , Animals , Cell Differentiation , Humans , Immune Tolerance , Macrophages
9.
Annu Rev Immunol ; 40: 75-94, 2022 04 26.
Article in English | MEDLINE | ID: mdl-34985929

ABSTRACT

Strong epidemiological evidence now exists that sex is an important biologic variable in immunity. Recent studies, for example, have revealed that sex differences are associated with the severity of symptoms and mortality due to coronavirus disease 2019 (COVID-19). Despite this evidence, much remains to be learned about the mechanisms underlying associations between sex differences and immune-mediated conditions. A growing body of experimental data has made significant inroads into understanding sex-influenced immune responses. As physicians seek to provide more targeted patient care, it is critical to understand how sex-defining factors (e.g., chromosomes, gonadal hormones) alter immune responses in health and disease. In this review, we highlight recent insights into sex differences in autoimmunity; virus infection, specifically severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection; and cancer immunotherapy. A deeper understanding of underlying mechanisms will allow the development of a sex-based approach to disease screening and treatment.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Female , Humans , Male , Sex Characteristics , Sex Factors
10.
Annu Rev Immunol ; 39: 667-693, 2021 04 26.
Article in English | MEDLINE | ID: mdl-33637018

ABSTRACT

Traditionally, the innate and adaptive immune systems are differentiated by their specificity and memory capacity. In recent years, however, this paradigm has shifted: Cells of the innate immune system appear to be able to gain memory characteristics after transient stimulation, resulting in an enhanced response upon secondary challenge. This phenomenon has been called trained immunity. Trained immunity is characterized by nonspecific increased responsiveness, mediated via extensive metabolic and epigenetic reprogramming. Trained immunity explains the heterologous effects of vaccines, which result in increased protection against secondary infections. However, in chronic inflammatory conditions, trained immunity can induce maladaptive effects and contribute to hyperinflammation and progression of cardiovascular disease, autoinflammatory syndromes, and neuroinflammation. In this review we summarize the current state of the field of trained immunity, its mechanisms, and its roles in both health and disease.


Subject(s)
Immunologic Memory , Vaccines , Animals , Cell Differentiation , Humans , Immune System , Immunity, Innate
11.
Annu Rev Immunol ; 39: 227-249, 2021 04 26.
Article in English | MEDLINE | ID: mdl-33534603

ABSTRACT

Primary immunodeficiency diseases (PIDs) are a rapidly growing, heterogeneous group of genetically determined diseases characterized by defects in the immune system. While individually rare, collectively PIDs affect between 1/1,000 and 1/5,000 people worldwide. The clinical manifestations of PIDs vary from susceptibility to infections to autoimmunity and bone marrow failure. Our understanding of the human immune response has advanced by investigation and discovery of genetic mechanisms of PIDs. Studying patients with isolated genetic variants in proteins that participate in complex signaling pathways has led to an enhanced understanding of host response to infection, and mechanisms of autoimmunity and autoinflammation. Identifying genetic mechanisms of PIDs not only furthers immunological knowledge but also benefits patients by dictating targeted therapies or hematopoietic stem cell transplantation. Here, we highlight several of these areas in the field of primary immunodeficiency, with a focus on the most recent advances.


Subject(s)
Immunologic Deficiency Syndromes , Primary Immunodeficiency Diseases , Animals , Autoimmunity/genetics , Humans , Immune System , Immunologic Deficiency Syndromes/genetics , Immunologic Deficiency Syndromes/therapy
12.
Annu Rev Immunol ; 39: 511-536, 2021 04 26.
Article in English | MEDLINE | ID: mdl-33577348

ABSTRACT

The surfaces of all living organisms and most secreted proteins share a common feature: They are glycosylated. As the outermost-facing molecules, glycans participate in nearly all immunological processes, including driving host-pathogen interactions, immunological recognition and activation, and differentiation between self and nonself through a complex array of pathways and mechanisms. These fundamental immunologic roles are further cast into sharp relief in inflammatory, autoimmune, and cancer disease states in which immune regulation goes awry. Here, we review the broad impact of glycans on the immune system and discuss the changes and clinical opportunities associated with the onset of immunologic disease.


Subject(s)
Host-Pathogen Interactions , Polysaccharides , Animals , Cell Differentiation , Humans
13.
Annu Rev Immunol ; 39: 279-311, 2021 04 26.
Article in English | MEDLINE | ID: mdl-33544645

ABSTRACT

The innate immune response is a rapid response to pathogens or danger signals. It is precisely activated not only to efficiently eliminate pathogens but also to avoid excessive inflammation and tissue damage. cis-Regulatory element-associated chromatin architecture shaped by epigenetic factors, which we define as the epiregulome, endows innate immune cells with specialized phenotypes and unique functions by establishing cell-specific gene expression patterns, and it also contributes to resolution of the inflammatory response. In this review, we focus on two aspects: (a) how niche signals during lineage commitment or following infection and pathogenic stress program epiregulomes by regulating gene expression levels, enzymatic activities, or gene-specific targeting of chromatin modifiers and (b) how the programed epiregulomes in turn mediate regulation of gene-specific expression, which contributes to controlling the development of innate cells, or the response to infection and inflammation, in a timely manner. We also discuss the effects of innate immunometabolic rewiring on epiregulomes and speculate on several future challenges to be encountered during the exploration of the master regulators of epiregulomes in innate immunity and inflammation.


Subject(s)
Immunity, Innate , Inflammation , Animals , Epigenesis, Genetic , Humans , Immunity, Innate/genetics , Inflammation/genetics
14.
Annu Rev Immunol ; 38: 147-170, 2020 04 26.
Article in English | MEDLINE | ID: mdl-32340573

ABSTRACT

Metabolism is one of the strongest drivers of interkingdom interactions-including those between microorganisms and their multicellular hosts. Traditionally thought to fuel energy requirements and provide building blocks for biosynthetic pathways, metabolism is now appreciated for its role in providing metabolites, small-molecule intermediates generated from metabolic processes, to perform various regulatory functions to mediate symbiotic relationships between microbes and their hosts. Here, we review recent advances in our mechanistic understanding of how microbiota-derived metabolites orchestrate and support physiological responses in the host, including immunity, inflammation, defense against infections, and metabolism. Understanding how microbes metabolically communicate with their hosts will provide us an opportunity to better describe how a host interacts with all microbes-beneficial, pathogenic, and commensal-and an opportunity to discover new ways to treat microbial-driven diseases.


Subject(s)
Disease Susceptibility , Energy Metabolism , Homeostasis , Microbiota , Symbiosis , Animals , Disease Susceptibility/immunology , Host-Pathogen Interactions , Humans , Immune System/immunology , Immune System/metabolism , Microbiota/immunology
15.
Annu Rev Immunol ; 38: 727-757, 2020 04 26.
Article in English | MEDLINE | ID: mdl-32075461

ABSTRACT

Immune cells are characterized by diversity, specificity, plasticity, and adaptability-properties that enable them to contribute to homeostasis and respond specifically and dynamically to the many threats encountered by the body. Single-cell technologies, including the assessment of transcriptomics, genomics, and proteomics at the level of individual cells, are ideally suited to studying these properties of immune cells. In this review we discuss the benefits of adopting single-cell approaches in studying underappreciated qualities of immune cells and highlight examples where these technologies have been critical to advancing our understanding of the immune system in health and disease.


Subject(s)
Immune System/immunology , Immune System/metabolism , Immunity , Single-Cell Analysis , Animals , Biomarkers , Disease Susceptibility , Homeostasis , Humans , Immune System/cytology , Molecular Imaging , Single-Cell Analysis/methods
16.
Annu Rev Immunol ; 38: 123-145, 2020 04 26.
Article in English | MEDLINE | ID: mdl-32045313

ABSTRACT

Throughout the body, T cells monitor MHC-bound ligands expressed on the surface of essentially all cell types. MHC ligands that trigger a T cell immune response are referred to as T cell epitopes. Identifying such epitopes enables tracking, phenotyping, and stimulating T cells involved in immune responses in infectious disease, allergy, autoimmunity, transplantation, and cancer. The specific T cell epitopes recognized in an individual are determined by genetic factors such as the MHC molecules the individual expresses, in parallel to the individual's environmental exposure history. The complexity and importance of T cell epitope mapping have motivated the development of computational approaches that predict what T cell epitopes are likely to be recognized in a given individual or in a broader population. Such predictions guide experimental epitope mapping studies and enable computational analysis of the immunogenic potential of a given protein sequence region.


Subject(s)
Epitopes, T-Lymphocyte/immunology , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Animals , Biomarkers , Computational Biology/methods , Disease Susceptibility , Histocompatibility Antigens/immunology , Humans , Ligands , Machine Learning , Protein Binding
17.
Annu Rev Immunol ; 38: 621-648, 2020 04 26.
Article in English | MEDLINE | ID: mdl-32017656

ABSTRACT

Vitiligo is an autoimmune disease of the skin that targets pigment-producing melanocytes and results in patches of depigmentation that are visible as white spots. Recent research studies have yielded a strong mechanistic understanding of this disease. Autoreactive cytotoxic CD8+ T cells engage melanocytes and promote disease progression through the local production of IFN-γ, and IFN-γ-induced chemokines are then secreted from surrounding keratinocytes to further recruit T cells to the skin through a positive-feedback loop. Both topical and systemic treatments that block IFN-γ signaling can effectively reverse vitiligo in humans; however, disease relapse is common after stopping treatments. Autoreactive resident memory T cells are responsible for relapse, and new treatment strategies focus on eliminating these cells to promote long-lasting benefit. Here, we discuss basic, translational, and clinical research studies that provide insight into the pathogenesis of vitiligo, and how this insight has been utilized to create new targeted treatment strategies.


Subject(s)
Vitiligo/etiology , Vitiligo/therapy , Animals , Autoimmunity , Biomarkers , Cytokines/metabolism , Disease Management , Disease Susceptibility , Humans , Immunologic Memory , Vitiligo/diagnosis
18.
Annu Rev Immunol ; 38: 79-98, 2020 04 26.
Article in English | MEDLINE | ID: mdl-31800327

ABSTRACT

DNA has been known to be a potent immune stimulus for more than half a century. However, the underlying molecular mechanisms of DNA-triggered immune response have remained elusive until recent years. Cyclic GMP-AMP synthase (cGAS) is a major cytoplasmic DNA sensor in various types of cells that detect either invaded foreign DNA or aberrantly located self-DNA. Upon sensing of DNA, cGAS catalyzes the formation of cyclic GMP-AMP (cGAMP), which in turn activates the ER-localized adaptor protein MITA (also named STING) to elicit the innate immune response. The cGAS-MITA axis not only plays a central role in host defense against pathogen-derived DNA but also acts as a cellular stress response pathway by sensing aberrantly located self-DNA, which is linked to the pathogenesis of various human diseases. In this review, we summarize the spatial and temporal mechanisms of host defense to cytoplasmic DNA mediated by the cGAS-MITA axis and discuss the association of malfunctions of this axis with autoimmune and other diseases.


Subject(s)
DNA/immunology , Immunity, Innate , Animals , Autoimmune Diseases/etiology , Autoimmune Diseases/metabolism , Autoimmunity , Biomarkers , Cytoplasm/immunology , Cytoplasm/metabolism , Disease Susceptibility , Host-Pathogen Interactions/immunology , Humans , Immune Evasion , Interferon Type I/metabolism , Membrane Proteins/genetics , Membrane Proteins/metabolism , Nucleotidyltransferases/metabolism
19.
Annu Rev Immunol ; 38: 229-247, 2020 04 26.
Article in English | MEDLINE | ID: mdl-31928469

ABSTRACT

Neonatal CD4+ and CD8+ T cells have historically been characterized as immature or defective. However, recent studies prompt a reinterpretation of the functions of neonatal T cells. Rather than a population of cells always falling short of expectations set by their adult counterparts, neonatal T cells are gaining recognition as a distinct population of lymphocytes well suited for the rapidly changing environment in early life. In this review, I will highlight new evidence indicating that neonatal T cells are not inert or less potent versions of adult T cells but instead are a broadly reactive layer of T cells poised to quickly develop into regulatory or effector cells, depending on the needs of the host. In this way, neonatal T cells are well adapted to provide fast-acting immune protection against foreign pathogens, while also sustaining tolerance to self-antigens.


Subject(s)
T-Lymphocyte Subsets/immunology , T-Lymphocyte Subsets/metabolism , Adaptive Immunity , Animals , Biomarkers , Cell Differentiation/immunology , Host-Pathogen Interactions , Humans , Immunologic Memory , Lymphocyte Activation/immunology , Lymphoid Progenitor Cells/cytology , Lymphoid Progenitor Cells/immunology , Lymphoid Progenitor Cells/metabolism , Phenotype , Receptors, Antigen, T-Cell/genetics , Receptors, Antigen, T-Cell/metabolism , Signal Transduction , T-Lymphocyte Subsets/cytology
20.
Annu Rev Immunol ; 37: 19-46, 2019 04 26.
Article in English | MEDLINE | ID: mdl-30379595

ABSTRACT

The interplay between the immune and nervous systems has been acknowledged in the past, but only more recent studies have started to unravel the cellular and molecular players of such interactions. Mounting evidence indicates that environmental signals are sensed by discrete neuro-immune cell units (NICUs), which represent defined anatomical locations in which immune and neuronal cells colocalize and functionally interact to steer tissue physiology and protection. These units have now been described in multiple tissues throughout the body, including lymphoid organs, adipose tissue, and mucosal barriers. As such, NICUs are emerging as important orchestrators of multiple physiological processes, including hematopoiesis, organogenesis, inflammation, tissue repair, and thermogenesis. In this review we focus on the impact of NICUs in tissue physiology and how this fast-evolving field is driving a paradigm shift in our understanding of immunoregulation and organismal physiology.


Subject(s)
Immune System , Nervous System , Neuroimmunomodulation , Animals , Humans , Immunity, Mucosal , Immunomodulation
SELECTION OF CITATIONS
SEARCH DETAIL