Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Publication year range
1.
Am J Bot ; 106(6): 798-806, 2019 06.
Article in English | MEDLINE | ID: mdl-31157419

ABSTRACT

PREMISE: Phenotypic heterogeneity of reiterated, homologous structures produced by individual plants has ecological consequences for plants and their animal consumers. This paper examines experimentally the epigenetic mosaicism hypothesis, which postulates that within-plant variation in traits of reiterated structures may partly arise from different parts of the same genetic individual differing in patterns or extent of genomic DNA methylation. METHODS: Leaves of paired ramets borne by field-growing Helleborus foetidus plants were infiltrated periodically over the entire flowering period with either a water solution of the demethylating agent zebularine or just water as the control. The effects of the zebularine treatment were assessed by quantifying genome-wide DNA cytosine methylation in leaves and monitoring inflorescence growth and flower production, number of ovules per flower, pollination success, fruit set, seed set, seed size, and distribution of sap-feeding insects. RESULTS: Genomic DNA from leaves in zebularine-treated ramets was significantly less methylated than DNA from leaves in control ones. Inflorescences in treated ramets grew smaller and produced fewer flowers, with fewer ovules and lower follicle and seed set, but did not differ from inflorescences in untreated ramets in pollination success or seed size. The zebularine treatment influenced the within-plant distribution of sap-feeding insects. CONCLUSIONS: Experimental manipulation of genomic DNA methylation level in leaves of wild-growing H. foetidus plants induced considerable within-plant heterogeneity in phenotypic (inflorescences, flowers, fecundity) and ecologically relevant traits (herbivore distribution), which supports the hypothesis that epigenetic mosaicism may partly account for within-plant variation.


Subject(s)
Cytosine/metabolism , DNA Methylation , Epigenesis, Genetic , Fertility/genetics , Helleborus/physiology , Herbivory/physiology , Flowers/genetics , Flowers/physiology , Helleborus/genetics , Inflorescence/genetics , Inflorescence/physiology , Mosaicism , Plant Leaves/physiology , Seeds/genetics , Seeds/physiology
2.
Plant Cell Environ ; 40(9): 1819-1833, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28545156

ABSTRACT

Boron (B) is an essential micronutrient for plants, but the molecular mechanisms underlying the uptake and distribution of B in allotetraploid rapeseed (Brassica napus) are unclear. Here, we identified a B transporter of rapeseed, BnaC4.BOR1;1c, which is expressed in shoot nodes and involved in distributing B to the reproductive organs. Transgenic Arabidopsis plants containing a BnaC4.BOR1;1c promoter-driven GUS reporter gene showed strong GUS activity in roots, nodal regions of the shoots and immature floral buds. Overexpressing BnaC4.BOR1;1c in Arabidopsis wild type or in bor1-1 mutants promoted wild-type growth and rescued the bor1-1 mutant phenotype. Conversely, knockdown of BnaC4.BOR1;1c in a B-efficient rapeseed line reduced B accumulation in flower organs, eventually resulting in severe sterility and seed yield loss. BnaC4.BOR1;1c RNAi plants exhibited large amounts of disintegrated stigma papilla cells with thickened cell walls accompanied by abnormal proliferation of lignification under low-B conditions, indicating that the sterility may be a result of altered cell wall properties in flower organs. Taken together, our results demonstrate that BnaC4.BOR1;1c is a AtBOR1-homologous B transporter gene expressing in both roots and shoot nodes that is essential for the developing inflorescence tissues, which highlights its diverse functions in allotetraploid rapeseed compared with diploid model plant Arabidopsis.


Subject(s)
Boron/pharmacology , Brassica napus/growth & development , Brassica napus/metabolism , Inflorescence/growth & development , Membrane Transport Proteins/metabolism , Plant Proteins/metabolism , Arabidopsis/genetics , Boron/metabolism , Brassica napus/genetics , Ecotype , Fertility/drug effects , Flowers/drug effects , Flowers/metabolism , Flowers/ultrastructure , Gene Expression Regulation, Plant/drug effects , Gene Knockdown Techniques , Inflorescence/drug effects , Inflorescence/ultrastructure , Phenotype , Phylogeny , Plants, Genetically Modified , RNA Interference , Subcellular Fractions/metabolism
3.
Front Plant Sci ; 7: 95, 2016.
Article in English | MEDLINE | ID: mdl-26904065

ABSTRACT

Mitochondrial pyruvate dehydrogenase (mtPDH) is a key respiratory enzyme that links glycolysis and the tricarboxylic acid cycle, and it is negatively regulated by mtPDH kinase (mtPDHK). Arabidopsis lines carrying either a constitutive or seed-specific antisense construct for mtPDHK were used to test the hypothesis that alteration of mtPDH activity in a tissue- and dosage-dependent manner will enhance reproductive growth particularly at elevated CO2 (EC) through a combined enhancement of source and sink activities. Constitutive transgenic lines showed increased mtPDH activity in rosette leaves at ambient CO2 (AC) and EC, and in immature seeds at EC. Seed-specific transgenic lines showed enhanced mtPDH activity in immature seeds. A strong relationship existed between seed mtPDH activity and inflorescence initiation at AC, and at EC inflorescence stem growth, silique number and seed harvest index were strongly related to seed mtPDH activity. Leaf photosynthetic rates showed an increase in rosette leaves of transgenic lines at AC and EC that correlated with enhanced inflorescence initiation. Collectively, the data show that mtPDHK plays a key role in regulating sink and source activities in Arabidopsis particularly during the reproductive phase.

SELECTION OF CITATIONS
SEARCH DETAIL