Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Immunity ; 50(3): 692-706.e7, 2019 03 19.
Article in English | MEDLINE | ID: mdl-30824326

ABSTRACT

Idiopathic pulmonary fibrosis (IPF) is a severe form of lung fibrosis with a high mortality rate. However, the etiology of IPF remains unknown. Here, we report that alterations in lung microbiota critically promote pulmonary fibrosis pathogenesis. We found that lung microbiota was dysregulated, and the dysregulated microbiota in turn induced production of interleukin-17B (IL-17B) during bleomycin-induced mouse lung fibrosis. Either lung-microbiota depletion or IL-17B deficiency ameliorated the disease progression. IL-17B cooperated with tumor necrosis factor-α to induce expression of neutrophil-recruiting genes and T helper 17 (Th17)-cell-promoting genes. Three pulmonary commensal microbes, which belong to the genera Bacteroides and Prevotella, were identified to promote fibrotic pathogenesis through IL-17R signaling. We further defined that the outer membrane vesicles (OMVs) that were derived from the identified commensal microbes induced IL-17B production through Toll-like receptor-Myd88 adaptor signaling. Together our data demonstrate that specific pulmonary symbiotic commensals can promote lung fibrosis by regulating a profibrotic inflammatory cytokine network.


Subject(s)
Bacterial Outer Membrane Proteins/metabolism , Idiopathic Pulmonary Fibrosis/metabolism , Idiopathic Pulmonary Fibrosis/microbiology , Interleukin-17/metabolism , Lung/metabolism , Lung/microbiology , Microbiota/physiology , Animals , Bacteroides/metabolism , Cytokines/metabolism , Disease Models, Animal , Inflammation/metabolism , Mice , Mice, Inbred C57BL , Myeloid Differentiation Factor 88/metabolism , Neutrophils/metabolism , Prevotella/metabolism , Signal Transduction/physiology , Toll-Like Receptors/metabolism , Tumor Necrosis Factor-alpha/metabolism
2.
Biomolecules ; 12(12)2022 12 15.
Article in English | MEDLINE | ID: mdl-36551310

ABSTRACT

Molecular farming utilizes plants as a platform for producing recombinant biopharmaceuticals. Duckweed, the smallest and fastest growing aquatic plant, is a promising candidate for molecular farming. However, the efficiency of current transformation methods is generally not high in duckweed. Here, we developed a fast and efficient transformation procedure in Lemna minor ZH0403, requiring 7-8 weeks from screening calluses to transgenic plants with a stable transformation efficiency of 88% at the DNA level and 86% at the protein level. We then used this transformation system to produce chicken interleukin-17B (chIL-17B). The plant-produced chIL-17B activated the NF-κB pathway, JAK-STAT pathway, and their downstream cytokines in DF-1 cells. Furthermore, we administrated chIL-17B transgenic duckweed orally as an immunoadjuvant with mucosal vaccine against infectious bronchitis virus (IBV) in chickens. Both IBV-specific antibody titer and the concentration of secretory immunoglobulin A (sIgA) were significantly higher in the group fed with chIL-17B transgenic plant. This indicates that the duckweed-produced chIL-17B enhanced the humoral and mucosal immune responses. Moreover, chickens fed with chIL-17B transgenic plant demonstrated the lowest viral loads in different tissues among all groups. Our work suggests that cytokines are a promising adjuvant for mucosal vaccination through the oral route. Our work also demonstrates the potential of duckweed in molecular farming.


Subject(s)
Adjuvants, Vaccine , Araceae , Animals , Interleukin-17/genetics , Interleukin-17/metabolism , Janus Kinases/genetics , Signal Transduction , Chickens , STAT Transcription Factors/genetics , Cytokines/metabolism , Adjuvants, Immunologic/pharmacology , Araceae/genetics , Araceae/metabolism , Transformation, Genetic
3.
Int J Pharm X ; 4: 100126, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36147518

ABSTRACT

Chemoresistance and hence the consequent treatment failure is considerably challenging in clinical cancer therapeutics. The understanding of the genetic variations in chemoresistance acquisition encouraged the use of gene modulatory approaches to restore anti-cancer drug efficacy. Many smart nanoparticles are designed and optimized to mediate combinational therapy between nucleic acid and anti-cancer drugs. This review aims to define a rational design of such co-loaded nanocarriers with the aim of chemoresistance reversal at various cellular levels to improve the therapeutic outcome of anticancer treatment. Going through the principles of therapeutics loading, physicochemical characteristics tuning, and different nanocarrier modifications, also looking at combination effectiveness on chemosensitivity restoration. Up to now, these emerging nanocarriers are in development status but are expected to introduce outstanding outcomes.

4.
Oncotarget ; 8(69): 113360-113372, 2017 Dec 26.
Article in English | MEDLINE | ID: mdl-29371916

ABSTRACT

Interleukin 17B (IL-17B) is a pro-inflammatory cytokine that belongs to the IL-17 cytokines family and binds to IL-17 receptor B (IL-17RB). Here we found that high expression of IL-17B and IL-17RB is associated with poor prognosis in patients with breast cancer and that IL-17B expression upregulation is specifically associated with poorer survival in patients with basal-like breast cancer. We thus focused on IL-17B role in breast cancer by using luminal and triple negative (TN)/basal-like tumor cell lines. We found that IL-17B induces resistance to conventional chemotherapeutic agents. In vivo, IL-17B induced resistance to paclitaxel and treatment with an anti-IL-17RB neutralizing antibody completely restored breast tumor chemosensitivity, leading to tumor shrinkage. We next focused on the signaling pathways activated in human breast cancer cell lines upon incubation with IL-17B. We observed that IL-17B induces ERK1/2 pathway activation, leading to upregulation of anti-apoptotic proteins of the BCL-2 family. IL-17B-induced chemoresistance was completely abolished by incubation with PD98059, an inhibitor of the MAPK/ERK pathway, indicating that the ERK pathway plays a crucial role. Altogether our results emphasize the role of the IL-17B/IL-17RB signaling pathway in breast tumors and identify IL-17B and its receptor as attractive therapeutic targets for potentiating breast cancer chemotherapy.

5.
Life Sci ; 183: 98-109, 2017 Aug 15.
Article in English | MEDLINE | ID: mdl-28624391

ABSTRACT

Mammary tumorigenesis can be modulated by melatonin, which has oncostatic action mediated by multiple mechanisms, including the inhibition of the activity of transcription factors such as NF-κB and modulation of interleukins (ILs) expression. IL-25 is an active cytokine that induces apoptosis in tumor cells due to differential expression of its receptor (IL-17RB). IL-17B competes with IL-25 for binding to IL-17RB in tumor cells, promoting tumorigenesis. This study purpose is to address the possibility of engaging IL-25/IL-17RB signaling to enhance the effect of melatonin on breast cancer cells. Breast cancer cell lines were cultured monolayers and 3D structures and treated with melatonin, IL-25, siIL-17B, each alone or in combination. Cell viability, gene and protein expression of caspase-3, cleaved caspase-3 and VEGF-A were performed by qPCR and immunofluorescence. In addition, an apoptosis membrane array was performed in metastatic cells. Treatments with melatonin and IL-25 significantly reduced tumor cells viability at 1mM and 1ng/mL, respectively, but did not alter cell viability of a non-tumorigenic epithelial cell line (MCF-10A). All treatments, alone and combined, significantly increased cleaved caspase-3 in tumor cells grown as monolayers and 3D structures (p<0.05). Semi-quantitative analysis of apoptosis pathway proteins showed an increase of CYTO-C, DR6, IGFBP-3, IGFBP-5, IGFPB-6, IGF-1, IGF-1R, Livin, P21, P53, TNFRII, XIAP and hTRA proteins and reduction of caspase-3 (p<0.05) after melatonin treatment. All treatments reduced VEGF-A protein expression in tumor cells (p<0.05). Our results suggest therapeutic potential, with oncostatic effectiveness, pro-apoptotic and anti-angiogenic properties for melatonin and IL-25-driven signaling in breast cancer cells.


Subject(s)
Breast Neoplasms/pathology , Interleukin-17/metabolism , Melatonin/metabolism , Receptors, Interleukin/metabolism , Apoptosis/physiology , Breast Neoplasms/genetics , Cell Line, Tumor , Cell Survival/physiology , Female , Fluorescent Antibody Technique , Gene Expression Regulation, Neoplastic , Humans , Interleukin-17/administration & dosage , Melatonin/administration & dosage , Melatonin/pharmacology , Neovascularization, Pathologic/metabolism , Polymerase Chain Reaction , Receptors, Interleukin-17 , Signal Transduction/physiology , Vascular Endothelial Growth Factor A/genetics
6.
Gene ; 536(1): 145-50, 2014 Feb 15.
Article in English | MEDLINE | ID: mdl-24291026

ABSTRACT

The use of array comparative genomic hybridization (array CGH) as a diagnostic tool in molecular genetics has facilitated the identification of many new microdeletion/microduplication syndromes (MMSs). Furthermore, this method has allowed for the identification of copy number variations (CNVs) whose pathogenic role has yet to be uncovered. Here, we report on our application of array CGH for the identification of pathogenic CNVs in 79 Russian children with intellectual disability (ID). Twenty-six pathogenic or likely pathogenic changes in copy number were detected in 22 patients (28%): 8 CNVs corresponded to known MMSs, and 17 were not associated with previously described syndromes. In this report, we describe our findings and comment on genes potentially associated with ID that are located within the CNV regions.


Subject(s)
Comparative Genomic Hybridization/methods , Intellectual Disability/diagnosis , Intellectual Disability/genetics , Adolescent , Child , Child, Preschool , Chromosome Aberrations , Chromosomes, Human, Pair 11/genetics , Chromosomes, Human, Pair 4/genetics , Cohort Studies , DNA Copy Number Variations/genetics , Female , Humans , Male , Russia
SELECTION OF CITATIONS
SEARCH DETAIL