Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.062
Filter
1.
Proc Natl Acad Sci U S A ; 121(22): e2401185121, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38768340

ABSTRACT

The origin of the German cockroach, Blattella germanica, is enigmatic, in part because it is ubiquitous worldwide in human-built structures but absent from any natural habitats. The first historical records of this species are from ca. 250 years ago (ya) from central Europe (hence its name). However, recent research suggests that the center of diversity of the genus is Asian, where its closest relatives are found. To solve this paradox, we sampled genome-wide markers of 281 cockroaches from 17 countries across six continents. We confirm that B. germanica evolved from the Asian cockroach Blattella asahinai approximately 2,100 ya, probably by adapting to human settlements in India or Myanmar. Our genomic analyses reconstructed two primary global spread routes, one older, westward route to the Middle East coinciding with various Islamic dynasties (~1,200 ya), and another younger eastward route coinciding with the European colonial period (~390 ya). While Europe was not central to the early domestication and spread of the German cockroach, European advances in long-distance transportation and temperature-controlled housing were likely important for the more recent global spread, increasing chances of successful dispersal to and establishment in new regions. The global genetic structure of German cockroaches further supports our model, as it generally aligns with geopolitical boundaries, suggesting regional bridgehead populations established following the advent of international commerce.


Subject(s)
Blattellidae , Animals , Blattellidae/genetics , Phylogeny , Europe , Biological Evolution
2.
Proc Natl Acad Sci U S A ; 120(11): e2211796120, 2023 03 14.
Article in English | MEDLINE | ID: mdl-36881623

ABSTRACT

Invasive species impart abrupt changes on ecosystems, but their impacts on microbial communities are often overlooked. We paired a 20 y freshwater microbial community time series with zooplankton and phytoplankton counts, rich environmental data, and a 6 y cyanotoxin time series. We observed strong microbial phenological patterns that were disrupted by the invasions of spiny water flea (Bythotrephes cederströmii) and zebra mussels (Dreissena polymorpha). First, we detected shifts in Cyanobacteria phenology. After the spiny water flea invasion, Cyanobacteria dominance crept earlier into clearwater; and after the zebra mussel invasion, Cyanobacteria abundance crept even earlier into the diatom-dominated spring. During summer, the spiny water flea invasion sparked a cascade of shifting diversity where zooplankton diversity decreased and Cyanobacteria diversity increased. Second, we detected shifts in cyanotoxin phenology. After the zebra mussel invasion, microcystin increased in early summer and the duration of toxin production increased by over a month. Third, we observed shifts in heterotrophic bacteria phenology. The Bacteroidota phylum and members of the acI Nanopelagicales lineage were differentially more abundant. The proportion of the bacterial community that changed differed by season; spring and clearwater communities changed most following the spiny water flea invasion that lessened clearwater intensity, while summer communities changed least following the zebra mussel invasion despite the shifts in Cyanobacteria diversity and toxicity. A modeling framework identified the invasions as primary drivers of the observed phenological changes. These long-term invasion-mediated shifts in microbial phenology demonstrate the interconnectedness of microbes with the broader food web and their susceptibility to long-term environmental change.


Subject(s)
Actinobacteria , Cladocera , Dreissena , Microbiota , Animals , Time Factors , Bacteroidetes , Fresh Water
3.
Proc Natl Acad Sci U S A ; 120(44): e2306932120, 2023 Oct 31.
Article in English | MEDLINE | ID: mdl-37874855

ABSTRACT

Transgenic crops producing insecticidal proteins from Bacillus thuringiensis (Bt) have revolutionized control of some major pests. However, more than 25 cases of field-evolved practical resistance have reduced the efficacy of transgenic crops producing crystalline (Cry) Bt proteins, spurring adoption of alternatives including crops producing the Bt vegetative insecticidal protein Vip3Aa. Although practical resistance to Vip3Aa has not been reported yet, better understanding of the genetic basis of resistance to Vip3Aa is urgently needed to proactively monitor, delay, and counter pest resistance. This is especially important for fall armyworm (Spodoptera frugiperda), which has evolved practical resistance to Cry proteins and is one of the world's most damaging pests. Here, we report the identification of an association between downregulation of the transcription factor gene SfMyb and resistance to Vip3Aa in S. frugiperda. Results from a genome-wide association study, fine-scale mapping, and RNA-Seq identified this gene as a compelling candidate for contributing to the 206-fold resistance to Vip3Aa in a laboratory-selected strain. Experimental reduction of SfMyb expression in a susceptible strain using RNA interference (RNAi) or CRISPR/Cas9 gene editing decreased susceptibility to Vip3Aa, confirming that reduced expression of this gene can cause resistance to Vip3Aa. Relative to the wild-type promoter for SfMyb, the promoter in the resistant strain has deletions and lower activity. Data from yeast one-hybrid assays, genomics, RNA-Seq, RNAi, and proteomics identified genes that are strong candidates for mediating the effects of SfMyb on Vip3Aa resistance. The results reported here may facilitate progress in understanding and managing pest resistance to Vip3Aa.


Subject(s)
Bacillus thuringiensis , Insecticides , Animals , Bacillus thuringiensis/genetics , Spodoptera/genetics , Bacillus thuringiensis Toxins/metabolism , Down-Regulation , Transcription Factors/metabolism , Genome-Wide Association Study , Insecticides/pharmacology , Bacterial Proteins/genetics , Bacterial Proteins/pharmacology , Bacterial Proteins/metabolism , Crops, Agricultural/genetics , Endotoxins/genetics , Endotoxins/pharmacology , Endotoxins/metabolism , Hemolysin Proteins/metabolism , Insecticide Resistance/genetics , Larva/metabolism , Plants, Genetically Modified/genetics , Plants, Genetically Modified/metabolism
4.
Mol Biol Evol ; 41(7)2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38941083

ABSTRACT

Insect crop pests threaten global food security. This threat is amplified through the spread of nonnative species and through adaptation of native pests to control measures. Adaptations such as pesticide resistance can result from selection on variation within a population, or through gene flow from another population. We investigate these processes in an economically important noctuid crop pest, Helicoverpa zea, which has evolved resistance to a wide range of pesticides. Its sister species Helicoverpa armigera, first detected as an invasive species in Brazil in 2013, introduced the pyrethroid-resistance gene CYP337B3 to South American H. zea via adaptive introgression. To understand whether this could contribute to pesticide resistance in North America, we sequenced 237 H. zea genomes across 10 sample sites. We report H. armigera introgression into the North American H. zea population. Two individuals sampled in Texas in 2019 carry H. armigera haplotypes in a 4 Mbp region containing CYP337B3. Next, we identify signatures of selection in the panmictic population of nonadmixed H. zea, identifying a selective sweep at a second cytochrome P450 gene: CYP333B3. We estimate that its derived allele conferred a ∼5% fitness advantage and show that this estimate explains independently observed rare nonsynonymous CYP333B3 mutations approaching fixation over a ∼20-year period. We also detect putative signatures of selection at a kinesin gene associated with Bt resistance. Overall, we document two mechanisms of rapid adaptation: the introduction of fitness-enhancing alleles through interspecific introgression, and selection on intraspecific variation.


Subject(s)
Genetic Introgression , Insecticide Resistance , Moths , Animals , Moths/genetics , Insecticide Resistance/genetics , Cytochrome P-450 Enzyme System/genetics , North America , Adaptation, Biological/genetics , Adaptation, Physiological/genetics , Selection, Genetic , Introduced Species
5.
Proc Natl Acad Sci U S A ; 119(22): e2117389119, 2022 05 31.
Article in English | MEDLINE | ID: mdl-35622892

ABSTRACT

Human-induced abiotic global environmental changes (GECs) and the spread of nonnative invasive species are rapidly altering ecosystems. Understanding the relative and interactive effects of invasion and GECs is critical for informing ecosystem adaptation and management, but this information has not been synthesized. We conducted a meta-analysis to investigate effects of invasions, GECs, and their combined influences on native ecosystems. We found 458 cases from 95 published studies that reported individual and combined effects of invasions and a GEC stressor, which was most commonly warming, drought, or nitrogen addition. We calculated standardized effect sizes (Hedges' d) for individual and combined treatments and classified interactions as additive (sum of individual treatment effects), antagonistic (smaller than expected), or synergistic (outside the expected range). The ecological effects of GECs varied, with detrimental effects more likely with drought than the other GECs. Invasions were more strongly detrimental, on average, than GECs. Invasion and GEC interactions were mostly antagonistic, but synergistic interactions occurred in >25% of cases and mostly led to more detrimental outcomes for ecosystems. While interactive effects were most often smaller than expected from individual invasion and GEC effects, synergisms were not rare and occurred across ecological responses from the individual to the ecosystem scale. Overall, interactions between invasions and GECs were typically no worse than the effects of invasions alone, highlighting the importance of managing invasions locally as a crucial step toward reducing harm from multiple global changes.


Subject(s)
Anthropogenic Effects , Ecosystem , Introduced Species , Climate Change , Humans , Temperature
6.
Proc Natl Acad Sci U S A ; 119(18): e2107584119, 2022 05 03.
Article in English | MEDLINE | ID: mdl-35476511

ABSTRACT

The extent to which evolution can rescue a species from extinction, or facilitate range expansion, depends critically on the rate, duration, and geographical extent of the evolutionary response to natural selection. Adaptive evolution can occur quickly, but the duration and geographical extent of contemporary evolution in natural systems remain poorly studied. This is particularly true for species with large geographical ranges and for timescales that lie between "long-term" field experiments and the fossil record. Here, we introduce the Virtual Common Garden (VCG) to investigate phenotypic evolution in natural history collections while controlling for phenotypic plasticity in response to local growing conditions. Reconstructing 150 y of evolution in Lythrum salicaria (purple loosestrife) as it invaded North America, we analyze phenology measurements of 3,429 herbarium records, reconstruct growing conditions from more than 12 million local temperature records, and validate predictions across three common gardens spanning 10° of latitude. We find that phenological clines have evolved repeatedly throughout the range, during the first century of evolution. Thereafter, the rate of microevolution stalls, recapitulating macroevolutionary stasis observed in the fossil record. Our study demonstrates that preserved specimens are a critical resource for investigating limits to evolution in natural populations. Our results show how natural selection and trade-offs measured in field studies predict adaptive divergence observable in herbarium specimens over 15 decades at a continental scale.


Subject(s)
Biological Evolution , Fossils , Adaptation, Physiological/genetics , Plants , Reproduction
7.
Annu Rev Entomol ; 69: 239-258, 2024 Jan 25.
Article in English | MEDLINE | ID: mdl-37708417

ABSTRACT

Since the discovery of the ash tree (Fraxinus spp.) killer emerald ash borer (EAB; Agrilus planipennis) in the United States in 2002 and Moscow, Russia in 2003, substantial detection and management efforts have been applied to contain and monitor its spread and mitigate impacts. Despite these efforts, the pest continues to spread within North America. It has spread to European Russia and Ukraine and is causing sporadic outbreaks in its native range in China. The dynamics of EAB's range expansion events appear to be linked to the lack of resistant ash trees in invaded ranges, facilitated by the abundance of native or planted North American susceptible ash species. We review recently gained knowledge of the range expansion of EAB; its ecological, economic, and social impacts; and past management efforts with their successes and limitations. We also highlight advances in biological control, mechanisms of ash resistance, and new detection and management approaches under development, with the aim of guiding more effective management.


Subject(s)
Coleoptera , Fraxinus , Animals , Larva , North America
8.
Annu Rev Entomol ; 69: 59-79, 2024 Jan 25.
Article in English | MEDLINE | ID: mdl-37562050

ABSTRACT

Urban entomology is the study of arthropod and other pests of the urban environment. It has gained worldwide recognition as a distinct discipline. Its origin is associated with Walter Ebeling's publication Urban Entomology in 1975. Urbanization, invasive pests, increased demand for pest management services, and changes in legislation collided in the 1970s to create a need for research and extension activities worldwide. This resulted in urban entomology as a discipline and, within two decades, its national and international recognition. In this review, we present the factors that led to the development of urban entomology and how they have shaped its current meaning. As urbanization intensifies and the global economy increases, the demands for urban pest management will continue to grow. We discuss how these future challenges may shape and alter the discipline.


Subject(s)
Arthropods , Entomology , Animals , Cities
9.
Annu Rev Entomol ; 69: 455-479, 2024 Jan 25.
Article in English | MEDLINE | ID: mdl-38270987

ABSTRACT

Palm weevils, Rhynchophorus spp., are destructive pests of native, ornamental, and agricultural palm species. Of the 10 recognized species, two of the most injurious species, Rhynchophorus ferrugineus and Rhynchophorus palmarum, both of which have spread beyond their native range, are the best studied. Due to its greater global spread and damage to edible date industries in the Middle East, R. ferrugineus has received more research interest. Integrated pest management programs utilize traps baited with aggregation pheromone, removal of infested palms, and insecticides. However, weevil control is costly, development of resistance to insecticides is problematic, and program efficacy can be impaired because early detection of infestations is difficult. The genome of R. ferrugineus has been sequenced, and omics research is providing insight into pheromone communication and changes in volatile and metabolism profiles of weevil-infested palms. We outline how such developments could lead to new control strategies and early detection tools.


Subject(s)
Arecaceae , Coleoptera , Insecticides , Weevils , Animals , Pheromones , Biology
10.
BMC Genomics ; 25(1): 813, 2024 Aug 29.
Article in English | MEDLINE | ID: mdl-39210249

ABSTRACT

BACKGROUND: The invasive pest Spotted-Wing Drosophila, Drosophila suzukii (Matsumura), causes extensive damage and production losses of soft-skinned fruits. Native to Asia, the species has now spread worldwide, with first reports in Portugal in 2012. In this study, we focus on the genomic signatures of the recent Portuguese invasion, in the context of worldwide patterns established in previous works. We analyzed whole genome pool sequencing data from three Portuguese populations (N = 240) sampled in 2019 and 2021. RESULTS: The correlation of allele frequencies suggested that Portuguese populations are related to South European ones, indicating a Mediterranean invasion route. While two populations exhibited levels of genetic variation comparable to others in the invasive range, a third showed low levels of genetic diversity, which may result from a recent colonization of the region. Genome-wide analyses of natural selection identified ten genes previously associated with D. suzukii's invasive capacity, which may have contributed to the species' success in Portugal. Additionally, we pinpointed six genes evolving under positive selection across Portuguese populations but not in European ones, which is indicative of local adaptation. One of these genes, nAChRalpha7, encodes a nicotinic acetylcholine receptor, which are known targets for insecticides widely used for D. suzukii control, such as neonicotinoids and spinosyns. Although spinosyn resistance has been associated with mutations in the nAChRalpha6 in other Drosophila species, the putative role of nAChRalpha7 in insecticide resistance and local adaptation in Portuguese D. suzukii populations encourages future investigation. CONCLUSIONS: Our results highlight the complex nature of rapid species invasions and the role of rapid local adaptation in determining the invasive capacity of these species.


Subject(s)
Drosophila , Introduced Species , Animals , Drosophila/genetics , Portugal , Genomics , Genetic Variation , Selection, Genetic , Gene Frequency , Genome, Insect , Receptors, Nicotinic/genetics
11.
BMC Genomics ; 25(1): 275, 2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38475721

ABSTRACT

BACKGROUND: The spread of Popillia japonica in non-native areas (USA, Canada, the Azores islands, Italy and Switzerland) poses a significant threat to agriculture and horticulture, as well as to endemic floral biodiversity, entailing that appropriate control measures must be taken to reduce its density and limit its further spread. In this context, the availability of a high quality genomic sequence for the species is liable to foster basic research on the ecology and evolution of the species, as well as on possible biotechnologically-oriented and genetically-informed control measures. RESULTS: The genomic sequence presented and described here is an improvement with respect to the available draft sequence in terms of completeness and contiguity, and includes structural and functional annotations. A comparative analysis of gene families of interest, related to the species ecology and potential for polyphagy and adaptability, revealed a contraction of gustatory receptor genes and a paralogous expansion of some subgroups/subfamilies of odorant receptors, ionotropic receptors and cytochrome P450s. CONCLUSIONS: The new genomic sequence as well as the comparative analyses data may provide a clue to explain the staggering invasive potential of the species and may serve to identify targets for potential biotechnological applications aimed at its control.


Subject(s)
Coleoptera , Introduced Species , Animals , Coleoptera/genetics , Genomics , Canada , Italy , Phylogeny
12.
Ecol Lett ; 27(3): e14421, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38549250

ABSTRACT

Studies of ectotherm responses to heat extremes often rely on assessing absolute critical limits for heat coma or death (CTmax), however, such single parameter metrics ignore the importance of stress exposure duration. Furthermore, population persistence may be affected at temperatures considerably below CTmax through decreased reproductive output. Here we investigate the relationship between tolerance duration and severity of heat stress across three ecologically relevant life-history traits (productivity, coma and mortality) using the global agricultural pest Drosophila suzukii. For the first time, we show that for sublethal reproductive traits, tolerance duration decreases exponentially with increasing temperature (R2 > 0.97), thereby extending the Thermal Death Time framework recently developed for mortality and coma. Using field micro-environmental temperatures, we show how thermal stress can lead to considerable reproductive loss at temperatures with limited heat mortality highlighting the importance of including limits to reproductive performance in ecological studies of heat stress vulnerability.


Subject(s)
Drosophila , Life History Traits , Animals , Drosophila/physiology , Coma , Reproduction , Temperature
13.
Ecol Lett ; 27(1): e14342, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38098152

ABSTRACT

Experiments often find that net primary productivity (NPP) increases with species richness when native species are considered. However, relationships may be altered by exotic (non-native) species, which are hypothesized to reduce richness but increase productivity (i.e., 'invasion-diversity-productivity paradox'). We compared richness-NPP relationships using a comparison of exotic versus native-dominated sites across the central USA, and two experiments under common environments. Aboveground NPP was measured using peak biomass clipping in all three studies, and belowground NPP was measured in one study with root ingrowth cores using root-free soil. In all studies, there was a significantly positive relationship between NPP and richness across native species-dominated sites and plots, but no relationship across exotic-dominated ones. These results indicate that relationships between NPP and richness depend on whether native or exotic species are dominant, and that exotic species are 'breaking the rules', altering richness-productivity and richness-C stock relationships after invasion.


Subject(s)
Biodiversity , Introduced Species , Biomass , Soil , Ecosystem
14.
Emerg Infect Dis ; 30(7): 1467-1471, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38916721

ABSTRACT

We detected malaria vector Anopheles stephensi mosquitoes in the Al Hudaydah governorate in Yemen by using DNA sequencing. We report 2 cytochrome c oxidase subunit I haplotypes, 1 previously found in Ethiopia, Somalia, Djibouti, and Yemen. These findings provide insight into invasive An. stephensi mosquitoes in Yemen and their connection to East Africa.


Subject(s)
Anopheles , Mosquito Vectors , Animals , Anopheles/genetics , Anopheles/parasitology , Anopheles/classification , Yemen , Mosquito Vectors/genetics , Humans , Electron Transport Complex IV/genetics , Haplotypes , Malaria/transmission , Malaria/epidemiology , Phylogeny
15.
Emerg Infect Dis ; 30(3): 605-608, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38316032

ABSTRACT

The invasive Anopheles stephensi mosquito has rapidly expanded in range in Africa over the past decade. Consistent with World Health Organization guidelines, routine entomologic surveillance of malaria vectors in Accra, Ghana, now includes morphologic and molecular surveillance of An. stephensi mosquitoes. We report detection of An. stephensi mosquitoes in Ghana.


Subject(s)
Anopheles , Malaria , Animals , Ghana/epidemiology , Mosquito Vectors , Malaria/epidemiology
16.
Mol Biol Evol ; 40(3)2023 03 04.
Article in English | MEDLINE | ID: mdl-36814414

ABSTRACT

Genetic divergence is the fundamental process that drives evolution and ultimately speciation. Structural variants (SVs) are large-scale genomic differences within a species or population and can cause functionally important phenotypic differences. Characterizing SVs across invasive species will fill knowledge gaps regarding how patterns of genetic diversity and genetic architecture shape rapid adaptation under new selection regimes. Here, we seek to understand patterns in genetic diversity within the globally invasive European starling, Sturnus vulgaris. Using whole genome sequencing of eight native United Kingdom (UK), eight invasive North America (NA), and 33 invasive Australian (AU) starlings, we examine patterns in genome-wide SNPs and SVs between populations and within Australia. Our findings detail the landscape of standing genetic variation across recently diverged continental populations of this invasive avian. We demonstrate that patterns of genetic diversity estimated from SVs do not necessarily reflect relative patterns from SNP data, either when considering patterns of diversity along the length of the organism's chromosomes (owing to enrichment of SVs in subtelomeric repeat regions), or interpopulation diversity patterns (possibly a result of altered selection regimes or introduction history). Finally, we find that levels of balancing selection within the native range differ across SNP and SV of different classes and outlier classifications. Overall, our results demonstrate that the processes that shape allelic diversity within populations is complex and support the need for further investigation of SVs across a range of taxa to better understand correlations between often well-studied SNP diversity and that of SVs.


Subject(s)
Genomics , Polymorphism, Single Nucleotide , Australia , Whole Genome Sequencing , Adaptation, Physiological , Genetic Variation
17.
BMC Plant Biol ; 24(1): 494, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38831264

ABSTRACT

BACKGROUND ACMELLA RADICANS: (Jacquin) R.K. Jansen is a new invasive species record for Yunnan Province, China. Native to Central America, it has also been recently recorded invading other parts of Asia. To prevent this weed from becoming a serious issue, an assessment of its ecological impacts and potential distribution is needed. We predicted the potential distribution of A. radicans in China using the MaxEnt model and its ecological impacts on local plant communities and soil nutrients were explored. RESULTS: Simulated training using model parameters produced an area under curve value of 0.974, providing a high degree of confidence in model predictions. Environmental variables with the greatest predictive power were precipitation of wettest month, isothermality, topsoil TEB (total exchangeable bases), and precipitation seasonality, with a cumulative contribution of more than 72.70% and a cumulative permutation importance of more than 69.20%. The predicted potential suitable area of A. radicans in China is concentrated in the southern region. Projected areas of A. radicans ranked as high and moderately suitable comprised 5425 and 26,338 km2, accounting for 0.06 and 0.27% of the Chinese mainland area, respectively. Over the 5 years of monitoring, the population density of A. radicans increased while at the same time the population density and importance values of most other plant species declined markedly. Community species richness, diversity, and evenness values significantly declined. Soil organic matter, total N, total P, available N, and available P concentrations decreased significantly with increasing plant cover of A. radicans, whereas pH, total K and available K increased. CONCLUSION: Our study was the first to show that A. radicans is predicted to expand its range in China and may profoundly affect plant communities, species diversity, and the soil environment. Early warning and monitoring of A. radicans must be pursued with greater vigilance in southern China to prevent its further spread.


Subject(s)
Introduced Species , China , Soil/chemistry , Ecosystem
18.
Proc Biol Sci ; 291(2018): 20232478, 2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38471556

ABSTRACT

Defensive chemicals of prey can be sequestered by some coevolved predators, which take advantage of prey toxins for their own defence. The increase in the number of invasive species in the Anthropocene has resulted in new interactions among non-coevolved predator and prey species. While novelty in chemical defence may provide a benefit for invasive prey against non-coevolved predators, resident predators with the right evolutionary pre-adaptations might benefit from sequestering these novel defences. Here, we chose a well-known system of invasive species to test whether non-coevolved predators can sequester and use toxins from exotic prey. Together with the invasive prickly pear plants, cochineal bugs (Dactylopius spp.) are spreading worldwide from their native range in the Americas. These insects produce carminic acid, a defensive anthraquinone that some specialized predators sequester for their own defence. Using this system, we first determined whether coccinellids that prey on cochineal bugs in the Mediterranean region tolerated, sequestered, and released carminic acid in reflex bleeding. Then, we quantified the deterrent effect of carminic acid against antagonistic ants. Our results demonstrate that the Australian coccinellid Cryptolaemus montrouzieri sequestered carminic acid, a substance absent in its coevolved prey, from exotic cochineal bugs. When attacked, the predator released this substance through reflex bleeding at concentrations that were deterrent against antagonistic ants. These findings reveal that non-coevolved predators can sequester and use novel toxins from exotic prey and highlights the surprising outcomes of novel interactions that arise from species invasions.


Subject(s)
Ants , Coleoptera , Animals , Carmine , Predatory Behavior , Australia , Insecta , Introduced Species
19.
Mol Ecol ; : e17515, 2024 Aug 30.
Article in English | MEDLINE | ID: mdl-39212263

ABSTRACT

Hybridization plays a pivotal role in evolution, influencing local adaptation and speciation. However, it can also reduce biodiversity, which is especially damaging when native and non-native species meet. Hybridization can threaten native species via competition (with vigorous hybrids), reproductive resource wastage and gene introgression. The latter, in particular, could result in increased fitness in invasive species, decreased fitness of natives and compromise reintroduction or recovery conservation practices. In this study, we use a combination of RAD sequencing and microsatellites for a range-wide sample set of 1366 fish to evaluate the potential for hybridization and introgression between native crucian carp (Carassius carassius) and three non-native taxa (Carassius auratus auratus, Carassius auratus gibelio and Cyprinus carpio) in European water bodies. We found hybridization between native and non-native taxa in 82% of populations with non-natives present, highlighting the potential for substantial ecological impacts from hybrids on crucian carp populations. However, despite such high rates of hybridization, we could find no evidence of introgression between these taxa. The presence of triploid backcrosses in at least two populations suggests that the lack of introgression among these taxa is likely due to meiotic dysfunction in hybrids, leading to the production of polyploid offspring which are unable to reproduce sexually. This result is promising for crucian reintroduction programs, as it implies limited risk to the genetic integrity of source populations. Future research should investigate the reproductive potential of triploid hybrids and the ecological pressures hybrids impose on C. carassius.

20.
Mol Ecol ; 33(17): e17489, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39148259

ABSTRACT

Globalization has led to the frequent movement of species out of their native habitat. Some of these species become highly invasive and capable of profoundly altering invaded ecosystems. Feral swine (Sus scrofa × domesticus) are recognized as being among the most destructive invasive species, with populations established on all continents except Antarctica. Within the United States (US), feral swine are responsible for extensive crop damage, the destruction of native ecosystems, and the spread of disease. Purposeful human-mediated movement of feral swine has contributed to their rapid range expansion over the past 30 years. Patterns of deliberate introduction of feral swine have not been well described as populations may be established or augmented through small, undocumented releases. By leveraging an extensive genomic database of 18,789 samples genotyped at 35,141 single nucleotide polymorphisms (SNPs), we used deep neural networks to identify translocated feral swine across the contiguous US. We classified 20% (3364/16,774) of sampled animals as having been translocated and described general patterns of translocation using measures of centrality in a network analysis. These findings unveil extensive movement of feral swine well beyond their dispersal capabilities, including individuals with predicted origins >1000 km away from their sampling locations. Our study provides insight into the patterns of human-mediated movement of feral swine across the US and from Canada to the northern areas of the US. Further, our study validates the use of neural networks for studying the spread of invasive species.


Subject(s)
Introduced Species , Neural Networks, Computer , Polymorphism, Single Nucleotide , Animals , United States , Swine/genetics , Sus scrofa/genetics , Genotype , Ecosystem , Animals, Wild/genetics , Genetics, Population
SELECTION OF CITATIONS
SEARCH DETAIL