Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.312
Filter
1.
Cell ; 171(7): 1692-1706.e18, 2017 Dec 14.
Article in English | MEDLINE | ID: mdl-29153837

ABSTRACT

Methods for the targeted disruption of protein function have revolutionized science and greatly expedited the systematic characterization of genes. Two main approaches are currently used to disrupt protein function: DNA knockout and RNA interference, which act at the genome and mRNA level, respectively. A method that directly alters endogenous protein levels is currently not available. Here, we present Trim-Away, a technique to degrade endogenous proteins acutely in mammalian cells without prior modification of the genome or mRNA. Trim-Away harnesses the cellular protein degradation machinery to remove unmodified native proteins within minutes of application. This rapidity minimizes the risk that phenotypes are compensated and that secondary, non-specific defects accumulate over time. Because Trim-Away utilizes antibodies, it can be applied to a wide range of target proteins using off-the-shelf reagents. Trim-Away allows the study of protein function in diverse cell types, including non-dividing primary cells where genome- and RNA-targeting methods are limited.


Subject(s)
Antibodies/chemistry , Biochemistry/methods , Protein Transport , Proteolysis , Animals
2.
Annu Rev Genet ; 55: 71-91, 2021 11 23.
Article in English | MEDLINE | ID: mdl-34314597

ABSTRACT

Genetic manipulations with a robust and predictable outcome are critical to investigate gene function, as well as for therapeutic genome engineering. For many years, knockdown approaches and reagents including RNA interference and antisense oligonucleotides dominated functional studies; however, with the advent of precise genome editing technologies, CRISPR-based knockout systems have become the state-of-the-art tools for such studies. These technologies have helped decipher the role of thousands of genes in development and disease. Their use has also revealed how limited our understanding of genotype-phenotype relationships is. The recent discovery that certain mutations can trigger the transcriptional modulation of other genes, a phenomenon called transcriptional adaptation, has provided an additional explanation for the contradicting phenotypes observed in knockdown versus knockout models and increased awareness about the use of each of these approaches. In this review, we first cover the strengths and limitations of different gene perturbation strategies. Then we highlight the diverse ways in which the genotype-phenotype relationship can be discordant between these different strategies. Finally, we review the genetic robustness mechanisms that can lead to such discrepancies, paying special attention to the recently discovered phenomenon of transcriptional adaptation.


Subject(s)
CRISPR-Cas Systems , Gene Editing , CRISPR-Cas Systems/genetics , Genome , Genotype , Phenotype
3.
J Cell Sci ; 136(6)2023 03 15.
Article in English | MEDLINE | ID: mdl-36825467

ABSTRACT

The CRISPR-Cas13d system has a single small effector protein that targets RNA and does not require the presence of a protospacer flanking site in the targeted transcript. These features make CRISPR-Cas13d an attractive system for RNA manipulation. Here, we report the successful implementation of the CRISPR-Cas13d system in fission yeast for RNA knockdown. A high effectiveness of the CRISPR-Cas13d system was ensured by using an array of CRISPR RNAs (crRNAs) that are flanked by two self-cleaving ribozymes and are expressed from an RNA polymerase II promoter. Given the repressible nature of the promoter, RNA knockdown by the CRISPR-Cas13d system is reversible. Moreover, using the CRISPR-Cas13d system, we identified an effective crRNA array targeting the transcript of gfp and the effectiveness was demonstrated by successful knockdown of the transcripts of noc4-gfp, bub1-gfp and ade6-gfp. In principle, the effective GFP crRNA array allows knockdown of any transcript carrying the GFP sequences. This new CRISPR-Cas13d-based toolkit is expected to have a wide range of applications in many aspects of biology, including dissection of gene function and visualization of RNA.


Subject(s)
Schizosaccharomyces pombe Proteins , Schizosaccharomyces , RNA/genetics , Clustered Regularly Interspaced Short Palindromic Repeats , Schizosaccharomyces/genetics , Schizosaccharomyces/metabolism , CRISPR-Cas Systems/genetics , Promoter Regions, Genetic/genetics , Protein Serine-Threonine Kinases/metabolism , Schizosaccharomyces pombe Proteins/genetics , Schizosaccharomyces pombe Proteins/metabolism
4.
J Cell Sci ; 136(9)2023 05 01.
Article in English | MEDLINE | ID: mdl-37162093

ABSTRACT

Characterizing functions of essential genes is challenging, as perturbing them is generally lethal. Conditional gene perturbation, including use of temperature-sensitive mutants, has been widely utilized to reveal functions of essential genes in the fission yeast Schizosaccharomyces pombe. However, recently we implemented a systematic and less time-consuming knockdown method, CRISPR interference (CRISPRi), in this organism using catalytically inactive Cas9 (dCas9). This technology has been expected to facilitate characterization of essential genes in S. pombe, although this still has not occurred. Here, CRISPRi was harnessed to study uncharacterized essential genes that are evolutionally conserved from yeasts to mammals. Transcription of these genes, which we call conserved essential obscure (ceo) genes, was repressed using conventional dCas9-mediated CRISPRi and by implementing technologies that enhance repression efficiency or alleviate limitations on small guide RNA (sgRNA) design. These CRISPRi methods successfully reduced transcription of target genes and allowed us to characterize resulting phenotypes. Knockdown of ceo genes inhibited cell proliferation and altered cellular morphology. Thus, dCas9-based CRISPRi methods utilized in this study enhanced accessibility of genetic analyses targeting essential genes in S. pombe.


Subject(s)
Schizosaccharomyces , Animals , Schizosaccharomyces/genetics , Cell Proliferation , Gene Knockdown Techniques , Phenotype , Mammals
5.
Annu Rev Genet ; 51: 83-102, 2017 11 27.
Article in English | MEDLINE | ID: mdl-29178817

ABSTRACT

The conditional depletion of a protein of interest (POI) is useful not only for loss-of-function studies, but also for the modulation of biological pathways. Technologies that work at the level of DNA, mRNA, and protein are available for temporal protein depletion. Compared with technologies targeting the pretranslation steps, direct protein depletion (or protein knockdown approaches) is advantageous in terms of specificity, reversibility, and time required for depletion, which can be achieved by fusing a POI with a protein domain called a degron that induces rapid proteolysis of the fusion protein. Conditional degrons can be activated or inhibited by temperature, small molecules, light, or the expression of another protein. The conditional degron-based technologies currently available are described and discussed.


Subject(s)
Gene Expression Regulation , Proteasome Endopeptidase Complex/metabolism , Protein Biosynthesis , Proteomics/methods , Animals , CRISPR-Cas Systems , Gene Expression Regulation/drug effects , Gene Expression Regulation/radiation effects , Humans , Integrases/genetics , Integrases/metabolism , Light , Morpholinos/genetics , Morpholinos/metabolism , Plants/genetics , Plants/metabolism , Protein Biosynthesis/drug effects , Protein Biosynthesis/radiation effects , Protein Domains , Protein Engineering , Proteolysis/drug effects , Proteolysis/radiation effects , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Small Molecule Libraries/pharmacology
6.
J Virol ; 98(2): e0126823, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38240588

ABSTRACT

Protein knockdown with an inducible degradation system is a powerful tool for studying proteins of interest in living cells. Here, we adopted the auxin-inducible degron (AID) approach to detail Kaposi's sarcoma-associated herpesvirus (KSHV) latency-associated nuclear antigen (LANA) function in latency maintenance and inducible viral lytic gene expression. We fused the mini-auxin-inducible degron (mAID) tag at the LANA N-terminus with KSHV bacterial artificial chromosome 16 recombination, and iSLK cells were stably infected with the recombinant KSHV encoding mAID-LANA. Incubation with 5-phenyl-indole-3-acetic acid, a derivative of natural auxin, rapidly degraded LANA within 1.5 h. In contrast to our hypothesis, depletion of LANA alone did not trigger lytic reactivation but rather decreased inducible lytic gene expression when we stimulated reactivation with a combination of ORF50 protein expression and sodium butyrate. Decreased overall lytic gene induction seemed to be associated with a rapid loss of KSHV genomes in the absence of LANA. The rapid loss of viral genomic DNA was blocked by a lysosomal inhibitor, chloroquine. Furthermore, siRNA-mediated knockdown of cellular innate immune proteins, cyclic AMP-GMP synthase (cGAS) and simulator of interferon genes (STING), and other autophagy-related genes rescued the degradation of viral genomic DNA upon LANA depletion. Reduction of the viral genome was not observed in 293FT cells that lack the expression of cGAS. These results suggest that LANA actively prevents viral genomic DNA from sensing by cGAS-STING signaling axis, adding novel insights into the role of LANA in latent genome maintenance.IMPORTANCESensing of pathogens' components is a fundamental cellular immune response. Pathogens have therefore evolved strategies to evade such cellular immune responses. KSHV LANA is a multifunctional protein and plays an essential role in maintaining the latent infection by tethering viral genomic DNA to the host chromosome. We adopted the inducible protein knockdown approach and found that depletion of LANA induced rapid degradation of viral genomic DNA, which is mediated by innate immune DNA sensors and autophagy pathway. These observations suggest that LANA may play a role in hiding KSHV episome from innate immune DNA sensors. Our study thus provides new insights into the role of LANA in latency maintenance.


Subject(s)
Antigens, Viral , Herpesvirus 8, Human , Plasmids , Sarcoma, Kaposi , Humans , Antigens, Viral/metabolism , DNA , Herpesvirus 8, Human/physiology , Indoleacetic Acids , Nucleotidyltransferases/genetics , Sarcoma, Kaposi/virology , Virus Latency , Nuclear Proteins/metabolism
7.
Plant Physiol ; 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38833589

ABSTRACT

An inducible protein-knockdown system is highly effective for investigating the functions of proteins and mechanisms essential for the survival and growth of organisms. However, this technique is not available in photosynthetic eukaryotes. The unicellular red alga Cyanidioschyzon merolae possesses a very simple cellular and genomic architecture and is genetically tractable but lacks RNA interference machinery. In this study, we developed a protein-knockdown system in this alga. The constitutive system utilizes the destabilizing activity of the FRB domain of human target of rapamycin (TOR) kinase or its derivatives to knock down target proteins. In the inducible system, rapamycin treatment induces the heterodimerization of the human FKBP12-rapamycin binding (FRB) domain fused to the target proteins with the human FK506-binding protein 12 (FKBP) fused to S-phase kinase associated protein 1 (SKP1) or Cullin 1 (CUL1), subunits of the SCF E3 ubiquitin ligase. This results in the rapid degradation of the target proteins through the ubiquitin-proteasome pathway. With this system, we successfully degraded endogenous essential proteins such as the chloroplast division protein Dynamin related protein 5B (DRP5B) and E2 transcription factor (E2F), a regulator of the G1/S transition, within 2-3 hours after rapamycin administration, enabling the assessment of resulting phenotypes. This rapamycin-inducible protein-knockdown system contributes to the functional analysis of genes whose disruption leads to lethality.

8.
Mol Ther ; 32(4): 1080-1095, 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38310353

ABSTRACT

Abnormal tau accumulation is the hallmark of several neurodegenerative diseases, named tauopathies. Strategies aimed at reducing tau in the brain are promising therapeutic interventions, yet more precise therapies would require targeting specific nuclei and neuronal subpopulations affected by disease while avoiding global reduction of physiological tau. Here, we developed artificial microRNAs directed against the human MAPT mRNA to dwindle tau protein by engaging the endogenous RNA interference pathway. In human differentiated neurons in culture, microRNA-mediated tau reduction diminished neuronal firing without affecting neuronal morphology or impairing axonal transport. In the htau mouse model of tauopathy, we locally expressed artificial microRNAs in the prefrontal cortex (PFC), an area particularly vulnerable to initiating tau pathology in this model. Tau knockdown prevented the accumulation of insoluble and hyperphosphorylated tau, modulated firing activity of putative pyramidal neurons, and improved glucose uptake in the PFC. Moreover, such tau reduction prevented cognitive decline in aged htau mice. Our results suggest target engagement of designed tau-microRNAs to effectively reduce tau pathology, providing a proof of concept for a potential therapeutic approach based on local tau knockdown to rescue tauopathy-related phenotypes.


Subject(s)
MicroRNAs , Tauopathies , Mice , Humans , Animals , Aged , tau Proteins/genetics , tau Proteins/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Tauopathies/genetics , Tauopathies/therapy , Tauopathies/metabolism , Neurons/metabolism , Phenotype , Mice, Transgenic , Disease Models, Animal
9.
EMBO J ; 39(6): e104013, 2020 03 16.
Article in English | MEDLINE | ID: mdl-32009247

ABSTRACT

High-grade serous ovarian cancer (HGSOC) likely originates from the fallopian tube (FT) epithelium. Here, we established 15 organoid lines from HGSOC primary tumor deposits that closely match the mutational profile and phenotype of the parental tumor. We found that Wnt pathway activation leads to growth arrest of these cancer organoids. Moreover, active BMP signaling is almost always required for the generation of HGSOC organoids, while healthy fallopian tube organoids depend on BMP suppression by Noggin. Fallopian tube organoids modified by stable shRNA knockdown of p53, PTEN, and retinoblastoma protein (RB) also require a low-Wnt environment for long-term growth, while fallopian tube organoid medium triggers growth arrest. Thus, early changes in the stem cell niche environment are needed to support outgrowth of these genetically altered cells. Indeed, comparative analysis of gene expression pattern and phenotypes of normal vs. loss-of-function organoids confirmed that depletion of tumor suppressors triggers changes in the regulation of stemness and differentiation.


Subject(s)
Ovarian Neoplasms/genetics , Tumor Suppressor Proteins/genetics , Wnt Signaling Pathway/genetics , Carcinogenesis/genetics , Cell Differentiation , Disease Progression , Epithelium/pathology , Fallopian Tubes/pathology , Female , Gene Knockdown Techniques , Humans , Organoids/pathology , Ovarian Neoplasms/pathology , Phenotype , Stem Cell Niche
10.
Biochem Biophys Res Commun ; 702: 149618, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38340658

ABSTRACT

Patatin-like phospholipase domain-containing 1 (PNPLA1) is crucial in the esterification of linoleic acid (LA; 18:2n-6) to ω-hydroxy fatty acids (FA) of ceramide 1 (Cer1), the major barrier lipid of the differentiated epidermis. We previously reported that γ-linolenic acid (GLA; 18:3n-6) as well as LA is esterified to Cer1 subspecies with sphingosine (d18:1) or eicosasphingosine (d20:1) amide-linked to two different ω-hydroxy FA (30wh:0; 32wh:1). Here, we further investigated whether PNPLA1 is also responsible for esterification of GLA to these Cer1 subspecies in normal human keratinocytes (NHK). As late/terminal differentiation was induced in NHK, PNPLA1 and differentiation markers were expressed, and LA-esterified Cer1 subspecies (18:2n-6/C30wh:0 or C32wh:0/d18:1; 18:2n-6/C32wh:0/d20:1) were detected, which were further increased with LA treatment. GLA-esterified Cer1 subspecies (18:3n-6/C30wh:0 or C32wh:0/d18:1; 18:3n-6/C32wh:0/d20:1) were detected only with GLA treatment. Specific small interfering RNA-mediated knockdown of PNPLA1 (KDP) in differentiated NHK decreased levels of these LA-esterified Cer1 subspecies overall and of involucrin (IVL), a terminal differentiation marker. Moreover, KDP resulted in lesser LA/GLA responses as characterized by more significant decreases in IVL and LA/GLA-esterified Cer1 subspecies overall and an accumulation of non-esterified ω-hydroxy ceramides, their putative precursors; the decrease of 18:3n-6/C32wh:0/d18:1, the predominant GLA-esterified Cer1 subspecies, specifically paralleled the increase of C32wh:0/d18:1, its corresponding precursor. PNPLA1 is responsible for NHK terminal differentiation and also for esterification of GLA to the ω-hydroxy FA of Cer1.


Subject(s)
Keratinocytes , gamma-Linolenic Acid , Humans , gamma-Linolenic Acid/metabolism , Esterification , Epidermis/metabolism , Ceramides/metabolism , Fatty Acids/metabolism , Linoleic Acid/metabolism , Acyltransferases/metabolism , Phospholipases/metabolism
11.
Genes Cells ; 28(5): 374-382, 2023 May.
Article in English | MEDLINE | ID: mdl-36811310

ABSTRACT

Human epidermal growth factor receptor (HER) family proteins are currently major targets of therapeutic monoclonal antibodies against various epithelial cancers. However, the resistance of cancer cells to HER family-targeted therapies, which may be caused by cancer heterogeneity and persistent HER phosphorylation, often reduces overall therapeutic effects. We herein showed that a newly discovered molecular complex between CD98 and HER2 affected HER function and cancer cell growth. The immunoprecipitation of the HER2 or HER3 protein from lysates of SKBR3 breast cancer (BrCa) cells revealed the HER2-CD98 or HER3-CD98 complex. The knockdown of CD98 by small interfering RNAs inhibited the phosphorylation of HER2 in SKBR3 cells. A bispecific antibody (BsAb) that recognized the HER2 and CD98 proteins was constructed from a humanized anti-HER2 (SER4) IgG and an anti-CD98 (HBJ127) single chain variable fragment, and this BsAb significantly inhibited the cell growth of SKBR3 cells. Prior to the inhibition of AKT phosphorylation, BsAb inhibited the phosphorylation of HER2, however, significant inhibition of HER2 phosphorylation was not observed in anti-HER2 pertuzumab, trastuzumab, SER4 or anti-CD98 HBJ127 in SKBR3 cells. The dual targeting of HER2 and CD98 has potential as a new therapeutic strategy for BrCa.


Subject(s)
Breast Neoplasms , Humans , Female , Breast Neoplasms/pathology , Receptor, ErbB-2/metabolism , Trastuzumab/pharmacology , Trastuzumab/metabolism , Trastuzumab/therapeutic use , Antibodies, Monoclonal/metabolism , Phosphorylation , Cell Line, Tumor
12.
RNA ; 28(8): 1074-1088, 2022 08.
Article in English | MEDLINE | ID: mdl-35618430

ABSTRACT

CRISPR-Cas systems are functionally diverse prokaryotic antiviral defense systems, which encompass six distinct types (I-VI) that each encode different effector Cas nucleases with distinct nucleic acid cleavage specificities. By harnessing the unique attributes of the various CRISPR-Cas systems, a range of innovative CRISPR-based DNA and RNA targeting tools and technologies have been developed. Here, we exploit the ability of type III-A CRISPR-Cas systems to carry out RNA-guided and sequence-specific target RNA cleavage for establishment of research tools for post-transcriptional control of gene expression. Type III-A systems from three bacterial species (L. lactis, S. epidermidis, and S. thermophilus) were each expressed on a single plasmid in E. coli, and the efficiency and specificity of gene knockdown was assessed by northern blot and transcriptomic analysis. We show that engineered type III-A modules can be programmed using tailored CRISPR RNAs to efficiently knock down gene expression of both coding and noncoding RNAs in vivo. Moreover, simultaneous degradation of multiple cellular mRNA transcripts can be directed by utilizing a CRISPR array expressing corresponding gene-targeting crRNAs. Our results demonstrate the utility of distinct type III-A modules to serve as specific and effective gene knockdown platforms in heterologous cells. This transcriptome engineering technology has the potential to be further refined and exploited for key applications including gene discovery and gene pathway analyses in additional prokaryotic and perhaps eukaryotic cells and organisms.


Subject(s)
CRISPR-Cas Systems , Escherichia coli , Escherichia coli/genetics , Gene Knockdown Techniques , RNA/genetics , Staphylococcus epidermidis , Technology
13.
Brief Bioinform ; 23(6)2022 11 19.
Article in English | MEDLINE | ID: mdl-36184189

ABSTRACT

Short hairpin RNA (shRNA)-mediated gene silencing is an important technology to achieve RNA interference, in which the design of potent and reliable shRNA molecules plays a crucial role. However, efficient shRNA target selection through biological technology is expensive and time consuming. Hence, it is crucial to develop a more precise and efficient computational method to design potent and reliable shRNA molecules. In this work, we present an interpretable classification model for the shRNA target prediction using the Light Gradient Boosting Machine algorithm called ILGBMSH. Rather than utilizing only the shRNA sequence feature, we extracted 554 biological and deep learning features, which were not considered in previous shRNA prediction research. We evaluated the performance of our model compared with the state-of-the-art shRNA target prediction models. Besides, we investigated the feature explanation from the model's parameters and interpretable method called Shapley Additive Explanations, which provided us with biological insights from the model. We used independent shRNA experiment data from other resources to prove the predictive ability and robustness of our model. Finally, we used our model to design the miR30-shRNA sequences and conducted a gene knockdown experiment. The experimental result was perfectly in correspondence with our expectation with a Pearson's coefficient correlation of 0.985. In summary, the ILGBMSH model can achieve state-of-the-art shRNA prediction performance and give biological insights from the machine learning model parameters.


Subject(s)
Algorithms , Machine Learning , RNA, Small Interfering/genetics
14.
Glob Chang Biol ; 30(6): e17341, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38837568

ABSTRACT

Thermal acclimation can provide an essential buffer against heat stress for host populations, while acting simultaneously on various life-history traits that determine population growth. In turn, the ability of a pathogen to invade a host population is intimately linked to these changes via the supply of new susceptible hosts, as well as the impact of warming on its immediate infection dynamics. Acclimation therefore has consequences for hosts and pathogens that extend beyond simply coping with heat stress-governing both population growth trajectories and, as a result, an inherent propensity for a disease outbreak to occur. The impact of thermal acclimation on heat tolerances, however, is rarely considered simultaneously with metrics of both host and pathogen population growth, and ultimately fitness. Using the host Daphnia magna and its bacterial pathogen, we investigated how thermal acclimation impacts host and pathogen performance at both the individual and population scales. We first tested the effect of maternal and direct thermal acclimation on the life-history traits of infected and uninfected individuals, such as heat tolerance, fecundity, and lifespan, as well as pathogen infection success and spore production. We then predicted the effects of each acclimation treatment on rates of host and pathogen population increase by deriving a host's intrinsic growth rate (rm) and a pathogen's basic reproductive number (R0). We found that direct acclimation to warming enhanced a host's heat tolerance and rate of population growth, despite a decline in life-history traits such as lifetime fecundity and lifespan. In contrast, pathogen performance was consistently worse under warming, with within-host pathogen success, and ultimately the potential for disease spread, severely hampered at higher temperatures. Our results suggest that hosts could benefit more from warming than their pathogens, but only by linking multiple individual traits to population processes can the full impact of higher temperatures on host and pathogen population dynamics be realised.


Subject(s)
Acclimatization , Daphnia , Host-Pathogen Interactions , Hot Temperature , Animals , Daphnia/microbiology , Daphnia/physiology , Heat-Shock Response , Fertility , Thermotolerance , Longevity
15.
Brain Behav Immun ; 116: 370-384, 2024 02.
Article in English | MEDLINE | ID: mdl-38141840

ABSTRACT

Neuroinflammation and microglial iron load are significant hallmarks found in several neurodegenerative diseases. In in vitro systems, microglia preferentially upregulate the iron importer, divalent metal transporter 1 (DMT1, gene name Slc11a2) in response to inflammatory stimuli, and it has been shown that iron can augment cellular inflammation, suggesting a feed-forward loop between mechanisms involved in iron import and inflammatory signaling. However, it is not understood how microglial iron import mechanisms contribute to inflammation in vivo, or whether altering a microglial iron-related gene affects the inflammatory response. These studies aimed to determine the effect of knocking down microglial iron import gene Slc11a2 on the inflammatory response in vivo. We generated a novel model of tamoxifen-inducible, microglial-specific Slc11a2 knockdown using Cx3cr1Cre-ERT2 mice. Transgenic male and female mice were administered intraperitoneal saline or lipopolysaccharide (LPS) and assessed for sickness behavior post-injection. Plasma cytokines and microglial bulk RNA sequencing (RNASeq) analyses were performed at 4 h post-LPS, and microglia were collected for gene expression analysis after 24 h. A subset of mice was assessed in a behavioral test battery following LPS-induced sickness recovery. Control male, but not female, mice significantly upregulated microglial Slc11a2 at 4 and 24 h following LPS. In Slc11a2 knockdown mice, we observed an improvement in the acute behavioral sickness response post-LPS in male, but not female, animals. Microglia from male, but not female, knockdown animals exhibited a significant decrease in LPS-provoked pro-inflammatory cytokine expression after 24 h. RNASeq data from male knockdown microglia 4 h post-LPS revealed a robust downregulation in inflammatory genes including Il6, Tnfα, and Il1ß, and an increase in anti-inflammatory and homeostatic markers (e.g., Tgfbr1, Cx3cr1, and Trem2). This corresponded with a profound decrease in plasma pro-inflammatory cytokines 4 h post-LPS. At 4 h, male knockdown microglia also upregulated expression of markers of iron export, iron recycling, and iron homeostasis and decreased iron storage and import genes, along with pro-oxidant markers such as Cybb, Nos2, and Hif1α. Overall, this work elucidates how manipulating a specific gene involved in iron import in microglia alters acute inflammatory signaling and overall cell activation state in male mice. These data highlight a sex-specific link between a microglial iron import gene and the pro-inflammatory response to LPS in vivo, providing further insight into the mechanisms driving neuroinflammatory disease.


Subject(s)
Lipopolysaccharides , Microglia , Animals , Female , Male , Mice , Cytokines/metabolism , Inflammation/metabolism , Iron/metabolism , Lipopolysaccharides/metabolism , Membrane Glycoproteins/metabolism , Mice, Inbred C57BL , Microglia/metabolism , Receptors, Immunologic/metabolism
16.
Brain Behav Immun ; 118: 437-448, 2024 May.
Article in English | MEDLINE | ID: mdl-38499210

ABSTRACT

Systemic activation of toll-like receptor 3 (TLR3) signaling using poly(I:C), a TLR3 agonist, drives ethanol consumption in several rodent models, while global knockout of Tlr3 reduces drinking in C57BL/6J male mice. To determine if brain TLR3 pathways are involved in drinking behavior, we used CRISPR/Cas9 genome editing to generate a Tlr3 floxed (Tlr3F/F) mouse line. After sequence confirmation and functional validation of Tlr3 brain transcripts, we injected Tlr3F/F male mice with an adeno-associated virus expressing Cre recombinase (AAV5-CMV-Cre-GFP) to knockdown Tlr3 in the medial prefrontal cortex, nucleus accumbens, or dorsal striatum (DS). Only Tlr3 knockdown in the DS decreased two-bottle choice, every-other-day (2BC-EOD) ethanol consumption. DS-specific deletion of Tlr3 also increased intoxication and prevented acute functional tolerance to ethanol. In contrast, poly(I:C)-induced activation of TLR3 signaling decreased intoxication in male C57BL/6J mice, consistent with its ability to increase 2BC-EOD ethanol consumption in these mice. We also found that TLR3 was highly colocalized with DS neurons. AAV5-Cre transfection occurred predominantly in neurons, but there was minimal transfection in astrocytes and microglia. Collectively, our previous and current studies show that activating or inhibiting TLR3 signaling produces opposite effects on acute responses to ethanol and on ethanol consumption. While previous studies, however, used global knockout or systemic TLR3 activation (which alter peripheral and brain innate immune responses), the current results provide new evidence that brain TLR3 signaling regulates ethanol drinking. We propose that activation of TLR3 signaling in DS neurons increases ethanol consumption and that a striatal TLR3 pathway is a potential target to reduce excessive drinking.


Subject(s)
Ethanol , Toll-Like Receptor 3 , Mice , Male , Animals , Toll-Like Receptor 3/metabolism , Mice, Inbred C57BL , Ethanol/pharmacology , Signal Transduction , Alcohol Drinking/metabolism , Poly I-C/pharmacology
17.
Biogerontology ; 25(3): 529-542, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38436793

ABSTRACT

Aging negatively affects the appearance and texture of the skin owing to the accumulation of senescent fibroblasts within the dermis. Senescent cells undergo abnormal remodeling of collagen and the extracellular matrix through an inflammatory histolytic senescence-associated secretory phenotype (SASP). Therefore, suppression of SASP in senescent cells is essential for the development of effective skin anti-aging therapies. Ectonucleotide pyrophosphatase/phosphodiesterase family member 5 (ENPP5), an extracellular signaling molecule, has been implicated in vascular aging and apoptosis; however, its role in SASP remains unclear. Therefore, this study aimed to investigate the role of ENPP5 in SASP and skin aging using molecular techniques. We investigated the effects of siRNA-mediated ENPP5 knockdown, human recombinant ENPP5 (rENPP5) treatment, and lentiviral overexpression of ENPP5 on SASP and aging in human skin fibroblasts. Additionally, we investigated the effect of siRNA-mediated ENPP5 knockdown on the skin of C57BL/6 mice. We found that ENPP5 was significantly expressed in replication-aged and otherwise DNA-damaged human skin fibroblasts and that treatment with human rENPP5 and lentiviral overexpression of ENPP5 promoted SASP and senescence. By contrast, siRNA-mediated knockdown of ENPP5 suppressed SASP and the expression of skin aging-related factors. Additionally, ENPP5 knockdown in mouse skin ameliorated the age-related reduction of subcutaneous adipose tissue, the panniculus carnosus muscle layer, and thinning of collagen fibers. Conclusively, these findings suggest that age-related changes may be prevented through the regulation of ENPP5 expression to suppress SASP in aging cells, contributing to the development of anti-aging treatments for the skin.


Subject(s)
Fibroblasts , Mice, Inbred C57BL , Skin Aging , Animals , Skin Aging/physiology , Humans , Fibroblasts/metabolism , Mice , Senescence-Associated Secretory Phenotype , Cellular Senescence/physiology , Skin/metabolism , Skin/pathology , Phosphoric Diester Hydrolases/metabolism , Phosphoric Diester Hydrolases/genetics , Pyrophosphatases/genetics , Pyrophosphatases/metabolism , Cells, Cultured , Male
18.
Mol Biol Rep ; 51(1): 661, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38758505

ABSTRACT

SCN5A mutations have been reported to cause various cardiomyopathies in humans. Most of the SCN5A mutations causes loss of function and thereby, alters the overall cellular function. Therefore, to understand the loss of SCN5A function in cardiomyocytes, we have knocked down the SCN5A gene (SCN5A-KD) in H9c2 cells and explored the cell phenotype and molecular behaviors in the presence and absence of isoproterenol (ISO), an adrenergic receptor agonist that induces cardiac hypertrophy. Expression of several genes related to hypertrophy, inflammation, fibrosis, and energy metabolism pathways were evaluated. It was found that the mRNA expression of hypertrophy-related gene, brain (B-type) natriuretic peptide (BNP) was significantly increased in SCN5A-KD cells as compared to 'control' H9c2 cells. There was a further increase in the mRNA expressions of BNP and ßMHC in SCN5A-KD cells after ISO treatment compared to their respective controls. Pro-inflammatory cytokine, tumor necrosis factor-alpha expression was significantly increased in 'SCN5A-KD' H9c2 cells. Further, metabolism-related genes like glucose transporter type 4, cluster of differentiation 36, peroxisome proliferator-activated receptor alpha, and peroxisome proliferator-activated receptor-gamma were significantly elevated in the SCN5A-KD cells as compared to the control cells. Upregulation of these metabolic genes is associated with increased ATP production. The study revealed that SCN5A knock-down causes alteration of gene expression related to cardiac hypertrophy, inflammation, and energy metabolism pathways, which may promote cardiac remodelling and cardiomyopathy.


Subject(s)
Cardiomegaly , Isoproterenol , NAV1.5 Voltage-Gated Sodium Channel , NAV1.5 Voltage-Gated Sodium Channel/genetics , NAV1.5 Voltage-Gated Sodium Channel/metabolism , Cardiomegaly/genetics , Cardiomegaly/metabolism , Rats , Cell Line , Isoproterenol/pharmacology , Myocytes, Cardiac/metabolism , Natriuretic Peptide, Brain/genetics , Natriuretic Peptide, Brain/metabolism , Animals , Gene Knockdown Techniques , Humans , Myoblasts, Cardiac/metabolism , Energy Metabolism/genetics , Gene Expression Regulation/genetics
19.
Curr Genomics ; 25(1): 2-11, 2024 Feb 23.
Article in English | MEDLINE | ID: mdl-38544826

ABSTRACT

Objectives: This research aimed to study the expression of PRDX6 mRNA in hepatocellular carcinoma (HCC) and its effect on the prognosis of HCC. Moreover, the effect of PRDX6 gene knockdown on the proliferation, migration, and invasion of HepG2 cells mediated by lentivirus was also examined. This study offers a theoretical and experimental basis for further research on the mechanism of PRDX6 in liver cancer and new methods for clinical diagnosis and treatment. Methods: RNA sequence data of 369 HCC patients were screened through the TCGA database, and the expression and clinical characteristics of PRDX6 mRNA were analyzed based on high-throughput RNA sequencing data. HepG2 cells were divided into WT, sh-NC and sh-PRDX6 groups. Real-time PCR and Western blot were used to detect the expression levels of the PRDX6 gene and protein, respectively. CCK8 method was used to detect the proliferation activity of HepG2 cells, scratch healing test was used to detect the migration ability, Transwell chamber was used to detect the invasion ability, and Western blot was used to detect the expression levels of PI3K/Akt/mTOR signaling pathway and Notch signaling pathway-related proteins. Results: The expression of PRDX6 was significantly correlated with the gender, race, clinical stage, histological grade, and survival time of HCC patients (P < 0.05). Compared with that in WT and sh-NC groups, the expression level of PRDX6 protein in HCC patients was significantly lower (P < 0.01), the proliferation activity of HCC cells was significantly decreased (P < 0.05), and the migration and invasion ability was significantly decreased (P < 0.05) in the sh-PRDX6 group. The expression levels of PI3K, p-Akt, p-mTOR, Notch1, and Hes1 proteins in the sh-PRDX6 group were significantly lower than those in WT and sh-NC groups (P < 0.05). Conclusion: The expression of PRDX6 may be closely related to the prognosis of HCC. Lentivirus-mediated PRDX6 knockdown can inhibit the proliferation, migration and invasion of HCC cells, which may be related to its regulating the PI3K/Akt/mTOR and Notch1 signaling pathways. PRDX6 is expected to be a new target for the diagnosis and treatment of liver cancer.

20.
Endocr Regul ; 58(1): 144-152, 2024 Jan 01.
Article in English | MEDLINE | ID: mdl-38861539

ABSTRACT

Objective. Serine hydroxymethyltransferase (SHMT2) plays a multifunctional role in mitochondria (folate-dependent tRNA methylation, translation, and thymidylate synthesis). The endoplasmic reticulum stress, hypoxia, and glucose and glutamine supply are significant factors of malignant tumor growth including glioblastoma. Previous studies have shown that the knockdown of the endoplasmic reticulum to nucleus signaling 1 (ERN1) pathway of endoplasmic reticulum stress strongly suppressed glioblastoma cell proliferation and modified the sensitivity of these cells to hypoxia and glucose or glutamine deprivations. The present study aimed to investigate the regulation of the SHMT2 gene in U87MG glioblastoma cells by ERN1 knockdown, hypoxia, and glucose or glutamine deprivations with the intent to reveal the role of ERN1 signaling in sensitivity of this gene expression to hypoxia and nutrient supply. Methods. The control U87MG glioblastoma cells (transfected by an empty vector) and ERN1 knockdown cells with inhibited ERN1 endoribonuclease and protein kinase (dnERN1) or only ERN1 endoribonuclease (dnrERN1) were used. Hypoxia was introduced by dimethyloxalylglycine (500 ng/ml for 4 h). For glucose and glutamine deprivations, cells were exposed in DMEM without glucose and glutamine, respectively for 16 h. RNA was extracted from cells and reverse transcribed. The expression level of the SHMT2 gene was studied by real-time qPCR and normalized to ACTB. Results. It was found that inhibition of ERN1 endoribonuclease and protein kinase in glioblastoma cells led to a down-regulation of SHMT2 gene expression in U87MG cells. At the same time, the expression of this gene did not significantly change in cells with inhibited ERN1 endoribonuclease, but tunicamycin strongly increased its expression. Moreover, the expression of the SHMT2 gene was not affected in U87MG cells after silencing of XBP1. Hypoxia up-regulated the expression level of the SHMT2 gene in both control and ERN1 knockdown U87MG cells. The expression of this gene was significantly up-regulated in glioblastoma cells under glucose and glutamine deprivations and ERN1 knockdown significantly increased the sensitivity of the SHMT2 gene to these nutrient deprivation conditions. Conclusion. The results of the present study demonstrate that the expression of the SHMT2 gene responsible for serine metabolism and formation of folate one-carbon is controlled by ERN1 protein kinase and induced by hypoxia as well as glutamine and glucose deprivation conditions in glioblastoma cells and reflects the ERN1-mediated reprogramming of sensitivity this gene expression to nutrient deprivation.


Subject(s)
Endoplasmic Reticulum Stress , Endoribonucleases , Gene Expression Regulation, Neoplastic , Glioblastoma , Glycine Hydroxymethyltransferase , Humans , Glycine Hydroxymethyltransferase/genetics , Glycine Hydroxymethyltransferase/metabolism , Glioblastoma/genetics , Glioblastoma/metabolism , Glioblastoma/pathology , Endoplasmic Reticulum Stress/physiology , Endoplasmic Reticulum Stress/genetics , Cell Line, Tumor , Endoribonucleases/genetics , Endoribonucleases/metabolism , Glucose/metabolism , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Brain Neoplasms/genetics , Brain Neoplasms/metabolism , Brain Neoplasms/pathology , Cell Hypoxia/physiology , Cell Hypoxia/genetics , Glutamine/metabolism , Gene Knockdown Techniques
SELECTION OF CITATIONS
SEARCH DETAIL