Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 146
Filter
1.
Proc Natl Acad Sci U S A ; 121(30): e2403505121, 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-39012830

ABSTRACT

American chestnut (Castanea dentata) is a deciduous tree species of eastern North America that was decimated by the introduction of the chestnut blight fungus (Cryphonectria parasitica) in the early 20th century. Although millions of American chestnuts survive as root collar sprouts, these trees rarely reproduce. Thus, the species is considered functionally extinct. American chestnuts with improved blight resistance have been developed through interspecific hybridization followed by conspecific backcrossing, and by genetic engineering. Incorporating adaptive genomic diversity into these backcross families and transgenic lines is important for restoring the species across broad climatic gradients. To develop sampling recommendations for ex situ conservation of wild adaptive genetic variation, we coupled whole-genome resequencing of 384 stump sprouts with genotype-environment association analyses and found that the species range can be subdivided into three seed zones characterized by relatively homogeneous adaptive allele frequencies. We estimated that 21 to 29 trees per seed zone will need to be conserved to capture most extant adaptive diversity. We also resequenced the genomes of 269 backcross trees to understand the extent to which the breeding program has already captured wild adaptive diversity, and to estimate optimal reintroduction sites for specific families on the basis of their adaptive portfolio and future climate projections. Taken together, these results inform the development of an ex situ germplasm conservation and breeding plan to target blight-resistant breeding populations to specific environments and provides a blueprint for developing restoration plans for other imperiled tree species.


Subject(s)
Fagaceae , Genome, Plant , Plant Diseases , Fagaceae/genetics , Fagaceae/microbiology , Plant Diseases/microbiology , Plant Diseases/genetics , Ascomycota/genetics , Genetic Variation , Disease Resistance/genetics , Climate
2.
BMC Plant Biol ; 24(1): 279, 2024 Apr 13.
Article in English | MEDLINE | ID: mdl-38609850

ABSTRACT

BACKGROUND: Climate change is expected to alter the factors that drive changes in adaptive variation. This is especially true for species with long life spans and limited dispersal capabilities. Rapid climate changes may disrupt the migration of beneficial genetic variations, making it challenging for them to keep up with changing environments. Understanding adaptive genetic variations in tree species is crucial for conservation and effective forest management. Our study used landscape genomic analyses and phenotypic traits from a thorough sampling across the entire range of Quercus longinux, an oak species native to Taiwan, to investigate the signals of adaptation within this species. RESULTS: Using ecological data, phenotypic traits, and 1,933 single-nucleotide polymorphisms (SNPs) from 205 individuals, we classified three genetic groups, which were also phenotypically and ecologically divergent. Thirty-five genes related to drought and freeze resistance displayed signatures of natural selection. The adaptive variation was driven by diverse environmental pressures such as low spring precipitation, low annual temperature, and soil grid sizes. Using linear-regression-based methods, we identified isolation by environment (IBE) as the optimal model for adaptive SNPs. Redundancy analysis (RDA) further revealed a substantial joint influence of demography, geology, and environments, suggesting a covariation between environmental gradients and colonization history. Lastly, we utilized adaptive signals to estimate the genetic offset for each individual under diverse climate change scenarios. The required genetic changes and migration distance are larger in severe climates. Our prediction also reveals potential threats to edge populations in northern and southeastern Taiwan due to escalating temperatures and precipitation reallocation. CONCLUSIONS: We demonstrate the intricate influence of ecological heterogeneity on genetic and phenotypic adaptation of an oak species. The adaptation is also driven by some rarely studied environmental factors, including wind speed and soil features. Furthermore, the genetic offset analysis predicted that the edge populations of Q. longinux in lower elevations might face higher risks of local extinctions under climate change.


Subject(s)
Quercus , Humans , Quercus/genetics , Climate Change , Genomics , Cold Temperature , Soil
3.
Mol Ecol ; 33(17): e17484, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39072878

ABSTRACT

Species that repeatedly evolve phenotypic clines across environmental gradients have been highlighted as ideal systems for characterizing the genomic basis of local environmental adaptation. However, few studies have assessed the importance of observed phenotypic clines for local adaptation: conspicuous traits that vary clinally may not necessarily be the most critical in determining local fitness. The present study was designed to fill this gap, using a plant species characterized by repeatedly evolved adaptive phenotypic clines. White clover is naturally polymorphic for its chemical defence cyanogenesis (HCN release with tissue damage); climate-associated cyanogenesis clines have evolved throughout its native and introduced range worldwide. We performed landscape genomic analyses on 415 wild genotypes from 43 locations spanning much of the North American species range to assess the relative importance of cyanogenesis loci vs. other genomic factors in local climatic adaptation. We find clear evidence of local adaptation, with temperature-related climatic variables best describing genome-wide differentiation between sampling locations. The same climatic variables are also strongly correlated with cyanogenesis frequencies and gene copy number variations (CNVs) at cyanogenesis loci. However, landscape genomic analyses indicate no significant contribution of cyanogenesis loci to local adaptation. Instead, several genomic regions containing promising candidate genes for plant response to seasonal cues are identified - some of which are shared with previously identified QTLs for locally adaptive fitness traits in North American white clover. Our findings suggest that local adaptation in white clover is likely determined primarily by genes controlling the timing of growth and flowering in response to local seasonal cues. More generally, this work suggests that caution is warranted when considering the importance of conspicuous phenotypic clines as primary determinants of local adaptation.


Subject(s)
Genotype , Phenotype , Temperature , Trifolium , Trifolium/genetics , Trifolium/growth & development , Adaptation, Physiological/genetics , North America , DNA Copy Number Variations , Genetics, Population , Climate , Hydrogen Cyanide/metabolism , White
4.
Glob Chang Biol ; 30(2): e17179, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38403891

ABSTRACT

As climate change advances, environmental gradients may decouple, generating novel multivariate environments that stress wild populations. A commonly invoked mechanism of evolutionary rescue is adaptive gene flow tracking climate shifts, but gene flow from populations inhabiting similar conditions on one environmental axis could cause maladaptive introgression when populations are adapted to different environmental variables that do not shift together. Genomic architecture can play an important role in determining the effectiveness and relative magnitudes of adaptive gene flow and in situ adaptation. This may have direct consequences for how species respond to climate change but is often overlooked. Here, we simulated microevolutionary responses to environmental change under scenarios defined by variation in the polygenicity, linkage, and genetic redundancy of two independent traits, one of which is adapted to a gradient that shifts under climate change. We used these simulations to examine how genomic architecture influences evolutionary outcomes under climate change. We found that climate-tracking (up-gradient) gene flow, though present in all scenarios, was strongly constrained under scenarios of lower linkage and higher polygenicity and redundancy, suggesting in situ adaptation as the predominant mechanism of evolutionary rescue under these conditions. We also found that high polygenicity caused increased maladaptation and demographic decline, a concerning result given that many climate-adapted traits may be polygenic. Finally, in scenarios with high redundancy, we observed increased adaptive capacity. This finding adds to the growing recognition of the importance of redundancy in mediating in situ adaptive capacity and suggests opportunities for better understanding the climatic vulnerability of real populations.


Subject(s)
Adaptation, Physiological , Climate Change , Adaptation, Physiological/genetics , Phenotype , Biological Evolution , Genomics
5.
Glob Chang Biol ; 30(4): e17262, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38546370

ABSTRACT

Current global climate change is expected to affect biodiversity negatively at all scales leading to mass biodiversity loss. Many studies have shown that the distribution of allele frequencies across a species' range is often influenced by specific genetic loci associated with local environmental variables. This association reflects local adaptation and allele changes at those loci could thereby contribute to the evolutionary response to climate change. However, predicting how species will adapt to climate change from this type of data alone remains challenging. In the present study, we combined exome capture sequences and environmental niche reconstruction, to test multiple methods for assessing local adaptation and climate resilience in two widely distributed conifers, Norway spruce and Siberian spruce. Both species are keystone species of the boreal forest and share a vast hybrid zone. We show that local adaptation in conifers can be detected through allele frequency variation, population-level ecological preferences, and historical niche movement. Moreover, we integrated genetic and ecological information into genetic offset predictive models to show that hybridization plays a central role in expanding the niche breadth of the two conifer species and may help both species to cope better with future changing climates. This joint genetic and ecological analysis also identified spruce populations that are at risk under current climate change.


Subject(s)
Picea , Resilience, Psychological , Tracheophyta , Trees , Taiga , Climate Change , Hybridization, Genetic , Cycadopsida , Picea/genetics
6.
BMC Genomics ; 24(1): 311, 2023 Jun 10.
Article in English | MEDLINE | ID: mdl-37301847

ABSTRACT

BACKGROUND: Rapid adaptation to new environments can facilitate species invasions and range expansions. Understanding the mechanisms of adaptation used by invasive disease vectors in new regions has key implications for mitigating the prevalence and spread of vector-borne disease, although they remain relatively unexplored. RESULTS: Here, we integrate whole-genome sequencing data from 96 Aedes aegypti mosquitoes collected from various sites in southern and central California with 25 annual topo-climate variables to investigate genome-wide signals of local adaptation among populations. Patterns of population structure, as inferred using principal components and admixture analysis, were consistent with three genetic clusters. Using various landscape genomics approaches, which all remove the confounding effects of shared ancestry on correlations between genetic and environmental variation, we identified 112 genes showing strong signals of local environmental adaptation associated with one or more topo-climate factors. Some of them have known effects in climate adaptation, such as heat-shock proteins, which shows selective sweep and recent positive selection acting on these genomic regions. CONCLUSIONS: Our results provide a genome wide perspective on the distribution of adaptive loci and lay the foundation for future work to understand how environmental adaptation in Ae. aegypti impacts the arboviral disease landscape and how such adaptation could help or hinder efforts at population control.


Subject(s)
Aedes , Animals , Aedes/genetics , Mosquito Vectors/genetics , Genomics , Adaptation, Physiological/genetics , California
7.
Proc Biol Sci ; 290(2005): 20230630, 2023 08 30.
Article in English | MEDLINE | ID: mdl-37583321

ABSTRACT

Organisms living in mountains contend with extreme climatic conditions, including short growing seasons and long winters with extensive snow cover. Anthropogenic climate change is driving unprecedented, rapid warming of montane regions across the globe, resulting in reduced winter snowpack. Loss of snow as a thermal buffer may have serious consequences for animals overwintering in soil, yet little is known about how variability in snowpack acts as a selective agent in montane ecosystems. Here, we examine genomic variation in California populations of the leaf beetle Chrysomela aeneicollis, an emerging natural model system for understanding how organisms respond to climate change. We used a genotype-environment association approach to identify genomic signatures of local adaptation to microclimate in populations from three montane regions with variable snowpack and a coastal region with no snow. We found that both winter-associated environmental variation and geographical distance contribute to overall genomic variation across the landscape. We identified non-synonymous variation in novel candidate loci associated with cytoskeletal function, ion transport and membrane stability, cellular processes associated with cold tolerance in other insects. These findings provide intriguing evidence that variation in snowpack imposes selective gradients in montane ecosystems.


Subject(s)
Coleoptera , Salix , Animals , Ecosystem , Coleoptera/genetics , Adaptation, Physiological , Climate Change , Genomics , Seasons
8.
Mol Ecol ; 32(21): 5695-5708, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37795951

ABSTRACT

Anopheles stephensi invasion in the Horn of Africa (HoA) poses a substantial risk of increased malaria disease burden in the region. An understanding of the history of introduction(s), establishment(s) and potential A. stephensi sources in the HoA is needed to predict future expansions and establish where they may be effectively controlled. To this end, we take a landscape genomic approach to assess A. stephensi origins and spread throughout the HoA, information essential for vector control. Specifically, we assayed 2070 genome-wide single nucleotide polymorphisms across 214 samples spanning 13 populations of A. stephensi from Ethiopia and Somaliland collected in 2018 and 2020, respectively. Principal component and genetic ancestry analyses revealed clustering that followed an isolation-by-distance pattern, with genetic divergence among the Ethiopian samples significantly correlating with geographical distance. Additionally, genetic relatedness was observed between the northeastern and east central Ethiopian A. stephensi populations and the Somaliland A. stephensi populations. These results reveal population differentiation and genetic connectivity within HoA A. stephensi populations. Furthermore, based on genetic network analysis, we uncovered that Dire Dawa, the site of a spring 2022 malaria outbreak, was one of the major hubs from which sequential founder events occurred in the rest of the eastern Ethiopian region. These findings can be useful for the selection of sites for heightened control to prevent future malaria outbreaks. Finally, we did not detect significant genotype-environmental associations, potentially due to the recency of their colonization and/or other anthropogenic factors leading to the initial spread and establishment of A. stephensi. Our study highlights how coupling genomic data at landscape levels can shed light into even ongoing invasions.


Subject(s)
Anopheles , Malaria , Animals , Humans , Anopheles/genetics , Mosquito Vectors/genetics , Gene Regulatory Networks , Metagenomics , Malaria/epidemiology , Malaria/genetics , Genomics , Ethiopia
9.
Mol Ecol ; : e17257, 2023 Dec 27.
Article in English | MEDLINE | ID: mdl-38149334

ABSTRACT

The question of how local adaptation takes place remains a fundamental question in evolutionary biology. The variation of allele frequencies in genes under selection over environmental gradients remains mainly theoretical and its empirical assessment would help understanding how adaptation happens over environmental clines. To bring new insights to this issue we set up a broad framework which aimed to compare the adaptive trajectories over environmental clines in two domesticated mammal species co-distributed in diversified landscapes. We sequenced the genomes of 160 sheep and 161 goats extensively managed along environmental gradients, including temperature, rainfall, seasonality and altitude, to identify genes and biological processes shaping local adaptation. Allele frequencies at putatively adaptive loci were rarely found to vary gradually along environmental gradients, but rather displayed a discontinuous shift at the extremities of environmental clines. Of the 430 candidate adaptive genes identified, only 6 were orthologous between sheep and goats and those responded differently to environmental pressures, suggesting different putative mechanisms involved in local adaptation in these two closely related species. Interestingly, the genomes of the 2 species were impacted differently by the environment, genes related to signatures of selection were most related to altitude, slope and rainfall seasonality for sheep, and summer temperature and spring rainfall for goats. The diversity of candidate adaptive pathways may result from a high number of biological functions involved in the adaptations to multiple eco-climatic gradients, and a differential role of climatic drivers on the two species, despite their co-distribution along the same environmental gradients. This study describes empirical examples of clinal variation in putatively adaptive alleles with different patterns in allele frequency distributions over continuous environmental gradients, thus showing the diversity of genetic responses in adaptive landscapes and opening new horizons for understanding genomics of adaptation in mammalian species and beyond.

10.
Mol Ecol ; 32(24): 6777-6795, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37864490

ABSTRACT

Wildlife diseases are a major global threat to biodiversity. Boreal toads (Anaxyrus [Bufo] boreas) are a state-endangered species in the southern Rocky Mountains of Colorado and New Mexico, and a species of concern in Wyoming, largely due to lethal skin infections caused by the amphibian chytrid fungus Batrachochytrium dendrobatidis (Bd). We performed conservation and landscape genomic analyses using single nucleotide polymorphisms from double-digest, restriction site-associated DNA sequencing in combination with the development of the first boreal toad (and first North American toad) reference genome to investigate population structure, genomic diversity, landscape connectivity and adaptive divergence. Genomic diversity (π = 0.00034-0.00040) and effective population sizes (Ne = 8.9-38.4) were low, likely due to post-Pleistocene founder effects and Bd-related population crashes over the last three decades. Population structure was also low, likely due to formerly high connectivity among a higher density of geographically proximate populations. Boreal toad gene flow was facilitated by low precipitation, cold minimum temperatures, less tree canopy, low heat load and less urbanization. We found >8X more putatively adaptive loci related to Bd intensity than to all other environmental factors combined, and evidence for genes under selection related to immune response, heart development and regulation and skin function. These data suggest boreal toads in habitats with Bd have experienced stronger selection pressure from disease than from other, broad-scale environmental variations. These findings can be used by managers to conserve and recover the species through actions including reintroduction and supplementation of populations that have declined due to Bd.


Subject(s)
Chytridiomycota , Animals , Chytridiomycota/genetics , Bufonidae/genetics , Bufonidae/microbiology , Biodiversity , Ecosystem , Genomics
11.
Mol Ecol ; 2023 Oct 05.
Article in English | MEDLINE | ID: mdl-37795678

ABSTRACT

Geographic isolation and chromosome evolution are two of the major drivers of diversification in eukaryotes in general, and specifically, in plants. On one hand, range shifts induced by Pleistocene glacial oscillations deeply shaped the evolutionary trajectories of species in the Northern Hemisphere. On the other hand, karyotype variability within species or species complexes may have adaptive potential as different karyotypes may represent different recombination rates and linkage groups that may be associated with locally adapted genes or supergenes. Organisms with holocentric chromosomes are ideal to study the link between local adaptation and chromosome evolution, due to their high cytogenetic variability, especially when it seems to be related to environmental variation. Here, we integrate the study of the phylogeography, chromosomal evolution and ecological requirements of a plant species complex distributed in the Western Euro-Mediterranean region (Carex gr. laevigata, Cyperaceae). We aim to clarify the relative influence of these factors on population differentiation and ultimately on speciation. We obtained a well-resolved RADseq phylogeny that sheds light on the phylogeographic patterns of molecular and chromosome number variation, which are compatible with south-to-north postglacial migration. In addition, landscape genomics analyses identified candidate loci for local adaptation, and also strong significant associations between the karyotype and the environment. We conclude that karyotype distribution in C. gr. laevigata has been constrained by both range shift dynamics and local adaptation. Our study demonstrates that chromosome evolution may be responsible, at least partially, for microevolutionary patterns of population differentiation and adaptation in Carex.

12.
Mol Ecol ; 32(7): 1708-1725, 2023 04.
Article in English | MEDLINE | ID: mdl-36627230

ABSTRACT

Adaptive genetic divergence occurs when selection imposed by the environment causes the genomic component of the phenotype to differentiate. However, genomic signatures of natural selection are usually identified without information on which trait is responding to selection by which selective agent(s). Here, we integrate whole-genome sequencing with phenomics and measures of putative selective agents to assess the extent of adaptive divergence in threespine stickleback occupying the highly heterogeneous lake Mývatn, NE Iceland. We find negligible genome wide divergence, yet multiple traits (body size, gill raker structure and defence traits) were divergent along known ecological gradients (temperature, predatory bird densities and water depth). SNP based heritability of all measured traits was high (h2  = 0.42-0.65), indicating adaptive potential for all traits. Environment-association analyses further identified thousands of loci putatively involved in selection, related to genes linked to, for instance, neuron development and protein phosphorylation. Finally, we found that loci linked to water depth were concurrently associated with pelvic spine length variation - supporting the conclusion that divergence in pelvic spine length occurred in the face of gene flow. Our results suggest that whilst there is substantial genetic variation in the traits measured, phenotypic divergence of Mývatn stickleback is mostly weakly associated with environmental gradients, potentially as a result of substantial gene flow. Our study illustrates the value of integrative studies that combine genomic assays of multivariate trait variation with landscape genomics.


Subject(s)
Genetic Variation , Smegmamorpha , Animals , Genome/genetics , Phenotype , Selection, Genetic , Smegmamorpha/genetics , Water
13.
Mol Ecol ; 32(17): 4742-4762, 2023 09.
Article in English | MEDLINE | ID: mdl-37430462

ABSTRACT

Environmental variation is increasingly recognized as an important driver of diversity in marine species despite the lack of physical barriers to dispersal and the presence of pelagic stages in many taxa. A robust understanding of the genomic and ecological processes involved in structuring populations is lacking for most marine species, often hindering management and conservation action. Cunner (Tautogolabrus adspersus) is a temperate reef fish with both pelagic early life-history stages and strong site-associated homing as adults; the species is also of interest for use as a cleaner fish in salmonid aquaculture in Atlantic Canada. We aimed to characterize genomic and geographic differentiation of cunner in the Northwest Atlantic. To achieve this, a chromosome-level genome assembly for cunner was produced and used to characterize spatial population structure throughout Atlantic Canada using whole-genome sequencing. The genome assembly spanned 0.72 Gbp and 24 chromosomes; whole-genome sequencing of 803 individuals from 20 locations from Newfoundland to New Jersey identified approximately 11 million genetic variants. Principal component analysis revealed four regional Atlantic Canadian groups. Pairwise FST and selection scans revealed signals of differentiation and selection at discrete genomic regions, including adjacent peaks on chromosome 10 across multiple pairwise comparisons (i.e. FST 0.5-0.75). Redundancy analysis suggested association of environmental variables related to benthic temperature and oxygen range with genomic structure. Results suggest regional scale diversity in this temperate reef fish and can directly inform the collection and translocation of cunner for aquaculture applications and the conservation of wild populations throughout the Northwest Atlantic.


Subject(s)
Fishes , Perciformes , Animals , Canada , Fishes/genetics , Genome/genetics , Genomics
14.
Mol Ecol ; 32(11): 2695-2714, 2023 06.
Article in English | MEDLINE | ID: mdl-35377501

ABSTRACT

The Hengduan Mountains region is a biodiversity hotspot known for its topologically complex, deep valleys and high mountains. While landscape and glacial refugia have been evoked to explain patterns of interspecies divergence, the accumulation of intra-species (i.e., population level) genetic divergence across the mountain-valley landscape in this region has received less attention. We used genome-wide restriction site-associated DNA sequencing (RADseq) to reveal signatures of Pleistocene glaciation in populations of Thitarodes shambalaensis (Lepidoptera: Hepialidae), the host moth of parasitic Ophiocordyceps sinensis (Hypocreales: Ophiocordycipitaceae) or "caterpillar fungus" endemic to the glacier of eastern Mt. Gongga. We used moraine history along the glacier valleys to model the distribution and environmental barriers to gene flow across populations of T. shambalaensis. We found that moth populations separated by less than 10 km exhibited valley-based population genetic clustering and isolation-by-distance (IBD), while gene flow among populations was best explained by models using information about their distributions at the local last glacial maximum (LGML , 58 kya), not their contemporary distribution. Maximum likelihood lineage history among populations, and among subpopulations as little as 500 m apart, recapitulated glaciation history across the landscape. We also found signals of isolated population expansion following the retreat of LGML glaciers. These results reveal the fine-scale, long-term historical influence of landscape and glaciation on the genetic structuring of populations of an endangered and economically important insect species. Similar mechanisms, given enough time and continued isolation, could explain the contribution of glacier refugia to the generation of species diversity among the Hengduan Mountains.


Subject(s)
Hypocreales , Moths , Animals , Moths/genetics , Phylogeny , Hypocreales/genetics , Genetics, Population , Insecta
15.
Mol Ecol ; 32(3): 542-559, 2023 Feb.
Article in English | MEDLINE | ID: mdl-35000273

ABSTRACT

Inferring the genomic basis of local adaptation is a long-standing goal of evolutionary biology. Beyond its fundamental evolutionary implications, such knowledge can guide conservation decisions for populations of conservation and management concern. Here, we investigated the genomic basis of local adaptation in the Coho salmon (Oncorhynchus kisutch) across its entire North American range. We hypothesized that extensive spatial variation in environmental conditions and the species' homing behaviour may promote the establishment of local adaptation. We genotyped 7829 individuals representing 217 sampling locations at more than 100,000 high-quality RADseq loci to investigate how recombination might affect the detection of loci putatively under selection and took advantage of the precise description of the demographic history of the species from our previous work to draw accurate population genomic inferences about local adaptation. The results indicated that genetic differentiation scans and genetic-environment association analyses were both significantly affected by variation in recombination rate as low recombination regions displayed an increased number of outliers. By taking these confounding factors into consideration, we revealed that migration distance was the primary selective factor driving local adaptation and partial parallel divergence among distant populations. Moreover, we identified several candidate single nucleotide polymorphisms associated with long-distance migration and altitude including a gene known to be involved in adaptation to altitude in other species. The evolutionary implications of our findings are discussed along with conservation applications.


Subject(s)
Oncorhynchus kisutch , Humans , Animals , Oncorhynchus kisutch/genetics , Genetics, Population , Adaptation, Physiological/genetics , Genetic Drift , Genome , Polymorphism, Single Nucleotide/genetics
16.
Mol Ecol ; 32(13): 3450-3470, 2023 07.
Article in English | MEDLINE | ID: mdl-37009890

ABSTRACT

Genetic differentiation between and within natural populations is the result of the joint effects of neutral and adaptative processes. In addition, the spatial arrangement of the landscape promotes connectivity or creates barriers to gene flow, directly affecting speciation processes. In this study, we carried out a landscape genomics analysis using NextRAD data from a montane forest specialist bird complex, the Mesoamerican Chestnut-capped/Green-striped Brushfinch of the genus Arremon. Specifically, we examined population genomic structure using different assignment methods and genomic differentiation and diversity, and we tested alternative genetic isolation hypotheses at the individual level (e.g., isolation by barrier, IBB; isolation by environment, IBE; isolation by resistance, IBR). We found well-delimited genomic structuring (K = 5) across Mesoamerican montane forests in the studied group. Individual-level genetic distances among major montane ranges were mainly explained by IBR hypotheses in this sedentary Neotropical taxon. Our results uncover genetic distances/differentiation and patterns of gene flow in allopatric species that support the role of tropical mountains as spatial landscape drivers of biodiversity. IBR clearly supports a pattern of conserved niche-tracking of suitable habitat conditions and topographic complexity throughout glacial-interglacial dynamics.


Subject(s)
Genetics, Population , Passeriformes , Animals , Genetic Variation/genetics , Ecosystem , Forests , Passeriformes/genetics
17.
Mol Ecol ; 32(3): 595-612, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36394364

ABSTRACT

Disentangling the numerous processes that affect patterns of genome-wide diversity in widespread tree species has important implications for taxonomy, conservation, and forestry. Here, we investigate the population genomic structure of Asian white birch (Betula platyphylla) in China and seek to explain it in terms of hybridization, demography and adaptation. We generate whole genome sequence data from 83 individuals across the species range in China. Combining this with an existing data set for 79 European and Russian white birches, we show a clear distinction between B. pendula and B. platyphylla, which have sometimes been lumped taxonomically. Genomic diversity of B. platyphylla in north-western China and Central Russia is affected greatly by hybridization with B. pendula. Excluding these hybridized populations, B. platyphylla in China has a linear distribution from north-eastern to south-western China, along the edge of the inland mountainous region. Within this distribution, three genetic clusters are found, which we model as long diverged with subsequent episodes of gene flow. Patterns of covariation between allele frequencies and environmental variables in B. platyphylla suggest the role of natural selection in the distribution of diversity at 7609 SNPs of which 3767 were significantly differentiated among the genetic clusters. The putative adaptive SNPs are distributed throughout the genome and span 1633 genic regions. Of these genic regions, 87 were previously identified as candidates for selective sweeps in Eurasian B. pendula. We use the 7609 environmentally associated SNPs to estimate the risk of nonadaptedness for each sequenced B. platyphylla individual under a scenario of future climate change, highlighting areas where populations may be under future threat from rising temperatures.


Subject(s)
Adaptation, Physiological , Betula , Base Sequence , Betula/genetics , Betula/physiology , Gene Frequency , Hybridization, Genetic , Adaptation, Physiological/genetics , Genetic Variation , Genome, Plant
18.
Ann Bot ; 131(4): 623-634, 2023 04 28.
Article in English | MEDLINE | ID: mdl-36680796

ABSTRACT

BACKGROUND AND AIMS: Historical changes in environmental conditions and colonization-extinction dynamics have a direct impact on the genetic structure of plant populations. However, understanding how past environmental conditions influenced the evolution of species with high gene flow is challenging when signals for genetic isolation and adaptation are swamped by gene flow. We investigated the spatial distribution and genetic structure of the widespread terrestrial orchid Epipactis helleborine to identify glacial refugia, characterize postglacial population dynamics and assess its adaptive potential. METHODS: Ecological niche modelling was used to locate possible glacial refugia and postglacial recolonization opportunities of E. helleborine. A large single-nucleotide polymorphism (SNP) dataset obtained through genotyping by sequencing was used to define population genetic diversity and structure and to identify sources of postglacial gene flow. Outlier analyses were used to elucidate how adaptation to the local environment contributed to population divergence. KEY RESULTS: The distribution of climatically suitable areas was restricted during the Last Glacial Maximum to the Mediterranean, south-western Europe and small areas in the Alps and Carpathians. Within-population genetic diversity was high in E. helleborine (mean expected heterozygosity, 0.373 ± 0.006; observed heterozygosity, 0.571 ± 0.012; allelic richness, 1.387 ± 0.007). Italy and central Europe are likely to have acted as important genetic sources during postglacial recolonization. Adaptive SNPs were associated with temperature, elevation and precipitation. CONCLUSIONS: Forests in the Mediterranean and Carpathians are likely to have acted as glacial refugia for Epipactis helleborine. Postglacial migration northwards and to higher elevations resulted in the dispersal and diversification of E. helleborine in central Europe and Italy, and to geographical isolation and divergent adaptation in Greek and Italian populations. Distinguishing adaptive from neutral genetic diversity allowed us to conclude that E. helleborine has a high adaptive potential to climate change and demonstrates that signals of adaptation and historical isolation can be identified even in species with high gene flow.


Subject(s)
Ecosystem , Genetic Variation , Europe , Genetics, Population , Genetic Structures
19.
New Phytol ; 235(4): 1653-1664, 2022 08.
Article in English | MEDLINE | ID: mdl-35569109

ABSTRACT

Seed and breeding zones traditionally are delineated based on local adaptation of phenotypic traits associated with climate variables, an approach requiring long-term field experiments. In this study, we applied a landscape genomics approach to delineate seed and breeding zones for lodgepole pine. We used a gradient forest (GF) model to select environment-associated single nucleotide polymorphisms (SNPs) using three SNP datasets (full, neutral and candidate) and 20 climate variables for 1906 lodgepole pine (Pinus contorta) individuals in British Columbia and Alberta, Canada. The two GF models built with the full (28 954) and candidate (982) SNPs were compared. The GF models identified winter-related climate as major climatic factors driving genomic patterns of lodgepole pine's local adaptation. Based on the genomic gradients predicted by the full and candidate GF models, lodgepole pine distribution range in British Columbia and Alberta was delineated into six seed and breeding zones. Our approach is a novel and effective alternative to traditional common garden approaches for delineating seed and breeding zone, and could be applied to tree species lacking data from provenance trials or common garden experiments.


Subject(s)
Pinus , Plant Breeding , British Columbia , Genomics , Pinus/genetics , Seeds/genetics
20.
Mol Ecol ; 31(12): 3451-3467, 2022 06.
Article in English | MEDLINE | ID: mdl-35510775

ABSTRACT

The main objective of this study was to evaluate biogeographical hypotheses of diversification and connection between isolated savannas north (Amazonian savannas) and south (Cerrado core) of the Amazon River. To achieve this, we used genomic markers (genotyping-by-sequencing) to evaluate the genetic structure, population phylogenetic relationships and historical range shifts of four Neotropical passerines with peri-Atlantic distributions: the narrow-billed woodcreeper (Lepidocolaptes angustirostris), the plain-crested elaenia (Elaenia cristata), the grassland sparrow (Ammodramus humeralis) and the white-banded tanager (Neothraupis fasciata). Population genetic analyses indicated that landscape (e.g., geographic distance, landscape resistance and percentage of tree cover) and climate metrics explained divergence among populations in most species, but without indicating a differential role between current and historical factors. Our results did not fully support the hypothesis that isolated populations in Amazonian savannas have been recently derived from the Cerrado core domain. Intraspecific phylogenies and gene flow analyses supported multiple routes of connection between the Cerrado and Amazonian savannas, rejecting the hypothesis that the Atlantic corridor explains the peri-Atlantic distribution. Our results reveal that the biogeographical history of the region is complex and cannot be explained by simple vicariant models.


Subject(s)
Grassland , Passeriformes , Animals , Bayes Theorem , Gene Flow , Passeriformes/genetics , Phylogeny , Phylogeography , Rivers
SELECTION OF CITATIONS
SEARCH DETAIL