Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
1.
Br Poult Sci ; 59(1): 7-12, 2018 Feb.
Article in English | MEDLINE | ID: mdl-28922013

ABSTRACT

1. An experiment was conducted to compare 5 different methods for the evaluation of litter moisture. 2. For litter collection and assessment, 55 farms were selected, one shed from each farm was inspected and 9 points were identified within each shed. 3. For each device, used for the evaluation of litter moisture, mean and standard deviation of wetness measures per collection point were assessed. 4. The reliability and overall consistency between the 5 instruments used to measure wetness were high (α = 0.72). 5. Measurement of three out of the 9 collection points were sufficient to provide a reliable assessment of litter moisture throughout the shed. 6. Based on the direct correlation between litter moisture and footpad lesions, litter moisture measurement can be used as a resource based on-farm animal welfare indicator. 7. Among the 5 methods analysed, visual scoring is the most simple and practical, and therefore the best candidate to be used on-farm for animal welfare assessment.


Subject(s)
Dermatitis/veterinary , Foot Diseases/veterinary , Housing, Animal , Turkeys/physiology , Water/analysis , Animal Welfare , Animals , Dermatitis/prevention & control , Floors and Floorcoverings , Foot Diseases/prevention & control , Poultry Diseases , Reproducibility of Results
2.
Br Poult Sci ; 59(2): 227-231, 2018 Apr.
Article in English | MEDLINE | ID: mdl-29308938

ABSTRACT

1. A 2 × 2 factorial experiment was conducted to compare the effects of wheat or maize based diets differing in dietary electrolyte balance (DEB) on litter moisture and foot pad dermatitis (FPD) at 4, 8 and 12 weeks of age in heavy-medium turkeys. A second objective was to investigate the effects on foot pad dermatitis of the interaction between dietary composition and artificially increasing litter moisture by adding water to the litter. 2. High DEB diets contained soya as the main protein source whereas low DEB diets did not contain soya bean meal. Diets were formulated to be iso-caloric and iso-nitrogenous in each of 3 successive 4-week phases following recommended dietary compositions. DEB concentrations were 330, 290 and 250 mEq/kg in high DEB diets and 230, 200 and 180 mEq/kg in low DEB diets. 3. Litter moisture and mean FPD score were higher in turkeys fed on high DEB diets compared with low DEB diets whereas there was no difference between maize and wheat. 4. Food intake was similar and body weight was lower after litter moisture was artificially raised in the wet compared with the dry litter treatment and there was no interaction with dietary composition. 5. Mean body weight and feed intake were higher in turkeys fed on wheat compared with maize and in high DEB compared with low DEB diets at 12 weeks of age. 6. Lowering dietary DEB for turkeys may improve litter moisture and lower the prevalence of FPD in commercial turkey flocks.


Subject(s)
Digital Dermatitis/epidemiology , Foot Diseases/veterinary , Glycine max/chemistry , Poultry Diseases/epidemiology , Turkeys , Water-Electrolyte Balance , Animal Feed/analysis , Animals , Diet/veterinary , Digital Dermatitis/etiology , Feces/chemistry , Floors and Floorcoverings , Foot Diseases/epidemiology , Foot Diseases/etiology , Male , Poultry Diseases/etiology , Prevalence , Random Allocation , Triticum/chemistry , Zea mays/chemistry
3.
Ecology ; 98(9): 2255-2260, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28628198

ABSTRACT

Macroclimate has traditionally been considered the predominant driver of litter decomposition. However, in drylands, cumulative monthly or annual precipitation typically fails to predict decomposition. In these systems, the windows of opportunity for decomposer activity may rather depend on the precipitation frequency and local factors affecting litter desiccation, such as soil-litter mixing. We used a full-factorial microcosm experiment to disentangle the relative importance of cumulative precipitation, pulse frequency, and soil-litter mixing on litter decomposition. Decomposition, measured as litter carbon loss, saturated with increasing cumulative precipitation when pulses were large and infrequent, suggesting that litter moisture no longer increased and/or microbial activity was no longer limited by water availability above a certain pulse size. More frequent precipitation pulses led to increased decomposition at high levels of cumulative precipitation. Soil-litter mixing consistently increased decomposition, with greatest relative increase (+194%) under the driest conditions. Collectively, our results highlight the need to consider precipitation at finer temporal scale and incorporate soil-litter mixing as key driver of decomposition in drylands.


Subject(s)
Ecosystem , Soil Microbiology , Soil/chemistry , Carbon , Water
4.
Glob Chang Biol ; 23(1): 406-420, 2017 01.
Article in English | MEDLINE | ID: mdl-27197084

ABSTRACT

Many Arctic regions are currently experiencing substantial summer and winter climate changes. Litter decomposition is a fundamental component of ecosystem carbon and nutrient cycles, with fungi being among the primary decomposers. To assess the impacts of seasonal climatic changes on litter fungal communities and their functioning, Betula glandulosa leaf litter was surface-incubated in two adjacent low Arctic sites with contrasting soil moisture regimes: dry shrub heath and wet sedge tundra at Disko Island, Greenland. At both sites, we investigated the impacts of factorial combinations of enhanced summer warming (using open-top chambers; OTCs) and deepened snow (using snow fences) on surface litter mass loss, chemistry and fungal decomposer communities after approximately 1 year. Enhanced summer warming significantly restricted litter mass loss by 32% in the dry and 17% in the wet site. Litter moisture content was significantly reduced by summer warming in the dry, but not in the wet site. Likewise, fungal total abundance and diversity were reduced by OTC warming at the dry site, while comparatively modest warming effects were observed in the wet site. These results suggest that increased evapotranspiration in the OTC plots lowered litter moisture content to the point where fungal decomposition activities became inhibited. In contrast, snow addition enhanced fungal abundance in both sites but did not significantly affect litter mass loss rates. Across sites, control plots only shared 15% of their fungal phylotypes, suggesting strong local controls on fungal decomposer community composition. Nevertheless, fungal community functioning (litter decomposition) was negatively affected by warming in both sites. We conclude that although buried soil organic matter decomposition is widely expected to increase with future summer warming, surface litter decay and nutrient turnover rates in both xeric and relatively moist tundra are likely to be significantly restricted by the evaporative drying associated with warmer air temperatures.


Subject(s)
Fungi/growth & development , Tundra , Arctic Regions , Betula , Ecosystem , Greenland , Plant Leaves , Seasons , Soil Microbiology , Temperature
5.
Glob Chang Biol ; 23(4): 1564-1574, 2017 04.
Article in English | MEDLINE | ID: mdl-27520482

ABSTRACT

The arid and semi-arid drylands of the world are increasingly recognized for their role in the terrestrial net carbon dioxide (CO2 ) uptake, which depends largely on plant litter decomposition and the subsequent release of CO2 back to the atmosphere. Observed decomposition rates in drylands are higher than predictions by biogeochemical models, which are traditionally based on microbial (biotic) degradation enabled by precipitation as the main mechanism of litter decomposition. Consequently, recent research in drylands has focused on abiotic mechanisms, mainly photochemical and thermal degradation, but they only partly explain litter decomposition under dry conditions, suggesting the operation of an additional mechanism. Here we show that in the absence of precipitation, absorption of dew and water vapor by litter in the field enables microbial degradation at night. By experimentally manipulating solar irradiance and nighttime air humidity, we estimated that most of the litter CO2 efflux and decay occurring in the dry season was due to nighttime microbial degradation, with considerable additional contributions from photochemical and thermal degradation during the daytime. In a complementary study, at three sites across the Mediterranean Basin, litter CO2 efflux was largely explained by litter moisture driving microbial degradation and ultraviolet radiation driving photodegradation. We further observed mutual enhancement of microbial activity and photodegradation at a daily scale. Identifying the interplay of decay mechanisms enhances our understanding of carbon turnover in drylands, which should improve the predictions of the long-term trend of global carbon sequestration.


Subject(s)
Carbon Dioxide , Plant Leaves , Ultraviolet Rays , Desert Climate , Ecosystem , Plants , Soil
6.
Br Poult Sci ; 58(5): 557-568, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28675310

ABSTRACT

1. An experiment was conducted to investigate the effect of crude protein (CP) concentration and dietary electrolyte balance (DEB) on growth performance, processing yields, litter quality and foot pad dermatitis (FPD) in male turkeys from two commercial hybrids. Soya bean meal was replaced by vegetable protein sources selected for lower K concentrations to lower DEB in order to improve litter quality and subsequent quality of foot pads. 2. Effects of CP on litter friability and wetness were not consistent during the production period. FPD in turkeys fed on diets with low CP was significantly lower than FPD in turkeys fed on diets with high CP until 84 d. Growth performance was adversely affected at low CP. Processing yields were not affected by CP. 3. Litter was significantly dryer in pens of turkeys fed on diets with low DEB than in pens of turkeys fed on diets with high DEB. FPD in turkeys fed on diets with low DEB was significantly lower than in turkeys fed on diets with high DEB. Growth performance and processing yields were adversely affected at low DEB. 4. FPD in turkey hybrid A was higher than in turkey hybrid B at 28 d of age. Thereafter, no differences in FPD between turkey hybrids were observed. Growth performance and processing yields were not affected by turkey hybrid. 5. Overall, a significant interaction effect of CP × DEB was observed for FCR: in turkeys fed on the high DEB treatment, FCR of turkeys fed on the high CP diets was lower than FCR of turkeys fed on the low CP (LCP) diets whereas on the low DEB treatment, FCR was not affected by CP treatment. 6. It was concluded that litter quality can be improved and FPD may be decreased in turkeys fed on diets containing lower CP and DEB levels.


Subject(s)
Dermatitis/veterinary , Dietary Proteins/metabolism , Foot Diseases/veterinary , Poultry Diseases/etiology , Turkeys , Water-Electrolyte Balance , Animal Feed/analysis , Animals , Breeding , Dermatitis/etiology , Diet/veterinary , Dietary Proteins/administration & dosage , Dose-Response Relationship, Drug , Floors and Floorcoverings , Foot Diseases/etiology , Male , Turkeys/genetics , Turkeys/growth & development
7.
J Anim Physiol Anim Nutr (Berl) ; 101 Suppl 1: 105-109, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28627062

ABSTRACT

Foot pad dermatitis (FPD) is a widespread disease in poultry and important for economic and animal welfare reasons. It is well recognized that using non-starch polysaccharide (NSP)-degrading enzymes can affect excreta/litter quality (not only in terms of moisture content but also regarding water evaporation) at high stocking densities and might help to prevent FPD and further negative effects of NSP. This study aimed to evaluate effects of a carbohydrase complex (CC) in different dietary inclusion rates on performance, digesta viscosity and foot pad health in broilers from 9 to 37 days of life. In total, 240 broilers were divided into 12 floor pens of 20 birds and received one of four different experimental diets. The four wheat- and soyabean meal-based diets only differed in the inclusion rate of CC: 0%, 50%, 100% and 500% of the recommended dose of CC (Endo-1,4-ß-xylanase and Endo-1,3(4)-ß-glucanase; 50 g/t). The addition of CC led to a significant decrease of digesta viscosity in the proximal small intestine, a tendency of improved feed conversion ratio, and significantly favoured FPD-scores (Treatment 2). At the higher tested inclusion rate of CC (500% of recommended dose), the FPD score was worser than in the treatments with 50% and 100% of the recommended enzyme dosage. No improvements among treatments were observed in terms of body weight and dry matter content of excreta and litter at the end of trial. The low positive effects on foot pad health in this study were presumably associated with the low NSP content in the experimental diets (soluble arabinoxylans: 7.38 g/kg as fed). In conclusion, the addition of the evaluated CC reduced digesta viscosity. An improvement of foot pad health could only be seen in the treatment with 50% of the recommended enzyme dosage in the diet.


Subject(s)
Animal Feed/analysis , Chickens , Foot Diseases/veterinary , Gastrointestinal Contents/chemistry , Glycoside Hydrolases/pharmacology , Poultry Diseases/prevention & control , Animal Nutritional Physiological Phenomena , Animals , Dermatitis/prevention & control , Dermatitis/veterinary , Diet/veterinary , Dietary Supplements , Endo-1,4-beta Xylanases , Foot Diseases/prevention & control , Glycoside Hydrolases/administration & dosage , Viscosity
8.
Poult Sci ; 93(7): 1782-92, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24812231

ABSTRACT

Litter moisture contents vary greatly between and within practical poultry barns. The current experiment was designed to measure the effects of 8 different dietary characteristics on litter and excreta moisture content. Additionally, free water content and water activity of the excreta and litter were evaluated as additional quality measures. The dietary treatments consisted of nonstarch polysaccharide content (NSP; corn vs. wheat), particle size of insoluble fiber (coarse vs. finely ground oat hulls), viscosity of a nonfermentable fiber (low- and high-viscosity carboxymethyl cellulose), inclusion of a clay mineral (sepiolite), and inclusion of a laxative electrolyte (MgSO4). The 8 treatments were randomly assigned to cages within blocks, resulting in 12 replicates per treatment with 6 birds per replicate. Limited effects of the dietary treatments were noted on excreta and litter water activity, and indications were observed that this measurement is limited in high-moisture samples. Increasing dietary NSP content by feeding a corn-based diet (low NSP) compared with a wheat-based diet (high NSP) increased water intake, excreta moisture and free water, and litter moisture content. Adding insoluble fibers to the wheat-based diet reduced excreta and litter moisture content, as well as litter water activity. Fine grinding of the oat hulls diminished the effect on litter moisture and water activity. However, excreta moisture and free water content were similar when fed finely or coarsely ground oat hulls. The effects of changing viscosity and adding a clay mineral or laxative deviated from results observed in previous studies. Findings of the current experiment indicate a potential for excreta free water measurement as an additional parameter to assess excreta quality besides total moisture. The exact implication of this parameter warrants further investigation.


Subject(s)
Animal Feed/analysis , Chickens/physiology , Diet/veterinary , Feces/chemistry , Water/analysis , Animal Husbandry , Animals , Avena/chemistry , Dietary Fiber/analysis , Drinking , Laxatives/metabolism , Magnesium Silicates/metabolism , Magnesium Sulfate/metabolism , Particle Size , Polysaccharides/administration & dosage , Polysaccharides/metabolism , Random Allocation , Triticum/chemistry , Viscosity , Water/metabolism , Zea mays/chemistry
9.
Poult Sci ; 102(11): 103055, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37734358

ABSTRACT

Coccidiosis is an enteric disease of poultry worldwide that compromises gut health and growth performance. The current research investigated the effects of 2 doses of a multienzyme preparation on broilers' performance, gut health, and footpad dermatitis (FPD) under an Eimeria challenge. A total of 512 mixed-sex day-old chicks (Cobb 500) were randomly allocated to 4 treatments of 8 replicates. Treatments were: 1) nonchallenged control (NC); 2) NC + Eimeria challenge (CC); 3) CC + recommended level of xylanase and glucanase (XG, 100 g/t feed [on top]); 4) CC + double XG (2XG, 200 g/t feed). Eimeria spp. vaccine strains were gavaged on d 9 to induce coccidiosis in chickens. Performance parameters were evaluated during starter, grower, and finisher phases, and 4 birds per pen were euthanized on d 16 for sampling, FPD was scored on d 35, and litter moisture was analyzed on d 17 and 35. The data were analyzed using 1-way ANOVA with Tukey's test to separate means, and Kruskal-Wallis test was used for non-normally distributed parameters. The results showed that the Eimeria challenge was successful based on reduced weight gain and feed intake during grower phase, and higher FITC-d concentration, lesion score (female), and oocyst counts (d 14) in CC group compared to N.C. group, while XG and 2XG increased (P < 0.001) weight gain and improved FCR compared to CC and NC groups during finisher phase. The addition of X.G. and 2XG decreased litter moisture (P = 0.003) and FPD (P < 0.001) in challenged broilers compared to the N.C. group (d 35). Supplementing XG and 2XG reestablished the population of Lactobacillus in the cecum of challenged birds to an intermediate level between the NC and CC groups (P > 0.05). The inclusion of XG tended to increase the expression of Junctional adhesion molecule 2 (JAM2), which was not different from CC and NC groups (P > 0.05). In conclusion, the combination of xylanase and glucanase (Natugrain TS) improved the performance and modulated jejunal microbiota of broilers under mild Eimeria challenge.

10.
Animal ; 12(7): 1493-1500, 2018 Jul.
Article in English | MEDLINE | ID: mdl-29094667

ABSTRACT

Protein content reduction in broiler breeder diets has been increasingly investigated. However, broiler breeders reared on low protein diets are characterized by a deterioration of the feather condition. Furthermore, polydipsia induced by controlled feed intake increases litter moisture and as a consequence pododermatitis. This project aimed to study the litter moisture, pododermatitis and feather condition of breeders fed with a 25% reduced balanced protein (RP) diet during the rearing and laying period over three successive generations. The experiment started with two treatments for the F0 generation: control (C) group fed with standard C diets and RP group fed with RP diets. The female F0-progeny of each treatment was divided into the two dietary treatments as well, resulting in four treatments for the F1 generation: C/C, C/RP, RP/C and RP/RP (breeder feed in F0/F1 generation). The RP diet fed breeders received on average 10% more feed than C diet fed breeders to achieve the same target BW. The female F1-progeny of each treatment were all fed with C diets which resulted in four treatments for the F2 generation: C/C/C, C/RP/C, RP/C/C and RP/RP/C (breeder feed in F0/F1/F2 generation). Litter moisture, footpad and hock dermatitis were recorded at regular intervals throughout the experimental period in all three generations. For the F0 and F1 generation, the pens of breeders receiving C diets had significantly higher litter moisture than the RP diets fed groups (P<0.05), resulting in an elevated footpad dermatitis occurrence (FDO) (P<0.05). No difference was found in the F2 generation. The feather condition was scored during the laying period for each generation. F0 and F1 breeders reared on the RP diets had poorer feather condition than those receiving the C diets (P<0.05). The C/RP breeders had a significantly poorer feather condition than RP/RP breeders (P<0.05). For the F2 generation, RP/RP/C breeders had a significantly better feather condition compared with the other three groups (P<0.05). The RP/C/C breeders were significantly better feathered than C/C/C breeders (P<0.05). In conclusion, providing RP diets to broiler breeders improved litter condition and hence reduced FDO whereas impaired feather condition. Furthermore, positive transgenerational effects of the maternal RP diets on the feather condition may be inferred, hence potentially altering the welfare status.


Subject(s)
Animal Feed , Dermatitis , Feathers , Poultry Diseases , Animals , Breeding , Chickens , Dermatitis/veterinary , Diet , Diet, Protein-Restricted , Feathers/pathology , Female , Poultry Diseases/genetics
11.
Sci Total Environ ; 538: 979-85, 2015 Dec 15.
Article in English | MEDLINE | ID: mdl-26367067

ABSTRACT

Litter moisture content has been related to ammonia, dust and odour emissions as well as bird health and welfare. Improved understanding of the water holding properties of poultry litter as well as water additions to litter and evaporation from litter will contribute to improved litter moisture management during the meat chicken grow-out. The purpose of this paper is to demonstrate how management and environmental conditions over the course of a grow-out affect the volume of water A) applied to litter, B) able to be stored in litter, and C) evaporated from litter on a daily basis. The same unit of measurement has been used to enable direct comparison-litres of water per square metre of poultry shed floor area, L/m(2), assuming a litter depth of 5cm. An equation was developed to estimate the amount of water added to litter from bird excretion and drinking spillage, which are sources of regular water application to the litter. Using this equation showed that water applied to litter from these sources changes over the course of a grow-out, and can be as much as 3.2L/m(2)/day. Over a 56day grow-out, the total quantity of water added to the litter was estimated to be 104L/m(2). Litter porosity, water holding capacity and water evaporation rates from litter were measured experimentally. Litter porosity decreased and water holding capacity increased over the course of a grow-out due to manure addition. Water evaporation rates at 25°C and 50% relative humidity ranged from 0.5 to 10L/m(2)/day. Evaporation rates increased with litter moisture content and air speed. Maintaining dry litter at the peak of a grow-out is likely to be challenging because evaporation rates from dry litter may be insufficient to remove the quantity of water added to the litter on a daily basis.


Subject(s)
Environmental Monitoring , Housing, Animal , Poultry , Water Cycle , Water Supply/statistics & numerical data , Animals
12.
Animals (Basel) ; 3(3): 608-28, 2013 Jul 09.
Article in English | MEDLINE | ID: mdl-26479524

ABSTRACT

In a long term research project in Germany the influence of husbandry on the health of fattening turkeys (Study 1) as well as the influence of practiced rearing conditions on the health of turkey poults (Study 2) was examined in 24 farms and at the meat processing plant. In all examined rearing farms, litter samples for the determination of litter moisture were taken. This paper summarizes the results obtained by our working group from 2007 until 2012. The results elucidate the universal problem of foot pad dermatitis (FPD). Nearly 100% of the observed turkeys showed a clinically apparent FPD at the meat processing plant. Furthermore, skin lesions of the breast, especially breast buttons were diagnosed, particularly at the slaughterhouse. FPD was detected in the first week of the rearing phase. Prevalence and degree showed a progressive development up to the age of 22-35 days, whereas 63.3% of the poults had foot pad alterations. As even mild alterations in the foot pad condition can be indicators for suboptimal design of the rearing environment, especially high litter moisture, it is important to focus on the early rearing phase.

SELECTION OF CITATIONS
SEARCH DETAIL