Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 4.899
Filter
Add more filters

Publication year range
1.
Cell ; 185(2): 328-344.e26, 2022 01 20.
Article in English | MEDLINE | ID: mdl-35063074

ABSTRACT

Locomotion is a complex behavior required for animal survival. Vertebrate locomotion depends on spinal interneurons termed the central pattern generator (CPG), which generates activity responsible for the alternation of flexor and extensor muscles and the left and right side of the body. It is unknown whether multiple or a single neuronal type is responsible for the control of mammalian locomotion. Here, we show that ventral spinocerebellar tract neurons (VSCTs) drive generation and maintenance of locomotor behavior in neonatal and adult mice. Using mouse genetics, physiological, anatomical, and behavioral assays, we demonstrate that VSCTs exhibit rhythmogenic properties and neuronal circuit connectivity consistent with their essential role in the locomotor CPG. Importantly, optogenetic activation and chemogenetic silencing reveals that VSCTs are necessary and sufficient for locomotion. These findings identify VSCTs as critical components for mammalian locomotion and provide a paradigm shift in our understanding of neural control of complex behaviors.


Subject(s)
Locomotion/physiology , Mammals/physiology , Motor Neurons/cytology , Spinocerebellar Tracts/cytology , Animals , Axons/physiology , Electrophysiological Phenomena , Gap Junctions/metabolism , Gene Silencing , Glutamic Acid/metabolism , Green Fluorescent Proteins/metabolism , Homeodomain Proteins/metabolism , Interneurons/physiology , Lumbar Vertebrae/metabolism , Mice , Proprioception , Swimming , Synapses/physiology , Transcription Factors/metabolism
2.
Cell ; 184(17): 4564-4578.e18, 2021 08 19.
Article in English | MEDLINE | ID: mdl-34302739

ABSTRACT

The mesencephalic locomotor region (MLR) is a key midbrain center with roles in locomotion. Despite extensive studies and clinical trials aimed at therapy-resistant Parkinson's disease (PD), debate on its function remains. Here, we reveal the existence of functionally diverse neuronal populations with distinct roles in control of body movements. We identify two spatially intermingled glutamatergic populations separable by axonal projections, mouse genetics, neuronal activity profiles, and motor functions. Most spinally projecting MLR neurons encoded the full-body behavior rearing. Loss- and gain-of-function optogenetic perturbation experiments establish a function for these neurons in controlling body extension. In contrast, Rbp4-transgene-positive MLR neurons project in an ascending direction to basal ganglia, preferentially encode the forelimb behaviors handling and grooming, and exhibit a role in modulating movement. Thus, the MLR contains glutamatergic neuronal subpopulations stratified by projection target exhibiting roles in action control not restricted to locomotion.


Subject(s)
Locomotion/physiology , Mesencephalon/anatomy & histology , Animals , Basal Ganglia/metabolism , Behavior, Animal , Female , Integrases/metabolism , Male , Mice, Inbred C57BL , Mice, Transgenic , Neurons/metabolism , Optogenetics , Retinol-Binding Proteins, Plasma/metabolism , Spinal Cord/metabolism , Transgenes , Vesicular Glutamate Transport Protein 2/metabolism
3.
Cell ; 172(4): 667-682.e15, 2018 02 08.
Article in English | MEDLINE | ID: mdl-29425489

ABSTRACT

Walking is the predominant locomotor behavior expressed by land-dwelling vertebrates, but it is unknown when the neural circuits that are essential for limb control first appeared. Certain fish species display walking-like behaviors, raising the possibility that the underlying circuitry originated in primitive marine vertebrates. We show that the neural substrates of bipedalism are present in the little skate Leucoraja erinacea, whose common ancestor with tetrapods existed ∼420 million years ago. Leucoraja exhibits core features of tetrapod locomotor gaits, including left-right alternation and reciprocal extension-flexion of the pelvic fins. Leucoraja also deploys a remarkably conserved Hox transcription factor-dependent program that is essential for selective innervation of fin/limb muscle. This network encodes peripheral connectivity modules that are distinct from those used in axial muscle-based swimming and has apparently been diminished in most modern fish. These findings indicate that the circuits that are essential for walking evolved through adaptation of a genetic regulatory network shared by all vertebrates with paired appendages. VIDEO ABSTRACT.


Subject(s)
Avian Proteins , Chickens/physiology , Evolution, Molecular , Fish Proteins , Homeodomain Proteins , Nerve Net/physiology , Skates, Fish/physiology , Transcription Factors , Walking/physiology , Zebrafish/physiology , Animal Fins/physiology , Animals , Avian Proteins/genetics , Avian Proteins/metabolism , Chick Embryo , Fish Proteins/genetics , Fish Proteins/metabolism , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Muscle, Skeletal/physiology , Swimming/physiology , Transcription Factors/genetics , Transcription Factors/metabolism
4.
Cell ; 168(1-2): 311-324.e18, 2017 Jan 12.
Article in English | MEDLINE | ID: mdl-28086095

ABSTRACT

Superior predatory skills led to the evolutionary triumph of jawed vertebrates. However, the mechanisms by which the vertebrate brain controls predation remain largely unknown. Here, we reveal a critical role for the central nucleus of the amygdala in predatory hunting. Both optogenetic and chemogenetic stimulation of central amygdala of mice elicited predatory-like attacks upon both insect and artificial prey. Coordinated control of cervical and mandibular musculatures, which is necessary for accurately positioning lethal bites on prey, was mediated by a central amygdala projection to the reticular formation in the brainstem. In contrast, prey pursuit was mediated by projections to the midbrain periaqueductal gray matter. Targeted lesions to these two pathways separately disrupted biting attacks upon prey versus the initiation of prey pursuit. Our findings delineate a neural network that integrates distinct behavioral modules and suggest that central amygdala neurons instruct predatory hunting across jawed vertebrates.


Subject(s)
Central Amygdaloid Nucleus/physiology , Predatory Behavior , Animals , Anxiety/metabolism , Central Amygdaloid Nucleus/anatomy & histology , Electromyography , Interneurons/metabolism , Mandible/anatomy & histology , Mandible/innervation , Mandible/physiology , Mice , Neck/anatomy & histology , Neck/innervation , Neck/physiology , Neurons/cytology , Neurons/physiology , Periaqueductal Gray/physiology
5.
Annu Rev Neurosci ; 46: 79-99, 2023 07 10.
Article in English | MEDLINE | ID: mdl-36854318

ABSTRACT

The spinal cord is home to the intrinsic networks for locomotion. An animal in which the spinal cord has been fully severed from the brain can still produce rhythmic, patterned locomotor movements as long as some excitatory drive is provided, such as physical, pharmacological, or electrical stimuli. Yet it remains a challenge to define the underlying circuitry that produces these movements because the spinal cord contains a wide variety of neuron classes whose patterns of interconnectivity are still poorly understood. Computational models of locomotion accordingly rely on untested assumptions about spinal neuron network element identity and connectivity. In this review, we consider the classes of spinal neurons, their interconnectivity, and the significance of their circuit connections along the long axis of the spinal cord. We suggest several lines of analysis to move toward a definitive understanding of the spinal network.


Subject(s)
Interneurons , Spinal Cord , Animals , Spinal Cord/physiology , Interneurons/physiology , Neurons , Locomotion/physiology , Brain
6.
Annu Rev Cell Dev Biol ; 31: 669-98, 2015.
Article in English | MEDLINE | ID: mdl-26393773

ABSTRACT

Control of movement is a fundamental and complex task of the vertebrate nervous system, which relies on communication between circuits distributed throughout the brain and spinal cord. Many of the networks essential for the execution of basic locomotor behaviors are composed of discrete neuronal populations residing within the spinal cord. The organization and connectivity of these circuits is established through programs that generate functionally diverse neuronal subtypes, each contributing to a specific facet of motor output. Significant progress has been made in deciphering how neuronal subtypes are specified and in delineating the guidance and synaptic specificity determinants at the core of motor circuit assembly. Recent studies have shed light on the basic principles linking locomotor circuit connectivity with function, and they are beginning to reveal how more sophisticated motor behaviors are encoded. In this review, we discuss the impact of developmental programs in specifying motor behaviors governed by spinal circuits.


Subject(s)
Motor Activity/physiology , Nerve Net/physiology , Spinal Cord/physiology , Animals
7.
Annu Rev Neurosci ; 42: 485-504, 2019 07 08.
Article in English | MEDLINE | ID: mdl-31283898

ABSTRACT

Neuronal circuits that regulate movement are distributed throughout the nervous system. The brainstem is an important interface between upper motor centers involved in action planning and circuits in the spinal cord ultimately leading to execution of body movements. Here we focus on recent work using genetic and viral entry points to reveal the identity of functionally dedicated and frequently spatially intermingled brainstem populations essential for action diversification, a general principle conserved throughout evolution. Brainstem circuits with distinct organization and function control skilled forelimb behavior, orofacial movements, and locomotion. They convey regulatory parameters to motor output structures and collaborate in the construction of complex natural motor behaviors. Functionally tuned brainstem neurons for different actions serve as important integrators of synaptic inputs from upstream centers, including the basal ganglia and cortex, to regulate and modulate behavioral function in different contexts.


Subject(s)
Brain Stem/physiology , Motor Neurons/physiology , Movement/physiology , Spinal Cord/physiology , Animals , Humans , Locomotion/physiology , Neural Pathways/physiology
8.
Proc Natl Acad Sci U S A ; 121(26): e2319971121, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38885375

ABSTRACT

Many bird species commonly aggregate in flocks for reasons ranging from predator defense to navigation. Available evidence suggests that certain types of flocks-the V and echelon formations of large birds-may provide a benefit that reduces the aerodynamic cost of flight, whereas cluster flocks typical of smaller birds may increase flight costs. However, metabolic flight costs have not been directly measured in any of these group flight contexts [Zhang and Lauder, J. Exp. Biol. 226, jeb245617 (2023)]. Here, we measured the energetic benefits of flight in small groups of two or three birds and the requirements for realizing those benefits, using metabolic energy expenditure and flight position measurements from European Starlings flying in a wind tunnel. The starlings continuously varied their relative position during flights but adopted a V formation motif on average, with a modal spanwise and streamwise spacing of [0.81, 0.91] wingspans. As measured via CO2 production, flight costs for follower birds were significantly reduced compared to their individual solo flight benchmarks. However, followers with more positional variability with respect to leaders did less well, even increasing their costs above solo flight. Thus, we directly demonstrate energetic costs and benefits for group flight followers in an experimental context amenable to further investigation of the underlying aerodynamics, wake interactions, and bird characteristics that produce these metabolic effects.


Subject(s)
Energy Metabolism , Flight, Animal , Starlings , Animals , Flight, Animal/physiology , Energy Metabolism/physiology , Starlings/physiology , Starlings/metabolism , Birds/physiology
9.
Proc Natl Acad Sci U S A ; 121(24): e2320517121, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38848301

ABSTRACT

Self-propelling organisms locomote via generation of patterns of self-deformation. Despite the diversity of body plans, internal actuation schemes and environments in limbless vertebrates and invertebrates, such organisms often use similar traveling waves of axial body bending for movement. Delineating how self-deformation parameters lead to locomotor performance (e.g. speed, energy, turning capabilities) remains challenging. We show that a geometric framework, replacing laborious calculation with a diagrammatic scheme, is well-suited to discovery and comparison of effective patterns of wave dynamics in diverse living systems. We focus on a regime of undulatory locomotion, that of highly damped environments, which is applicable not only to small organisms in viscous fluids, but also larger animals in frictional fluids (sand) and on frictional ground. We find that the traveling wave dynamics used by mm-scale nematode worms and cm-scale desert dwelling snakes and lizards can be described by time series of weights associated with two principal modes. The approximately circular closed path trajectories of mode weights in a self-deformation space enclose near-maximal surface integral (geometric phase) for organisms spanning two decades in body length. We hypothesize that such trajectories are targets of control (which we refer to as "serpenoid templates"). Further, the geometric approach reveals how seemingly complex behaviors such as turning in worms and sidewinding snakes can be described as modulations of templates. Thus, the use of differential geometry in the locomotion of living systems generates a common description of locomotion across taxa and provides hypotheses for neuromechanical control schemes at lower levels of organization.


Subject(s)
Lizards , Locomotion , Animals , Locomotion/physiology , Lizards/physiology , Snakes/physiology , Biomechanical Phenomena , Models, Biological
10.
Proc Natl Acad Sci U S A ; 121(32): e2318805121, 2024 Aug 06.
Article in English | MEDLINE | ID: mdl-39083417

ABSTRACT

How do we capture the breadth of behavior in animal movement, from rapid body twitches to aging? Using high-resolution videos of the nematode worm Caenorhabditis elegans, we show that a single dynamics connects posture-scale fluctuations with trajectory diffusion and longer-lived behavioral states. We take short posture sequences as an instantaneous behavioral measure, fixing the sequence length for maximal prediction. Within the space of posture sequences, we construct a fine-scale, maximum entropy partition so that transitions among microstates define a high-fidelity Markov model, which we also use as a means of principled coarse-graining. We translate these dynamics into movement using resistive force theory, capturing the statistical properties of foraging trajectories. Predictive across scales, we leverage the longest-lived eigenvectors of the inferred Markov chain to perform a top-down subdivision of the worm's foraging behavior, revealing both "runs-and-pirouettes" as well as previously uncharacterized finer-scale behaviors. We use our model to investigate the relevance of these fine-scale behaviors for foraging success, recovering a trade-off between local and global search strategies.


Subject(s)
Behavior, Animal , Caenorhabditis elegans , Markov Chains , Animals , Caenorhabditis elegans/physiology , Behavior, Animal/physiology , Models, Biological , Movement/physiology
11.
J Cell Sci ; 137(17)2024 Sep 01.
Article in English | MEDLINE | ID: mdl-39171448

ABSTRACT

Fast axonal transport is crucial for neuronal function and is driven by kinesins and cytoplasmic dynein. Here, we investigated the role of kinesin-1 in dense core vesicle (DCV) transport in C. elegans, using mutants in the kinesin light chains (klc-1 and klc-2) and the motor subunit (unc-116) expressing an ida-1::gfp transgene that labels DCVs. DCV transport in both directions was greatly impaired in an unc-116 mutant and had reduced velocity in a klc-2 mutant. In contrast, the speed of retrograde DCV transport was increased in a klc-1 mutant whereas anterograde transport was unaffected. We identified striking differences between the klc mutants in their effects on worm locomotion and responses to drugs affecting neuromuscular junction activity. We also determined lifespan, finding that unc-116 mutant was short-lived whereas the klc single mutant lifespan was wild type. The ida-1::gfp transgenic strain was also short-lived, but surprisingly, klc-1 and klc-2 extended the ida-1::gfp lifespan beyond that of wild type. Our findings suggest that kinesin-1 not only influences anterograde and retrograde DCV transport but is also involved in regulating lifespan and locomotion, with the two kinesin light chains playing distinct roles.


Subject(s)
Caenorhabditis elegans Proteins , Caenorhabditis elegans , Kinesins , Locomotion , Longevity , Animals , Caenorhabditis elegans/metabolism , Caenorhabditis elegans/genetics , Kinesins/metabolism , Kinesins/genetics , Caenorhabditis elegans Proteins/metabolism , Caenorhabditis elegans Proteins/genetics , Locomotion/genetics , Longevity/genetics , Neurons/metabolism , Mutation/genetics , Secretory Vesicles/metabolism , Animals, Genetically Modified , Axonal Transport , Neuromuscular Junction/metabolism , Cell Cycle Proteins
12.
Annu Rev Genet ; 52: 43-63, 2018 11 23.
Article in English | MEDLINE | ID: mdl-30476447

ABSTRACT

Neural crest cells are a transient embryonic cell population that migrate collectively to various locations throughout the embryo to contribute a number of cell types to several organs. After induction, the neural crest delaminates and undergoes an epithelial-to-mesenchymal transition before migrating through intricate yet characteristic paths. The neural crest exhibits a variety of migratory behaviors ranging from sheet-like mass migration in the cephalic regions to chain migration in the trunk. During their journey, neural crest cells rely on a range of signals both from their environment and within the migrating population for navigating through the embryo as a collective. Here we review these interactions and mechanisms, including chemotactic cues of neural crest cells' migration.


Subject(s)
Cell Movement/genetics , Chemotaxis/genetics , Embryonic Development/genetics , Neural Crest/growth & development , Animals , Cell Lineage/genetics , Neural Crest/cytology
13.
Proc Natl Acad Sci U S A ; 120(41): e2305180120, 2023 Oct 10.
Article in English | MEDLINE | ID: mdl-37788314

ABSTRACT

Robots are notoriously difficult to design because of complex interdependencies between their physical structure, sensory and motor layouts, and behavior. Despite this, almost every detail of every robot built to date has been manually determined by a human designer after several months or years of iterative ideation, prototyping, and testing. Inspired by evolutionary design in nature, the automated design of robots using evolutionary algorithms has been attempted for two decades, but it too remains inefficient: days of supercomputing are required to design robots in simulation that, when manufactured, exhibit desired behavior. Here we show de novo optimization of a robot's structure to exhibit a desired behavior, within seconds on a single consumer-grade computer, and the manufactured robot's retention of that behavior. Unlike other gradient-based robot design methods, this algorithm does not presuppose any particular anatomical form; starting instead from a randomly-generated apodous body plan, it consistently discovers legged locomotion, the most efficient known form of terrestrial movement. If combined with automated fabrication and scaled up to more challenging tasks, this advance promises near-instantaneous design, manufacture, and deployment of unique and useful machines for medical, environmental, vehicular, and space-based tasks.

14.
Proc Natl Acad Sci U S A ; 120(7): e2201947120, 2023 02 14.
Article in English | MEDLINE | ID: mdl-36745789

ABSTRACT

We are in a modern biodiversity crisis that will restructure community compositions and ecological functions globally. Large mammals, important contributors to ecosystem function, have been affected directly by purposeful extermination and indirectly by climate and land-use changes, yet functional turnover is rarely assessed on a global scale using metrics based on functional traits. Using ecometrics, the study of functional trait distributions and functional turnover, we examine the relationship between vegetation cover and locomotor traits for artiodactyl and carnivoran communities. We show that the ability to detect a functional relationship is strengthened when locomotor traits of both primary consumers (artiodactyls, n = 157 species) and secondary consumers (carnivorans, n = 138 species) are combined into one trophically integrated ecometric model. Overall, locomotor traits of 81% of communities accurately estimate vegetation cover, establishing the advantage of trophically integrated ecometric models over single-group models (58 to 65% correct). We develop an innovative approach within the ecometrics framework, using ecometric anomalies to evaluate mismatches in model estimates and observed values and provide more nuance for understanding relationships between functional traits and vegetation cover. We apply our integrated model to five paleontological sites to illustrate mismatches in the past and today and to demonstrate the utility of the model for paleovegetation interpretations. Observed changes in community traits and their associated vegetations across space and over time demonstrate the strong, rapid effect of environmental filtering on community traits. Ultimately, our trophically integrated ecometric model captures the cascading interactions between taxa, traits, and changing environments.


Subject(s)
Biodiversity , Ecosystem , Animals , Mammals , Climate
15.
Proc Natl Acad Sci U S A ; 120(20): e2219341120, 2023 05 16.
Article in English | MEDLINE | ID: mdl-37155851

ABSTRACT

An animal adapts its motor behavior to navigate the external environment. This adaptation depends on proprioception, which provides feedback on an animal's body postures. How proprioception mechanisms interact with motor circuits and contribute to locomotor adaptation remains unclear. Here, we describe and characterize proprioception-mediated homeostatic control of undulatory movement in the roundworm Caenorhabditis elegans. We found that the worm responds to optogenetically or mechanically induced decreases in midbody bending amplitude by increasing its anterior amplitude. Conversely, it responds to increased midbody amplitude by decreasing the anterior amplitude. Using genetics, microfluidic and optogenetic perturbation response analyses, and optical neurophysiology, we elucidated the neural circuit underlying this compensatory postural response. The dopaminergic PDE neurons proprioceptively sense midbody bending and signal to AVK interneurons via the D2-like dopamine receptor DOP-3. The FMRFamide-like neuropeptide FLP-1, released by AVK, regulates SMB head motor neurons to modulate anterior bending. We propose that this homeostatic behavioral control optimizes locomotor efficiency. Our findings demonstrate a mechanism in which proprioception works with dopamine and neuropeptide signaling to mediate motor control, a motif that may be conserved in other animals.


Subject(s)
Caenorhabditis elegans Proteins , Neuropeptides , Animals , Caenorhabditis elegans/physiology , Dopamine/pharmacology , Feedback, Sensory , Locomotion/physiology , Caenorhabditis elegans Proteins/genetics , Neuropeptides/genetics
16.
Proc Natl Acad Sci U S A ; 120(24): e2221217120, 2023 06 13.
Article in English | MEDLINE | ID: mdl-37285395

ABSTRACT

Muscle contraction is the primary source of all animal movement. I show that the maximum mechanical output of such contractions is determined by a characteristic dimensionless number, the "effective inertia," Γ, defined by a small set of mechanical, physiological, and anatomical properties of the interrogated musculoskeletal complex. Different musculoskeletal systems with equal Γ may be considered physiologically similar, in the sense that maximum performance involves equal fractions of the muscle's maximum strain rate, strain capacity, work, and power density. It can be demonstrated that there exists a unique, "optimal" musculoskeletal anatomy which enables a unit volume of muscle to deliver maximum work and power simultaneously, corresponding to Γ close to unity. External forces truncate the mechanical performance space accessible to muscle by introducing parasitic losses, and subtly alter how musculoskeletal anatomy modulates muscle performance, challenging canonical notions of skeletal force-velocity trade-offs. Γ varies systematically under isogeometric transformations of musculoskeletal systems, a result which provides fundamental insights into the key determinants of animal locomotor performance across scales.


Subject(s)
Muscle Contraction , Muscle, Skeletal , Animals , Muscle, Skeletal/physiology , Biomechanical Phenomena , Muscle Contraction/physiology , Locomotion/physiology , Motion
17.
Proc Natl Acad Sci U S A ; 120(30): e2219972120, 2023 07 25.
Article in English | MEDLINE | ID: mdl-37463206

ABSTRACT

Current theory for surface tension-dominant jumps on water, created for small- and medium-sized water strider species and used in bioinspired engineering, predicts that jumping individuals are able to match their downward leg movement speed to their size and morphology such that they maximize the takeoff speed and minimize the takeoff delay without breaking the water surface. Here, we use empirical observations and theoretical modeling to show that large species (heavier than ~80 mg) could theoretically perform the surface-dominated jumps according to the existing model, but they do not conform to its predictions, and switch to using surface-breaking jumps in order to achieve jumping performance sufficient for evading attacks from underwater predators. This illustrates how natural selection for avoiding predators may break the theoretical scaling relationship between prey size and its jumping performance within one physical mechanism, leading to an evolutionary shift to another mechanism that provides protection from attacking predators. Hence, the results are consistent with a general idea: Natural selection for the maintenance of adaptive function of a specific behavior performed within environmental physical constraints leads to size-specific shift to behaviors that use a new physical mechanism that secure the adaptive function.


Subject(s)
Movement , Water , Humans , Body Size , Surface Tension , Biomechanical Phenomena , Locomotion
18.
Proc Natl Acad Sci U S A ; 120(46): e2306580120, 2023 Nov 14.
Article in English | MEDLINE | ID: mdl-37931097

ABSTRACT

The transition from sessile suspension to active mobile detritus feeding in early echinoderms (c.a. 500 Mya) required sophisticated locomotion strategies. However, understanding locomotion adopted by extinct animals in the absence of trace fossils and modern analogues is extremely challenging. Here, we develop a biomimetic soft robot testbed with accompanying computational simulation to understand fundamental principles of locomotion in one of the most enigmatic mobile groups of early stalked echinoderms-pleurocystitids. We show that these Paleozoic echinoderms were likely able to move over the sea bottom by means of a muscular stem that pushed the animal forward (anteriorly). We also demonstrate that wide, sweeping gaits could have been the most effective for these echinoderms and that increasing stem length might have significantly increased velocity with minimal additional energy cost. The overall approach followed here, which we call "Paleobionics," is a nascent but rapidly developing research agenda in which robots are designed based on extinct organisms to generate insights in engineering and evolution.


Subject(s)
Robotics , Animals , Echinodermata , Locomotion , Gait , Computer Simulation
19.
Proc Natl Acad Sci U S A ; 120(3): e2211911120, 2023 01 17.
Article in English | MEDLINE | ID: mdl-36638212

ABSTRACT

Various locomotion strategies employed by microorganisms are observed in complex biological environments. Spermatozoa assemble into bundles to improve their swimming efficiency compared to individual cells. However, the dynamic mechanisms for the formation of sperm bundles have not been fully characterized. In this study, we numerically and experimentally investigate the locomotion of spermatozoa during the transition from individual cells to bundles of two cells. Three consecutive dynamic behaviors are found across the course of the transition: hydrodynamic attraction/repulsion, alignment, and synchronization. The hydrodynamic attraction/repulsion depends on the relative orientation and distance between spermatozoa as well as their flagellar wave patterns and phase shift. Once the heads are attached, we find a stable equilibrium of the rotational hydrodynamics resulting in the alignment of the heads. The synchronization results from the combined influence of hydrodynamic and mechanical cell-to-cell interactions. Additionally, we find that the flagellar beat is regulated by the interactions during the bundle formation, whereby spermatozoa can synchronize their beats to enhance their swimming velocity.


Subject(s)
Flagella , Models, Biological , Male , Animals , Cattle , Semen , Spermatozoa , Locomotion , Sperm Motility
20.
Proc Natl Acad Sci U S A ; 120(11): e2213698120, 2023 Mar 14.
Article in English | MEDLINE | ID: mdl-36897978

ABSTRACT

Locomotion is typically studied either in continuous media where bodies and legs experience forces generated by the flowing medium or on solid substrates dominated by friction. In the former, centralized whole-body coordination is believed to facilitate appropriate slipping through the medium for propulsion. In the latter, slip is often assumed minimal and thus avoided via decentralized control schemes. We find in laboratory experiments that terrestrial locomotion of a meter-scale multisegmented/legged robophysical model resembles undulatory fluid swimming. Experiments varying waves of leg stepping and body bending reveal how these parameters result in effective terrestrial locomotion despite seemingly ineffective isotropic frictional contacts. Dissipation dominates over inertial effects in this macroscopic-scaled regime, resulting in essentially geometric locomotion on land akin to microscopic-scale swimming in fluids. Theoretical analysis demonstrates that the high-dimensional multisegmented/legged dynamics can be simplified to a centralized low-dimensional model, which reveals an effective resistive force theory with an acquired viscous drag anisotropy. We extend our low-dimensional, geometric analysis to illustrate how body undulation can aid performance in non-flat obstacle-rich terrains and also use the scheme to quantitatively model how body undulation affects performance of biological centipede locomotion (the desert centipede Scolopendra polymorpha) moving at relatively high speeds (∼0.5 body lengths/sec). Our results could facilitate control of multilegged robots in complex terradynamic scenarios.

SELECTION OF CITATIONS
SEARCH DETAIL