Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.021
Filter
1.
Cell ; 185(17): 3214-3231.e23, 2022 08 18.
Article in English | MEDLINE | ID: mdl-35907404

ABSTRACT

Although mutations in mitochondrial-associated genes are linked to inflammation and susceptibility to infection, their mechanistic contributions to immune outcomes remain ill-defined. We discovered that the disease-associated gain-of-function allele Lrrk2G2019S (leucine-rich repeat kinase 2) perturbs mitochondrial homeostasis and reprograms cell death pathways in macrophages. When the inflammasome is activated in Lrrk2G2019S macrophages, elevated mitochondrial ROS (mtROS) directs association of the pore-forming protein gasdermin D (GSDMD) to mitochondrial membranes. Mitochondrial GSDMD pore formation then releases mtROS, promoting a switch to RIPK1/RIPK3/MLKL-dependent necroptosis. Consistent with enhanced necroptosis, infection of Lrrk2G2019S mice with Mycobacterium tuberculosis elicits hyperinflammation and severe immunopathology. Our findings suggest a pivotal role for GSDMD as an executer of multiple cell death pathways and demonstrate that mitochondrial dysfunction can direct immune outcomes via cell death modality switching. This work provides insights into how LRRK2 mutations manifest or exacerbate human diseases and identifies GSDMD-dependent necroptosis as a potential target to limit Lrrk2G2019S-mediated immunopathology.


Subject(s)
Mitochondria , Necroptosis , Phosphate-Binding Proteins/metabolism , Pore Forming Cytotoxic Proteins/metabolism , Animals , Humans , Inflammasomes , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2 , Macrophages , Mice , Mitochondria/metabolism , Reactive Oxygen Species/metabolism
2.
Cell ; 184(13): 3519-3527.e10, 2021 06 24.
Article in English | MEDLINE | ID: mdl-34107286

ABSTRACT

Mutations in leucine-rich repeat kinase 2 (LRRK2) are commonly implicated in the pathogenesis of both familial and sporadic Parkinson's disease (PD). LRRK2 regulates critical cellular processes at membranous organelles and forms microtubule-based pathogenic filaments, yet the molecular basis underlying these biological roles of LRRK2 remains largely enigmatic. Here, we determined high-resolution structures of full-length human LRRK2, revealing its architecture and key interdomain scaffolding elements for rationalizing disease-causing mutations. The kinase domain of LRRK2 is captured in an inactive state, a conformation also adopted by the most common PD-associated mutation, LRRK2G2019S. This conformation serves as a framework for structure-guided design of conformational specific inhibitors. We further determined the structure of COR-mediated LRRK2 dimers and found that single-point mutations at the dimer interface abolished pathogenic filamentation in cells. Overall, our study provides mechanistic insights into physiological and pathological roles of LRRK2 and establishes a structural template for future therapeutic intervention in PD.


Subject(s)
Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/chemistry , Amino Acid Sequence , HEK293 Cells , Humans , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/ultrastructure , Models, Molecular , Protein Domains , Protein Multimerization , Protein Structure, Secondary
3.
Cell ; 184(20): 5089-5106.e21, 2021 09 30.
Article in English | MEDLINE | ID: mdl-34555357

ABSTRACT

Microglia are the CNS resident immune cells that react to misfolded proteins through pattern recognition receptor ligation and activation of inflammatory pathways. Here, we studied how microglia handle and cope with α-synuclein (α-syn) fibrils and their clearance. We found that microglia exposed to α-syn establish a cellular network through the formation of F-actin-dependent intercellular connections, which transfer α-syn from overloaded microglia to neighboring naive microglia where the α-syn cargo got rapidly and effectively degraded. Lowering the α-syn burden attenuated the inflammatory profile of microglia and improved their survival. This degradation strategy was compromised in cells carrying the LRRK2 G2019S mutation. We confirmed the intercellular transfer of α-syn assemblies in microglia using organotypic slice cultures, 2-photon microscopy, and neuropathology of patients. Together, these data identify a mechanism by which microglia create an "on-demand" functional network in order to improve pathogenic α-syn clearance.


Subject(s)
Cell Membrane Structures/metabolism , Microglia/metabolism , Proteolysis , alpha-Synuclein/metabolism , Actins/metabolism , Aged , Aged, 80 and over , Animals , Apoptosis , Cytoskeleton/metabolism , Down-Regulation , Female , Humans , Inflammation/genetics , Inflammation/pathology , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/metabolism , Male , Mice, Inbred C57BL , Microglia/pathology , Microglia/ultrastructure , Mitochondria/metabolism , Nanotubes , Protein Aggregates , Reactive Oxygen Species/metabolism , Transcriptome/genetics
4.
Annu Rev Cell Dev Biol ; 36: 237-264, 2020 10 06.
Article in English | MEDLINE | ID: mdl-32749865

ABSTRACT

Parkinson's disease (PD) is a leading cause of neurodegeneration that is defined by the selective loss of dopaminergic neurons and the accumulation of protein aggregates called Lewy bodies (LBs). The unequivocal identification of Mendelian inherited mutations in 13 genes in PD has provided transforming insights into the pathogenesis of this disease. The mechanistic analysis of several PD genes, including α-synuclein (α-syn), leucine-rich repeat kinase 2 (LRRK2), PTEN-induced kinase 1 (PINK1), and Parkin, has revealed central roles for protein aggregation, mitochondrial damage, and defects in endolysosomal trafficking in PD neurodegeneration. In this review, we outline recent advances in our understanding of these gene pathways with a focus on the emergent role of Rab (Ras analog in brain) GTPases and vesicular trafficking as a common mechanism that underpins how mutations in PD genes lead to neuronal loss. These advances have led to previously distinct genes such as vacuolar protein-sorting-associated protein 35 (VPS35) and LRRK2 being implicated in a common signaling pathway. A greater understanding of these common nodes of vesicular trafficking will be crucial for linking other PD genes and improving patient stratification in clinical trials underway against α-syn and LRRK2 targets.


Subject(s)
Parkinson Disease/metabolism , Animals , Autophagy , Cytoplasmic Vesicles/metabolism , Humans , Mitochondria/metabolism , Parkinson Disease/genetics , Protein Aggregates , Protein Transport
5.
Annu Rev Neurosci ; 44: 87-108, 2021 07 08.
Article in English | MEDLINE | ID: mdl-34236893

ABSTRACT

Parkinson's disease (PD) is a common neurodegenerative disorder characterized by degeneration of the substantia nigra pars compacta and by accumulation of α-synuclein in Lewy bodies. PD is caused by a combination of environmental factors and genetic variants. These variants range from highly penetrant Mendelian alleles to alleles that only modestly increase disease risk. Here, we review what is known about the genetics of PD. We also describe how PD genetics have solidified the role of endosomal, lysosomal, and mitochondrial dysfunction in PD pathophysiology. Finally, we highlight how all three pathways are affected by α-synuclein and how this knowledge may be harnessed for the development of disease-modifying therapeutics.


Subject(s)
Parkinson Disease , Humans , Lysosomes , Parkinson Disease/genetics , alpha-Synuclein/genetics
6.
EMBO J ; 42(15): e113410, 2023 08 01.
Article in English | MEDLINE | ID: mdl-37366237

ABSTRACT

Mutations in LRRK2 are the most common genetic causes of Parkinson's disease (PD). While the enzymatic activity of LRRK2 has been linked to PD, previous work has also provided support for an important role of elevated LRRK2 protein levels, independent of enzymatic activity, in PD pathogenesis. However, the mechanisms underlying the regulation of LRRK2 protein levels remain unclear. Here, we identify a role for the purine biosynthesis pathway enzyme ATIC in the regulation of LRRK2 levels and toxicity. AICAr, the precursor of ATIC substrate, regulates LRRK2 levels in a cell-type-specific manner in vitro and in mouse tissue. AICAr regulates LRRK2 levels through AUF1-mediated mRNA decay. Upon AICAr treatment, the RNA binding protein AUF1 is recruited to the AU-rich elements (ARE) of LRRK2 mRNA leading to the recruitment of the decapping enzyme complex DCP1/2 and decay of LRRK2 mRNA. AICAr suppresses LRRK2 expression and rescues LRRK2-induced dopaminergic neurodegeneration and neuroinflammation in PD Drosophila and mouse models. Together, this study provides insight into a novel regulatory mechanism of LRRK2 protein levels and function via LRRK2 mRNA decay that is distinct from LRRK2 enzymatic functions.


Subject(s)
Parkinson Disease , Animals , Mice , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/genetics , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/metabolism , Parkinson Disease/genetics , Parkinson Disease/metabolism , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , RNA Stability , RNA, Messenger/genetics , Mutation
7.
Proc Natl Acad Sci U S A ; 121(32): e2402206121, 2024 Aug 06.
Article in English | MEDLINE | ID: mdl-39088390

ABSTRACT

Activating leucine-rich repeat kinase 2 (LRRK2) mutations cause Parkinson's and phosphorylation of Rab10 by pathogenic LRRK2 blocks primary ciliogenesis in cultured cells. In the mouse brain, LRRK2 blockade of primary cilia is highly cell type specific: For example, cholinergic interneurons and astrocytes but not medium spiny neurons of the dorsal striatum lose primary cilia in LRRK2-pathway mutant mice. We show here that the cell type specificity of LRRK2-mediated cilia loss is also seen in human postmortem striatum from patients with LRRK2 pathway mutations and idiopathic Parkinson's. Single nucleus RNA sequencing shows that cilia loss in mouse cholinergic interneurons is accompanied by decreased glial-derived neurotrophic factor transcription, decreasing neuroprotection for dopamine neurons. Nevertheless, LRRK2 expression differences cannot explain the unique vulnerability of cholinergic neurons to LRRK2 kinase as much higher LRRK2 expression is seen in medium spiny neurons that have normal cilia. In parallel with decreased striatal dopaminergic neurite density, LRRK2 G2019S neurons show increased autism-linked CNTN5 adhesion protein expression; glial cells show significant loss of ferritin heavy chain. These data strongly suggest that loss of cilia in specific striatal cell types decreases neuroprotection for dopamine neurons in mice and human Parkinson's.


Subject(s)
Cilia , Dopaminergic Neurons , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2 , Neuroprotection , Parkinson Disease , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/genetics , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/metabolism , Cilia/metabolism , Animals , Parkinson Disease/metabolism , Parkinson Disease/genetics , Parkinson Disease/pathology , Humans , Mice , Dopaminergic Neurons/metabolism , Dopaminergic Neurons/pathology , Neuroprotection/genetics , Mutation , Corpus Striatum/metabolism , Corpus Striatum/pathology , Male
8.
Trends Biochem Sci ; 47(3): 187-188, 2022 03.
Article in English | MEDLINE | ID: mdl-34756665

ABSTRACT

Variations in the LRRK2 gene represent one of the strongest genetic factors for Parkinson's disease (PD). It has become clear that structural knowledge of the encoded large multidomain LRRK2 protein will cast light on its biological function. The new study from Myasnikov, Zhu, et al. provides a high-resolution structure of the full-length LRRK2.


Subject(s)
Parkinson Disease , Humans , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/chemistry , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/genetics , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/metabolism , Mutation , Parkinson Disease/genetics , Parkinson Disease/metabolism
9.
Hum Mol Genet ; 2024 Sep 26.
Article in English | MEDLINE | ID: mdl-39324210

ABSTRACT

LRRK2 mutations are among the most common genetic causes for Parkinson's disease (PD), and toxicity is associated with increased kinase activity. 14-3-3 proteins are key interactors that regulate LRRK2 kinase activity. Phosphorylation of the 14-3-3θ isoform at S232 is dramatically increased in human PD brains. Here we investigate the impact of 14-3-3θ phosphorylation on its ability to regulate LRRK2 kinase activity. Both wildtype and the non-phosphorylatable S232A 14-3-3θ mutant reduced the kinase activity of wildtype and G2019S LRRK2, whereas the phosphomimetic S232D 14-3-3θ mutant had minimal effects on LRRK2 kinase activity, as determined by measuring autophosphorylation at S1292 and T1503 and Rab10 phosphorylation. However, wildtype and both 14-3-3θ mutants similarly reduced the kinase activity of the R1441G LRRK2 mutant. 14-3-3θ phosphorylation did not promote global dissociation with LRRK2, as determined by co-immunoprecipitation and proximal ligation assays. 14-3-3s interact with LRRK2 at several phosphorylated serine/threonine sites, including T2524 in the C-terminal helix, which can fold back to regulate the kinase domain. Interaction between 14-3-3θ and phosphorylated T2524 LRRK2 was important for 14-3-3θ's ability to regulate kinase activity, as wildtype and S232A 14-3-3θ failed to reduce the kinase activity of G2019S/T2524A LRRK2. Finally, we found that the S232D mutation failed to protect against G2019S LRRK2-induced neurite shortening in primary cultures, while the S232A mutation was protective. We conclude that 14-3-3θ phosphorylation destabilizes the interaction of 14-3-3θ with LRRK2 at T2524, which consequently promotes LRRK2 kinase activity and toxicity.

10.
Proc Natl Acad Sci U S A ; 120(43): e2309698120, 2023 Oct 24.
Article in English | MEDLINE | ID: mdl-37844218

ABSTRACT

Mutations in Leucine-rich repeat kinase 2 (LRRK2) are responsible for late-onset autosomal dominant Parkinson's disease. LRRK2 has been implicated in a wide range of physiological processes including membrane repair in the endolysosomal system. Here, using cell-free systems, we report that purified LRRK2 directly binds acidic lipid bilayers with a preference for highly curved bilayers. While this binding is nucleotide independent, LRRK2 can also deform low-curvature liposomes into narrow tubules in a guanylnucleotide-dependent but Adenosine 5'-triphosphate-independent way. Moreover, assembly of LRRK2 into scaffolds at the surface of lipid tubules can constrict them. We suggest that an interplay between the membrane remodeling and signaling properties of LRRK2 may be key to its physiological function. LRRK2, via its kinase activity, may achieve its signaling role at sites where membrane remodeling occurs.


Subject(s)
Parkinson Disease , Protein Serine-Threonine Kinases , Humans , Protein Serine-Threonine Kinases/metabolism , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/genetics , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/metabolism , Parkinson Disease/genetics , Parkinson Disease/metabolism , Phosphorylation , Mutation
11.
Proc Natl Acad Sci U S A ; 120(44): e2315171120, 2023 Oct 31.
Article in English | MEDLINE | ID: mdl-37889931

ABSTRACT

PPM1H phosphatase reverses Parkinson's disease-associated, Leucine Rich Repeat Kinase 2-mediated Rab GTPase phosphorylation. We show here that PPM1H relies on an N-terminal amphipathic helix for Golgi localization. The amphipathic helix enables PPM1H to bind to liposomes in vitro, and small, highly curved liposomes stimulate PPM1H activity. We artificially anchored PPM1H to the Golgi, mitochondria, or mother centriole. Our data show that regulation of Rab10 GTPase phosphorylation requires PPM1H access to Rab10 at or near the mother centriole. Moreover, poor colocalization of Rab12 explains in part why it is a poor substrate for PPM1H in cells but not in vitro. These data support a model in which localization drives PPM1H substrate selection and centriolar PPM1H is critical for regulation of Rab GTPase-regulated ciliogenesis. Moreover, Golgi localized PPM1H may maintain active Rab GTPases on the Golgi to carry out their nonciliogenesis-related functions in membrane trafficking.


Subject(s)
Parkinson Disease , Phosphoric Monoester Hydrolases , Humans , Phosphorylation , Phosphoric Monoester Hydrolases/metabolism , Parkinson Disease/genetics , Parkinson Disease/metabolism , Liposomes , rab GTP-Binding Proteins/genetics , rab GTP-Binding Proteins/metabolism , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/genetics , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/metabolism , Phosphoprotein Phosphatases/metabolism
12.
J Biol Chem ; 300(7): 107469, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38876305

ABSTRACT

Leucine rich repeat kinase 2 (LRRK2) is a large multidomain protein containing two catalytic domains, a kinase and a GTPase, as well as protein interactions domains, including a WD40 domain. The association of increased LRRK2 kinase activity with both the familial and sporadic forms of Parkinson's disease has led to an intense interest in determining its cellular function. However, small molecule probes that can bind to LRRK2 and report on or affect its cellular activity are needed. Here, we report the identification and characterization of the first high-affinity LRRK2-binding designed ankyrin-repeat protein (DARPin), named E11. Using cryo-EM, we show that DARPin E11 binds to the LRRK2 WD40 domain. LRRK2 bound to DARPin E11 showed improved behavior on cryo-EM grids, resulting in higher resolution LRRK2 structures. DARPin E11 did not affect the catalytic activity of a truncated form of LRRK2 in vitro but decreased the phosphorylation of Rab8A, a LRRK2 substrate, in cells. We also found that DARPin E11 disrupts the formation of microtubule-associated LRRK2 filaments in cells, which are known to require WD40-based dimerization. Thus, DARPin E11 is a new tool to explore the function and dysfunction of LRRK2 and guide the development of LRRK2 kinase inhibitors that target the WD40 domain instead of the kinase.


Subject(s)
Ankyrin Repeat , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2 , Parkinson Disease , rab GTP-Binding Proteins , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/metabolism , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/genetics , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/chemistry , Humans , Parkinson Disease/metabolism , Parkinson Disease/genetics , Parkinson Disease/pathology , HEK293 Cells , rab GTP-Binding Proteins/metabolism , rab GTP-Binding Proteins/genetics , Phosphorylation , Cryoelectron Microscopy , Protein Binding
13.
Am J Hum Genet ; 109(2): 311-327, 2022 02 03.
Article in English | MEDLINE | ID: mdl-35077669

ABSTRACT

Human brain organoid models that recapitulate the physiology and complexity of the human brain have a great potential for in vitro disease modeling, in particular for neurodegenerative diseases, such as Parkinson disease. In the present study, we compare single-cell RNA-sequencing data of human midbrain organoids to the developing human embryonic midbrain. We demonstrate that the in vitro model is comparable to its in vivo equivalents in terms of developmental path and cellular composition. Moreover, we investigate the potential of midbrain organoids for modeling early developmental changes in Parkinson disease. Therefore, we compare the single-cell RNA-sequencing data of healthy-individual-derived midbrain organoids to their isogenic LRRK2-p.Gly2019Ser-mutant counterparts. We show that the LRRK2 p.Gly2019Ser variant alters neurodevelopment, resulting in an untimely and incomplete differentiation with reduced cellular variability. Finally, we present four candidate genes, APP, DNAJC6, GATA3, and PTN, that might contribute to the LRRK2-p.Gly2019Ser-associated transcriptome changes that occur during early neurodevelopment.


Subject(s)
Amino Acid Substitution , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/genetics , Neurogenesis/genetics , Organoids/metabolism , Parkinson Disease/genetics , Amyloid beta-Protein Precursor/genetics , Amyloid beta-Protein Precursor/metabolism , Carrier Proteins/genetics , Carrier Proteins/metabolism , Cell Differentiation , Cytokines/genetics , Cytokines/metabolism , Embryo, Mammalian , GATA3 Transcription Factor/genetics , GATA3 Transcription Factor/metabolism , Gene Expression Regulation, Developmental , Glycine/chemistry , Glycine/metabolism , HSP40 Heat-Shock Proteins/genetics , HSP40 Heat-Shock Proteins/metabolism , Humans , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/metabolism , Mesencephalon , Models, Biological , Mutation , Organoids/pathology , Parkinson Disease/metabolism , Parkinson Disease/pathology , Sequence Analysis, RNA , Serine/chemistry , Serine/metabolism , Single-Cell Analysis/methods , Transcriptome
14.
J Cell Sci ; 136(14)2023 07 15.
Article in English | MEDLINE | ID: mdl-37365944

ABSTRACT

Rab proteins are small GTPases that regulate a myriad of intracellular membrane trafficking events. Rab29 is one of the Rab proteins phosphorylated by leucine-rich repeat kinase 2 (LRRK2), a Parkinson's disease-associated kinase. Recent studies suggest that Rab29 regulates LRRK2, whereas the mechanism by which Rab29 is regulated remained unclear. Here, we report a novel phosphorylation in Rab29 that is not mediated by LRRK2 and occurs under lysosomal overload stress. Mass spectrometry analysis identified the phosphorylation site of Rab29 as Ser185, and cellular expression studies of phosphomimetic mutants of Rab29 at Ser185 unveiled the involvement of this phosphorylation in counteracting lysosomal enlargement. PKCα and PKCδ were deemed to be involved in this phosphorylation and control the lysosomal localization of Rab29 in concert with LRRK2. These results implicate PKCs in the lysosomal stress response pathway comprised of Rab29 and LRRK2, and further underscore the importance of this pathway in the mechanisms underlying lysosomal homeostasis.


Subject(s)
Lysosomes , rab GTP-Binding Proteins , Phosphorylation , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/genetics , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/metabolism , rab GTP-Binding Proteins/genetics , rab GTP-Binding Proteins/metabolism , Lysosomes/metabolism , Mutation
15.
Brain ; 147(8): 2668-2679, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39074992

ABSTRACT

Variants in seven genes (LRRK2, GBA1, PRKN, SNCA, PINK1, PARK7 and VPS35) have been formally adjudicated as causal contributors to Parkinson's disease; however, individuals with Parkinson's disease are often unaware of their genetic status since clinical testing is infrequently offered. As a result, genetic information is not incorporated into clinical care, and variant-targeted precision medicine trials struggle to enrol people with Parkinson's disease. Understanding the yield of genetic testing using an established gene panel in a large, geographically diverse North American population would help patients, clinicians, clinical researchers, laboratories and insurers better understand the importance of genetics in approaching Parkinson's disease. PD GENEration is an ongoing multi-centre, observational study (NCT04057794, NCT04994015) offering genetic testing with results disclosure and genetic counselling to those in the US (including Puerto Rico), Canada and the Dominican Republic, through local clinical sites or remotely through self-enrolment. DNA samples are analysed by next-generation sequencing including deletion/duplication analysis (Fulgent Genetics) with targeted testing of seven major Parkinson's disease-related genes. Variants classified as pathogenic/likely pathogenic/risk variants are disclosed to all tested participants by either neurologists or genetic counsellors. Demographic and clinical features are collected at baseline visits. Between September 2019 and June 2023, the study enrolled 10 510 participants across >85 centres, with 8301 having received results. Participants were: 59% male; 86% White, 2% Asian, 4% Black/African American, 9% Hispanic/Latino; mean age 67.4 ± 10.8 years. Reportable genetic variants were observed in 13% of all participants, including 18% of participants with one or more 'high risk factors' for a genetic aetiology: early onset (<50 years), high-risk ancestry (Ashkenazi Jewish/Basque/North African Berber), an affected first-degree relative; and, importantly, in 9.1% of people with none of these risk factors. Reportable variants in GBA1 were identified in 7.7% of all participants; 2.4% in LRRK2; 2.1% in PRKN; 0.1% in SNCA; and 0.2% in PINK1, PARK7 or VPS35 combined. Variants in more than one of the seven genes were identified in 0.4% of participants. Approximately 13% of study participants had a reportable genetic variant, with a 9% yield in people with no high-risk factors. This supports the promotion of universal access to genetic testing for Parkinson's disease, as well as therapeutic trials for GBA1 and LRRK2-related Parkinson's disease.


Subject(s)
Genetic Testing , Glucosylceramidase , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2 , Parkinson Disease , alpha-Synuclein , Humans , Parkinson Disease/genetics , Parkinson Disease/diagnosis , Genetic Testing/methods , Male , Female , Glucosylceramidase/genetics , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/genetics , alpha-Synuclein/genetics , Aged , Middle Aged , Ubiquitin-Protein Ligases/genetics , Protein Kinases/genetics , Protein Deglycase DJ-1/genetics , Vesicular Transport Proteins/genetics , North America , Genetic Variation/genetics , Genetic Predisposition to Disease/genetics , Adult , Disclosure , Genetic Counseling , Canada , United States
16.
Brain ; 147(8): 2652-2667, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39087914

ABSTRACT

Estimates of the spectrum and frequency of pathogenic variants in Parkinson's disease (PD) in different populations are currently limited and biased. Furthermore, although therapeutic modification of several genetic targets has reached the clinical trial stage, a major obstacle in conducting these trials is that PD patients are largely unaware of their genetic status and, therefore, cannot be recruited. Expanding the number of investigated PD-related genes and including genes related to disorders with overlapping clinical features in large, well-phenotyped PD patient groups is a prerequisite for capturing the full variant spectrum underlying PD and for stratifying and prioritizing patients for gene-targeted clinical trials. The Rostock Parkinson's disease (ROPAD) study is an observational clinical study aiming to determine the frequency and spectrum of genetic variants contributing to PD in a large international cohort. We investigated variants in 50 genes with either an established relevance for PD or possible phenotypic overlap in a group of 12 580 PD patients from 16 countries [62.3% male; 92.0% White; 27.0% positive family history (FH+), median age at onset (AAO) 59 years] using a next-generation sequencing panel. Altogether, in 1864 (14.8%) ROPAD participants (58.1% male; 91.0% White, 35.5% FH+, median AAO 55 years), a PD-relevant genetic test (PDGT) was positive based on GBA1 risk variants (10.4%) or pathogenic/likely pathogenic variants in LRRK2 (2.9%), PRKN (0.9%), SNCA (0.2%) or PINK1 (0.1%) or a combination of two genetic findings in two genes (∼0.2%). Of note, the adjusted positive PDGT fraction, i.e. the fraction of positive PDGTs per country weighted by the fraction of the population of the world that they represent, was 14.5%. Positive PDGTs were identified in 19.9% of patients with an AAO ≤ 50 years, in 19.5% of patients with FH+ and in 26.9% with an AAO ≤ 50 years and FH+. In comparison to the idiopathic PD group (6846 patients with benign variants), the positive PDGT group had a significantly lower AAO (4 years, P = 9 × 10-34). The probability of a positive PDGT decreased by 3% with every additional AAO year (P = 1 × 10-35). Female patients were 22% more likely to have a positive PDGT (P = 3 × 10-4), and for individuals with FH+ this likelihood was 55% higher (P = 1 × 10-14). About 0.8% of the ROPAD participants had positive genetic testing findings in parkinsonism-, dystonia/dyskinesia- or dementia-related genes. In the emerging era of gene-targeted PD clinical trials, our finding that ∼15% of patients harbour potentially actionable genetic variants offers an important prospect to affected individuals and their families and underlines the need for genetic testing in PD patients. Thus, the insights from the ROPAD study allow for data-driven, differential genetic counselling across the spectrum of different AAOs and family histories and promote a possible policy change in the application of genetic testing as a routine part of patient evaluation and care in PD.


Subject(s)
Genetic Testing , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2 , Parkinson Disease , Humans , Parkinson Disease/genetics , Male , Female , Middle Aged , Aged , Genetic Testing/methods , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/genetics , Glucosylceramidase/genetics , alpha-Synuclein/genetics , Genetic Predisposition to Disease , Ubiquitin-Protein Ligases/genetics , Cohort Studies , Protein Kinases/genetics , Mutation , Adult
17.
Brain ; 147(6): 1996-2008, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38804604

ABSTRACT

The LRRK2 G2019S variant is the most common cause of monogenic Parkinson's disease (PD); however, questions remain regarding the penetrance, clinical phenotype and natural history of carriers. We performed a 3.5-year prospective longitudinal online study in a large number of 1286 genotyped LRRK2 G2019S carriers and 109 154 controls, with and without PD, recruited from the 23andMe Research Cohort. We collected self-reported motor and non-motor symptoms every 6 months, as well as demographics, family histories and environmental risk factors. Incident cases of PD (phenoconverters) were identified at follow-up. We determined lifetime risk of PD using accelerated failure time modelling and explored the impact of polygenic risk on penetrance. We also computed the genetic ancestry of all LRRK2 G2019S carriers in the 23andMe database and identified regions of the world where carrier frequencies are highest. We observed that despite a 1 year longer disease duration (P = 0.016), LRRK2 G2019S carriers with PD had similar burden of motor symptoms, yet significantly fewer non-motor symptoms including cognitive difficulties, REM sleep behaviour disorder (RBD) and hyposmia (all P-values ≤ 0.0002). The cumulative incidence of PD in G2019S carriers by age 80 was 49%. G2019S carriers had a 10-fold risk of developing PD versus non-carriers. This rose to a 27-fold risk in G2019S carriers with a PD polygenic risk score in the top 25% versus non-carriers in the bottom 25%. In addition to identifying ancient founding events in people of North African and Ashkenazi descent, our genetic ancestry analyses infer that the G2019S variant was later introduced to Spanish colonial territories in the Americas. Our results suggest LRRK2 G2019S PD appears to be a slowly progressive predominantly motor subtype of PD with a lower prevalence of hyposmia, RBD and cognitive impairment. This suggests that the current prodromal criteria, which are based on idiopathic PD, may lack sensitivity to detect the early phases of LRRK2 PD in G2019S carriers. We show that polygenic burden may contribute to the development of PD in the LRRK2 G2019S carrier population. Collectively, the results should help support screening programmes and candidate enrichment strategies for upcoming trials of LRRK2 inhibitors in early-stage disease.


Subject(s)
Leucine-Rich Repeat Serine-Threonine Protein Kinase-2 , Parkinson Disease , Humans , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/genetics , Parkinson Disease/genetics , Female , Male , Middle Aged , Aged , Longitudinal Studies , Genetic Predisposition to Disease/genetics , Adult , Prospective Studies , Heterozygote , Penetrance , Aged, 80 and over , REM Sleep Behavior Disorder/genetics , Mutation
18.
Biochem J ; 481(4): 265-278, 2024 Feb 21.
Article in English | MEDLINE | ID: mdl-38299383

ABSTRACT

The identification of multiple genes linked to Parkinson's disease (PD) invites the question as to how they may co-operate. We have generated isogenic cell lines that inducibly express either wild-type or a mutant form of the retromer component VPS35 (D620N), which has been linked to PD. This has enabled us to test proposed effects of this mutation in a setting where the relative expression reflects the physiological occurrence. We confirm that this mutation compromises VPS35 association with the WASH complex, but find no defect in WASH recruitment to endosomes, nor in the distribution of lysosomal receptors, cation-independent mannose-6-phosphate receptor and Sortilin. We show VPS35 (D620N) enhances the activity of the Parkinson's associated kinase LRRK2 towards RAB12 under basal conditions. Furthermore, VPS35 (D620N) amplifies the LRRK2 response to endolysosomal stress resulting in enhanced phosphorylation of RABs 10 and 12. By comparing different types of endolysosomal stresses such as the ionophore nigericin and the membranolytic agent l-leucyl-l-leucine methyl ester, we are able to dissociate phospho-RAB accumulation from membrane rupture.


Subject(s)
Parkinson Disease , Humans , Parkinson Disease/genetics , Parkinson Disease/metabolism , Vesicular Transport Proteins/genetics , Vesicular Transport Proteins/metabolism , Mutation , Lysosomes/genetics , Lysosomes/metabolism , Endosomes/genetics , Endosomes/metabolism , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/genetics , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/metabolism
19.
Biochem J ; 481(4): 313-327, 2024 Feb 21.
Article in English | MEDLINE | ID: mdl-38305364

ABSTRACT

Leucine-rich repeat protein kinase 2 (LRRK2) is a multi-domain protein encompassing two of biology's most critical molecular switches, a kinase and a GTPase, and mutations in LRRK2 are key players in the pathogenesis of Parkinson's disease (PD). The availability of multiple structures (full-length and truncated) has opened doors to explore intra-domain cross-talk in LRRK2. A helix extending from the WD40 domain and stably docking onto the kinase domain is common in all available structures. This C-terminal (Ct) helix is a hub of phosphorylation and organelle-localization motifs and thus serves as a multi-functional protein : protein interaction module. To examine its intra-domain interactions, we have recombinantly expressed a stable Ct motif (residues 2480-2527) and used peptide arrays to identify specific binding sites. We have identified a potential interaction site between the Ct helix and a loop in the CORB domain (CORB loop) using a combination of Gaussian accelerated molecular dynamics simulations and peptide arrays. This Ct-Motif contains two auto-phosphorylation sites (T2483 and T2524), and T2524 is a 14-3-3 binding site. The Ct helix, CORB loop, and the CORB-kinase linker together form a part of a dynamic 'CAP' that regulates the N-lobe of the kinase domain. We hypothesize that in inactive, full-length LRRK2, the Ct-helix will also mediate interactions with the N-terminal armadillo, ankyrin, and LRR domains (NTDs) and that binding of Rab substrates, PD mutations, or kinase inhibitors will unleash the NTDs.


Subject(s)
Leucine-Rich Repeat Proteins , Protein Serine-Threonine Kinases , Protein Serine-Threonine Kinases/metabolism , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/metabolism , Protein Domains , Mutation , Peptides/metabolism , Phosphorylation
20.
Proc Natl Acad Sci U S A ; 119(9)2022 03 01.
Article in English | MEDLINE | ID: mdl-35217606

ABSTRACT

Mutations in the gene coding for leucine-rich repeat kinase 2 (LRRK2) are a leading cause of the inherited form of Parkinson's disease (PD), while LRRK2 overactivation is also associated with the more common idiopathic form of PD. LRRK2 is a large multidomain protein, including a GTPase as well as a Ser/Thr protein kinase domain. Common, disease-causing mutations increase LRRK2 kinase activity, presenting LRRK2 as an attractive target for drug discovery. Currently, drug development has mainly focused on ATP-competitive kinase inhibitors. Here, we report the identification and characterization of a variety of nanobodies that bind to different LRRK2 domains and inhibit or activate LRRK2 in cells and in in vitro. Importantly, nanobodies were identified that inhibit LRRK2 kinase activity while binding to a site that is topographically distinct from the active site and thus act through an allosteric inhibitory mechanism that does not involve binding to the ATP pocket or even to the kinase domain. Moreover, while certain nanobodies completely inhibit the LRRK2 kinase activity, we also identified nanobodies that specifically inhibit the phosphorylation of Rab protein substrates. Finally, in contrast to current type I kinase inhibitors, the studied kinase-inhibitory nanobodies did not induce LRRK2 microtubule association. These comprehensively characterized nanobodies represent versatile tools to study the LRRK2 function and mechanism and can pave the way toward novel diagnostic and therapeutic strategies for PD.


Subject(s)
Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/metabolism , Parkinson Disease/metabolism , Single-Domain Antibodies , Adenosine Triphosphate/metabolism , Allosteric Regulation , Animals , Binding Sites , Epitope Mapping , HEK293 Cells , Humans , Mice , Microtubules/metabolism , Phosphorylation , Protein Binding , RAW 264.7 Cells , rab GTP-Binding Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL