Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22.109
Filter
Add more filters

Publication year range
1.
Annu Rev Immunol ; 39: 279-311, 2021 04 26.
Article in English | MEDLINE | ID: mdl-33544645

ABSTRACT

The innate immune response is a rapid response to pathogens or danger signals. It is precisely activated not only to efficiently eliminate pathogens but also to avoid excessive inflammation and tissue damage. cis-Regulatory element-associated chromatin architecture shaped by epigenetic factors, which we define as the epiregulome, endows innate immune cells with specialized phenotypes and unique functions by establishing cell-specific gene expression patterns, and it also contributes to resolution of the inflammatory response. In this review, we focus on two aspects: (a) how niche signals during lineage commitment or following infection and pathogenic stress program epiregulomes by regulating gene expression levels, enzymatic activities, or gene-specific targeting of chromatin modifiers and (b) how the programed epiregulomes in turn mediate regulation of gene-specific expression, which contributes to controlling the development of innate cells, or the response to infection and inflammation, in a timely manner. We also discuss the effects of innate immunometabolic rewiring on epiregulomes and speculate on several future challenges to be encountered during the exploration of the master regulators of epiregulomes in innate immunity and inflammation.


Subject(s)
Immunity, Innate , Inflammation , Animals , Epigenesis, Genetic , Humans , Immunity, Innate/genetics , Inflammation/genetics
2.
Annu Rev Immunol ; 39: 313-344, 2021 04 26.
Article in English | MEDLINE | ID: mdl-33902313

ABSTRACT

Tissue-resident macrophages are present in most tissues with developmental, self-renewal, or functional attributes that do not easily fit into a textbook picture of a plastic and multifunctional macrophage originating from hematopoietic stem cells; nor does it fit a pro- versus anti-inflammatory paradigm. This review presents and discusses current knowledge on the developmental biology of macrophages from an evolutionary perspective focused on the function of macrophages, which may aid in study of developmental, inflammatory, tumoral, and degenerative diseases. We also propose a framework to investigate the functions of macrophages in vivo and discuss how inherited germline and somatic mutations may contribute to the roles of macrophages in diseases.


Subject(s)
Hematopoietic Stem Cells , Macrophages , Animals , Biology , Humans
3.
Annu Rev Immunol ; 39: 611-637, 2021 04 26.
Article in English | MEDLINE | ID: mdl-33637017

ABSTRACT

Infection with Mycobacterium tuberculosis causes >1.5 million deaths worldwide annually. Innate immune cells are the first to encounter M. tuberculosis, and their response dictates the course of infection. Dendritic cells (DCs) activate the adaptive response and determine its characteristics. Macrophages are responsible both for exerting cell-intrinsic antimicrobial control and for initiating and maintaining inflammation. The inflammatory response to M. tuberculosis infection is a double-edged sword. While cytokines such as TNF-α and IL-1 are important for protection, either excessive or insufficient cytokine production results in progressive disease. Furthermore, neutrophils-cells normally associated with control of bacterial infection-are emerging as key drivers of a hyperinflammatory response that results in host mortality. The roles of other innate cells, including natural killer cells and innate-like T cells, remain enigmatic. Understanding the nuances of both cell-intrinsic control of infection and regulation of inflammation will be crucial for the successful development of host-targeted therapeutics and vaccines.


Subject(s)
Mycobacterium tuberculosis , Tuberculosis , Animals , Cytokines , Humans , Immunity, Innate , Macrophages
4.
Annu Rev Immunol ; 38: 289-313, 2020 04 26.
Article in English | MEDLINE | ID: mdl-31986069

ABSTRACT

A striking change has happened in the field of immunology whereby specific metabolic processes have been shown to be a critical determinant of immune cell activation. Multiple immune receptor types rewire metabolic pathways as a key part of how they promote effector functions. Perhaps surprisingly for immunologists, the Krebs cycle has emerged as the central immunometabolic hub of the macrophage. During proinflammatory macrophage activation, there is an accumulation of the Krebs cycle intermediates succinate and citrate, and the Krebs cycle-derived metabolite itaconate. These metabolites have distinct nonmetabolic signaling roles that influence inflammatory gene expression. A key bioenergetic target for the Krebs cycle, the electron transport chain, also becomes altered, generating reactive oxygen species from Complexes I and III. Similarly, alternatively activated macrophages require α-ketoglutarate-dependent epigenetic reprogramming to elicit anti-inflammatory gene expression. In this review, we discuss these advances and speculate on the possibility of targeting these events therapeutically for inflammatory diseases.


Subject(s)
Citric Acid Cycle , Immunity , Macrophages/immunology , Macrophages/metabolism , Animals , Disease Susceptibility , Energy Metabolism , Humans , Immunomodulation , Macrophage Activation/immunology , Signal Transduction
5.
Annu Rev Immunol ; 38: 341-363, 2020 04 26.
Article in English | MEDLINE | ID: mdl-31961750

ABSTRACT

Recent years have witnessed an emergence of interest in understanding metabolic changes associated with immune responses, termed immunometabolism. As oxygen is central to all aerobic metabolism, hypoxia is now recognized to contribute fundamentally to inflammatory and immune responses. Studies from a number of groups have implicated a prominent role for oxygen metabolism and hypoxia in innate immunity of healthy tissue (physiologic hypoxia) and during active inflammation (inflammatory hypoxia). This inflammatory hypoxia emanates from a combination of recruited inflammatory cells (e.g., neutrophils, eosinophils, and monocytes), high rates of oxidative metabolism, and the activation of multiple oxygen-consuming enzymes during inflammation. These localized shifts toward hypoxia have identified a prominent role for the transcription factor hypoxia-inducible factor (HIF) in the regulation of innate immunity. Such studies have provided new and enlightening insight into our basic understanding of immune mechanisms, and extensions of these findings have identified potential therapeutic targets. In this review, we summarize recent literature around the topic of innate immunity and mucosal hypoxia with a focus on transcriptional responses mediated by HIF.


Subject(s)
Hypoxia/immunology , Hypoxia/metabolism , Immunity, Innate , Animals , Dendritic Cells/immunology , Dendritic Cells/metabolism , Disease Management , Disease Susceptibility , Energy Metabolism , Gene Expression Regulation , Host-Pathogen Interactions/immunology , Humans , Hypoxia/genetics , Hypoxia-Inducible Factor 1/genetics , Hypoxia-Inducible Factor 1/metabolism , Immunomodulation , Macrophages/immunology , Macrophages/metabolism , Monocytes/immunology , Monocytes/metabolism , Signal Transduction
6.
Annu Rev Immunol ; 36: 639-665, 2018 04 26.
Article in English | MEDLINE | ID: mdl-29400999

ABSTRACT

Granulomas are organized aggregates of macrophages, often with characteristic morphological changes, and other immune cells. These evolutionarily ancient structures form in response to persistent particulate stimuli-infectious or noninfectious-that individual macrophages cannot eradicate. Granulomas evolved as protective responses to destroy or sequester particles but are frequently pathological in the context of foreign bodies, infections, and inflammatory diseases. We summarize recent findings that suggest that the granulomatous response unfolds in a stepwise program characterized by a series of macrophage activations and transformations that in turn recruit additional cells and produce structural changes. We explore why different granulomas vary and the reasons that granulomas are protective and pathogenic. Understanding the mechanisms and role of granuloma formation may uncover new therapies for the multitude of granulomatous diseases that constitute serious medical problems while enhancing the protective function of granulomas in infections.


Subject(s)
Granuloma/diagnosis , Granuloma/etiology , Animals , Diagnosis, Differential , Fibrosis , Host-Pathogen Interactions/immunology , Humans , Macrophage Activation/immunology , Macrophages/immunology , Macrophages/metabolism , Macrophages/pathology , Necrosis , T-Lymphocyte Subsets/immunology , T-Lymphocyte Subsets/metabolism
7.
Cell ; 187(2): 390-408.e23, 2024 01 18.
Article in English | MEDLINE | ID: mdl-38157855

ABSTRACT

We describe a human lung disease caused by autosomal recessive, complete deficiency of the monocyte chemokine receptor C-C motif chemokine receptor 2 (CCR2). Nine children from five independent kindreds have pulmonary alveolar proteinosis (PAP), progressive polycystic lung disease, and recurrent infections, including bacillus Calmette Guérin (BCG) disease. The CCR2 variants are homozygous in six patients and compound heterozygous in three, and all are loss-of-expression and loss-of-function. They abolish CCR2-agonist chemokine C-C motif ligand 2 (CCL-2)-stimulated Ca2+ signaling in and migration of monocytic cells. All patients have high blood CCL-2 levels, providing a diagnostic test for screening children with unexplained lung or mycobacterial disease. Blood myeloid and lymphoid subsets and interferon (IFN)-γ- and granulocyte-macrophage colony-stimulating factor (GM-CSF)-mediated immunity are unaffected. CCR2-deficient monocytes and alveolar macrophage-like cells have normal gene expression profiles and functions. By contrast, alveolar macrophage counts are about half. Human complete CCR2 deficiency is a genetic etiology of PAP, polycystic lung disease, and recurrent infections caused by impaired CCL2-dependent monocyte migration to the lungs and infected tissues.


Subject(s)
Pulmonary Alveolar Proteinosis , Receptors, CCR2 , Child , Humans , Lung/metabolism , Macrophages, Alveolar/metabolism , Pulmonary Alveolar Proteinosis/genetics , Pulmonary Alveolar Proteinosis/diagnosis , Receptors, CCR2/deficiency , Receptors, CCR2/genetics , Receptors, CCR2/metabolism , Reinfection/metabolism
8.
Cell ; 186(20): 4454-4471.e19, 2023 09 28.
Article in English | MEDLINE | ID: mdl-37703875

ABSTRACT

Macrophages are heterogeneous and play critical roles in development and disease, but their diversity, function, and specification remain inadequately understood during human development. We generated a single-cell RNA sequencing map of the dynamics of human macrophage specification from PCW 4-26 across 19 tissues. We identified a microglia-like population and a proangiogenic population in 15 macrophage subtypes. Microglia-like cells, molecularly and morphologically similar to microglia in the CNS, are present in the fetal epidermis, testicle, and heart. They are the major immune population in the early epidermis, exhibit a polarized distribution along the dorsal-lateral-ventral axis, and interact with neural crest cells, modulating their differentiation along the melanocyte lineage. Through spatial and differentiation trajectory analysis, we also showed that proangiogenic macrophages are perivascular across fetal organs and likely yolk-sac-derived as microglia. Our study provides a comprehensive map of the heterogeneity and developmental dynamics of human macrophages and unravels their diverse functions during development.


Subject(s)
Macrophages , Humans , Cell Differentiation , Cell Lineage , Macrophages/cytology , Microglia , Organ Specificity
9.
Annu Rev Immunol ; 33: 823-74, 2015.
Article in English | MEDLINE | ID: mdl-25706096

ABSTRACT

Patients with autoinflammatory diseases present with noninfectious fever flares and systemic and/or disease-specific organ inflammation. Their excessive proinflammatory cytokine and chemokine responses can be life threatening and lead to organ damage over time. Studying such patients has revealed genetic defects that have helped unravel key innate immune pathways, including excessive IL-1 signaling, constitutive NF-κB activation, and, more recently, chronic type I IFN signaling. Discoveries of monogenic defects that lead to activation of proinflammatory cytokines have inspired the use of anticytokine-directed treatment approaches that have been life changing for many patients and have led to the approval of IL-1-blocking agents for a number of autoinflammatory conditions. In this review, we describe the genetically characterized autoinflammatory diseases, we summarize our understanding of the molecular pathways that drive clinical phenotypes and that continue to inspire the search for novel treatment targets, and we provide a conceptual framework for classification.


Subject(s)
Autoimmune Diseases/genetics , Autoimmune Diseases/immunology , Genetic Predisposition to Disease , Inflammation/genetics , Inflammation/immunology , Animals , Autoimmune Diseases/metabolism , Autoimmunity , Disease Models, Animal , Humans , Immunity, Innate , Immunologic Deficiency Syndromes/genetics , Immunologic Deficiency Syndromes/immunology , Immunologic Deficiency Syndromes/metabolism , Inflammation/metabolism , Inflammation Mediators/metabolism , Interferons/metabolism , Interleukin-1/metabolism , Lymphoproliferative Disorders/genetics , Lymphoproliferative Disorders/immunology , Lymphoproliferative Disorders/metabolism , Macrophage Activation/immunology , Macrophages/immunology , Macrophages/metabolism , NF-kappa B/metabolism , Signal Transduction
10.
Cell ; 185(2): 379-396.e38, 2022 01 20.
Article in English | MEDLINE | ID: mdl-35021063

ABSTRACT

The liver is the largest solid organ in the body, yet it remains incompletely characterized. Here we present a spatial proteogenomic atlas of the healthy and obese human and murine liver combining single-cell CITE-seq, single-nuclei sequencing, spatial transcriptomics, and spatial proteomics. By integrating these multi-omic datasets, we provide validated strategies to reliably discriminate and localize all hepatic cells, including a population of lipid-associated macrophages (LAMs) at the bile ducts. We then align this atlas across seven species, revealing the conserved program of bona fide Kupffer cells and LAMs. We also uncover the respective spatially resolved cellular niches of these macrophages and the microenvironmental circuits driving their unique transcriptomic identities. We demonstrate that LAMs are induced by local lipid exposure, leading to their induction in steatotic regions of the murine and human liver, while Kupffer cell development crucially depends on their cross-talk with hepatic stellate cells via the evolutionarily conserved ALK1-BMP9/10 axis.


Subject(s)
Biological Evolution , Hepatocytes/metabolism , Macrophages/metabolism , Proteogenomics , Animals , Cell Nucleus/metabolism , Fatty Liver/genetics , Fatty Liver/pathology , Homeostasis , Humans , Kupffer Cells/metabolism , Leukocyte Common Antigens/metabolism , Lipids/chemistry , Liver/metabolism , Lymphocytes/metabolism , Mice, Inbred C57BL , Models, Biological , Myeloid Cells/metabolism , Obesity/pathology , Proteome/metabolism , Signal Transduction , Transcriptome/genetics
11.
Cell ; 185(20): 3720-3738.e13, 2022 09 29.
Article in English | MEDLINE | ID: mdl-36103894

ABSTRACT

Necrosis of macrophages in the granuloma, the hallmark immunological structure of tuberculosis, is a major pathogenic event that increases host susceptibility. Through a zebrafish forward genetic screen, we identified the mTOR kinase, a master regulator of metabolism, as an early host resistance factor in tuberculosis. We found that mTOR complex 1 protects macrophages from mycobacterium-induced death by enabling infection-induced increases in mitochondrial energy metabolism fueled by glycolysis. These metabolic adaptations are required to prevent mitochondrial damage and death caused by the secreted mycobacterial virulence determinant ESAT-6. Thus, the host can effectively counter this early critical mycobacterial virulence mechanism simply by regulating energy metabolism, thereby allowing pathogen-specific immune mechanisms time to develop. Our findings may explain why Mycobacterium tuberculosis, albeit humanity's most lethal pathogen, is successful in only a minority of infected individuals.


Subject(s)
Mycobacterium marinum , Mycobacterium tuberculosis , Tuberculosis , Animals , Mycobacterium tuberculosis/metabolism , TOR Serine-Threonine Kinases/metabolism , Zebrafish
12.
Cell ; 185(24): 4507-4525.e18, 2022 11 23.
Article in English | MEDLINE | ID: mdl-36356582

ABSTRACT

The human pathogen Mycobacterium tuberculosis typically causes lung disease but can also disseminate to other tissues. We identified a M. tuberculosis (Mtb) outbreak presenting with unusually high rates of extrapulmonary dissemination and bone disease. We found that the causal strain carried an ancestral full-length version of the type VII-secreted effector EsxM rather than the truncated version present in other modern Mtb lineages. The ancestral EsxM variant exacerbated dissemination through enhancement of macrophage motility, increased egress of macrophages from established granulomas, and alterations in macrophage actin dynamics. Reconstitution of the ancestral version of EsxM in an attenuated modern strain of Mtb altered the migratory mode of infected macrophages, enhancing their motility. In a zebrafish model, full-length EsxM promoted bone disease. The presence of a derived nonsense variant in EsxM throughout the major Mtb lineages 2, 3, and 4 is consistent with a role for EsxM in regulating the extent of dissemination.


Subject(s)
Bone Diseases , Mycobacterium marinum , Mycobacterium tuberculosis , Tuberculosis , Animals , Humans , Zebrafish , Tuberculosis/microbiology , Macrophages/microbiology , Bacterial Proteins/genetics
13.
Cell ; 184(7): 1757-1774.e14, 2021 04 01.
Article in English | MEDLINE | ID: mdl-33761328

ABSTRACT

The central pathogen-immune interface in tuberculosis is the granuloma, a complex host immune structure that dictates infection trajectory and physiology. Granuloma macrophages undergo a dramatic transition in which entire epithelial modules are induced and define granuloma architecture. In tuberculosis, relatively little is known about the host signals that trigger this transition. Using the zebrafish-Mycobacterium marinum model, we identify the basis of granuloma macrophage transformation. Single-cell RNA-sequencing analysis of zebrafish granulomas and analysis of Mycobacterium tuberculosis-infected macaques reveal that, even in the presence of robust type 1 immune responses, countervailing type 2 signals associate with macrophage epithelialization. We find that type 2 immune signaling, mediated via stat6, is absolutely required for epithelialization and granuloma formation. In mixed chimeras, stat6 acts cell autonomously within macrophages, where it is required for epithelioid transformation and incorporation into necrotic granulomas. These findings establish the signaling pathway that produces the hallmark structure of mycobacterial infection.


Subject(s)
Granuloma/pathology , Immunity/physiology , Mycobacterium Infections, Nontuberculous/pathology , Animals , Animals, Genetically Modified/genetics , Animals, Genetically Modified/metabolism , Cadherins/genetics , Cadherins/metabolism , Cell Differentiation , Disease Models, Animal , Epithelioid Cells/cytology , Epithelioid Cells/immunology , Epithelioid Cells/metabolism , Granuloma/immunology , Granuloma/metabolism , Hematopoietic Stem Cells/cytology , Hematopoietic Stem Cells/metabolism , Interferon-gamma/metabolism , Interleukin-12/metabolism , Macrophages/cytology , Macrophages/immunology , Macrophages/metabolism , Mycobacterium Infections, Nontuberculous/immunology , Mycobacterium marinum/isolation & purification , Mycobacterium marinum/physiology , Necrosis , RNA, Guide, Kinetoplastida/metabolism , Receptors, Interleukin-4/antagonists & inhibitors , Receptors, Interleukin-4/genetics , Receptors, Interleukin-4/metabolism , STAT6 Transcription Factor/antagonists & inhibitors , STAT6 Transcription Factor/genetics , STAT6 Transcription Factor/metabolism , Signal Transduction , Zebrafish/growth & development , Zebrafish/metabolism
14.
Cell ; 184(5): 1330-1347.e13, 2021 03 04.
Article in English | MEDLINE | ID: mdl-33636130

ABSTRACT

Osteoclasts are large multinucleated bone-resorbing cells formed by the fusion of monocyte/macrophage-derived precursors that are thought to undergo apoptosis once resorption is complete. Here, by intravital imaging, we reveal that RANKL-stimulated osteoclasts have an alternative cell fate in which they fission into daughter cells called osteomorphs. Inhibiting RANKL blocked this cellular recycling and resulted in osteomorph accumulation. Single-cell RNA sequencing showed that osteomorphs are transcriptionally distinct from osteoclasts and macrophages and express a number of non-canonical osteoclast genes that are associated with structural and functional bone phenotypes when deleted in mice. Furthermore, genetic variation in human orthologs of osteomorph genes causes monogenic skeletal disorders and associates with bone mineral density, a polygenetic skeletal trait. Thus, osteoclasts recycle via osteomorphs, a cell type involved in the regulation of bone resorption that may be targeted for the treatment of skeletal diseases.


Subject(s)
Bone Resorption/pathology , Osteoclasts/pathology , RANK Ligand/metabolism , Animals , Apoptosis , Bone Resorption/metabolism , Cell Fusion , Cells, Cultured , Humans , Macrophages/cytology , Mice , Osteochondrodysplasias/drug therapy , Osteochondrodysplasias/genetics , Osteochondrodysplasias/metabolism , Osteochondrodysplasias/pathology , Osteoclasts/metabolism , Signal Transduction
15.
Cell ; 184(14): 3774-3793.e25, 2021 07 08.
Article in English | MEDLINE | ID: mdl-34115982

ABSTRACT

Cytomegaloviruses (CMVs) have co-evolved with their mammalian hosts for millions of years, leading to remarkable host specificity and high infection prevalence. Macrophages, which already populate barrier tissues in the embryo, are the predominant immune cells at potential CMV entry sites. Here we show that, upon CMV infection, macrophages undergo a morphological, immunophenotypic, and metabolic transformation process with features of stemness, altered migration, enhanced invasiveness, and provision of the cell cycle machinery for viral proliferation. This complex process depends on Wnt signaling and the transcription factor ZEB1. In pulmonary infection, mouse CMV primarily targets and reprograms alveolar macrophages, which alters lung physiology and facilitates primary CMV and secondary bacterial infection by attenuating the inflammatory response. Thus, CMV profoundly perturbs macrophage identity beyond established limits of plasticity and rewires specific differentiation processes, allowing viral spread and impairing innate tissue immunity.


Subject(s)
Cytomegalovirus/physiology , Macrophages, Alveolar/virology , Animals , Antigen Presentation , Bystander Effect , Cell Cycle , Cell Line, Transformed , Cellular Reprogramming , Cytomegalovirus/pathogenicity , Cytomegalovirus/ultrastructure , Cytomegalovirus Infections/immunology , Cytomegalovirus Infections/virology , Green Fluorescent Proteins/metabolism , Lung/pathology , Macrophages, Alveolar/immunology , Macrophages, Alveolar/ultrastructure , Mice, Inbred BALB C , Mice, Inbred C57BL , Phenotype , Stem Cells/pathology , Virus Replication/physiology , Wnt Signaling Pathway
16.
Cell ; 184(9): 2454-2470.e26, 2021 04 29.
Article in English | MEDLINE | ID: mdl-33857425

ABSTRACT

Glioblastoma multiforme (GBM) is an aggressive brain tumor for which current immunotherapy approaches have been unsuccessful. Here, we explore the mechanisms underlying immune evasion in GBM. By serially transplanting GBM stem cells (GSCs) into immunocompetent hosts, we uncover an acquired capability of GSCs to escape immune clearance by establishing an enhanced immunosuppressive tumor microenvironment. Mechanistically, this is not elicited via genetic selection of tumor subclones, but through an epigenetic immunoediting process wherein stable transcriptional and epigenetic changes in GSCs are enforced following immune attack. These changes launch a myeloid-affiliated transcriptional program, which leads to increased recruitment of tumor-associated macrophages. Furthermore, we identify similar epigenetic and transcriptional signatures in human mesenchymal subtype GSCs. We conclude that epigenetic immunoediting may drive an acquired immune evasion program in the most aggressive mesenchymal GBM subtype by reshaping the tumor immune microenvironment.


Subject(s)
Brain Neoplasms/immunology , Epigenesis, Genetic , Glioblastoma/immunology , Immune Evasion/immunology , Myeloid Cells/immunology , Neoplastic Stem Cells/immunology , Tumor Microenvironment/immunology , Animals , Apoptosis , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Brain Neoplasms/genetics , Brain Neoplasms/metabolism , Brain Neoplasms/pathology , Cell Proliferation , DNA Methylation , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , Glioblastoma/genetics , Glioblastoma/metabolism , Glioblastoma/pathology , Humans , Male , Mice , Mice, Inbred NOD , Mice, SCID , Myeloid Cells/metabolism , Myeloid Cells/pathology , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/pathology , Tumor Cells, Cultured , Xenograft Model Antitumor Assays
17.
Cell ; 184(4): 969-982.e13, 2021 02 18.
Article in English | MEDLINE | ID: mdl-33571427

ABSTRACT

Iron overload causes progressive organ damage and is associated with arthritis, liver damage, and heart failure. Elevated iron levels are present in 1%-5% of individuals; however, iron overload is undermonitored and underdiagnosed. Genetic factors affecting iron homeostasis are emerging. Individuals with hereditary xerocytosis, a rare disorder with gain-of-function (GOF) mutations in mechanosensitive PIEZO1 ion channel, develop age-onset iron overload. We show that constitutive or macrophage expression of a GOF Piezo1 allele in mice disrupts levels of the iron regulator hepcidin and causes iron overload. We further show that PIEZO1 is a key regulator of macrophage phagocytic activity and subsequent erythrocyte turnover. Strikingly, we find that E756del, a mild GOF PIEZO1 allele present in one-third of individuals of African descent, is strongly associated with increased plasma iron. Our study links macrophage mechanotransduction to iron metabolism and identifies a genetic risk factor for increased iron levels in African Americans.


Subject(s)
Ion Channels/metabolism , Iron/metabolism , Black or African American , Aging/metabolism , Alleles , Animals , Cohort Studies , Erythrocyte Count , Erythropoiesis , Gain of Function Mutation/genetics , Hepatocytes/metabolism , Hepcidins/blood , Hepcidins/metabolism , Humans , Iron/blood , Iron Overload/metabolism , Macrophages/metabolism , Mechanotransduction, Cellular , Mice, Inbred C57BL , Phagocytosis , Phenotype , Stress, Physiological
18.
Cell ; 184(11): 2988-3005.e16, 2021 05 27.
Article in English | MEDLINE | ID: mdl-34019793

ABSTRACT

Clear cell renal carcinoma (ccRCC) is a heterogeneous disease with a variable post-surgical course. To assemble a comprehensive ccRCC tumor microenvironment (TME) atlas, we performed single-cell RNA sequencing (scRNA-seq) of hematopoietic and non-hematopoietic subpopulations from tumor and tumor-adjacent tissue of treatment-naive ccRCC resections. We leveraged the VIPER algorithm to quantitate single-cell protein activity and validated this approach by comparison to flow cytometry. The analysis identified key TME subpopulations, as well as their master regulators and candidate cell-cell interactions, revealing clinically relevant populations, undetectable by gene-expression analysis. Specifically, we uncovered a tumor-specific macrophage subpopulation characterized by upregulation of TREM2/APOE/C1Q, validated by spatially resolved, quantitative multispectral immunofluorescence. In a large clinical validation cohort, these markers were significantly enriched in tumors from patients who recurred following surgery. The study thus identifies TREM2/APOE/C1Q-positive macrophage infiltration as a potential prognostic biomarker for ccRCC recurrence, as well as a candidate therapeutic target.


Subject(s)
Carcinoma, Renal Cell/metabolism , Neoplasm Recurrence, Local/genetics , Tumor-Associated Macrophages/metabolism , Adult , Apolipoproteins E/genetics , Apolipoproteins E/metabolism , Biomarkers, Tumor/genetics , Carcinoma, Renal Cell/genetics , Carcinoma, Renal Cell/pathology , Cohort Studies , Female , Gene Expression/genetics , Gene Expression Regulation, Neoplastic/genetics , Humans , Kidney/metabolism , Kidney Neoplasms/pathology , Lymphocytes, Tumor-Infiltrating/pathology , Macrophages/metabolism , Male , Membrane Glycoproteins/genetics , Membrane Glycoproteins/metabolism , Middle Aged , Neoplasm Recurrence, Local/metabolism , Prognosis , Receptors, Complement/genetics , Receptors, Complement/metabolism , Receptors, Immunologic/genetics , Receptors, Immunologic/metabolism , Sequence Analysis, RNA/methods , Single-Cell Analysis/methods , Tumor Microenvironment , Tumor-Associated Macrophages/physiology
19.
Cell ; 183(1): 94-109.e23, 2020 10 01.
Article in English | MEDLINE | ID: mdl-32937105

ABSTRACT

Cardiomyocytes are subjected to the intense mechanical stress and metabolic demands of the beating heart. It is unclear whether these cells, which are long-lived and rarely renew, manage to preserve homeostasis on their own. While analyzing macrophages lodged within the healthy myocardium, we discovered that they actively took up material, including mitochondria, derived from cardiomyocytes. Cardiomyocytes ejected dysfunctional mitochondria and other cargo in dedicated membranous particles reminiscent of neural exophers, through a process driven by the cardiomyocyte's autophagy machinery that was enhanced during cardiac stress. Depletion of cardiac macrophages or deficiency in the phagocytic receptor Mertk resulted in defective elimination of mitochondria from the myocardial tissue, activation of the inflammasome, impaired autophagy, accumulation of anomalous mitochondria in cardiomyocytes, metabolic alterations, and ventricular dysfunction. Thus, we identify an immune-parenchymal pair in the murine heart that enables transfer of unfit material to preserve metabolic stability and organ function. VIDEO ABSTRACT.


Subject(s)
Macrophages/metabolism , Mitochondria/metabolism , Myocytes, Cardiac/metabolism , Aged , Animals , Apoptosis , Autophagy , Female , Heart/physiology , Homeostasis , Humans , Macrophages/physiology , Male , Mice , Mice, Inbred C57BL , Middle Aged , Mitochondria/physiology , Myocardial Infarction/metabolism , Myocardium/metabolism , Myocytes, Cardiac/physiology , Phagocytosis/physiology , Reactive Oxygen Species/metabolism , Receptor Protein-Tyrosine Kinases/metabolism , c-Mer Tyrosine Kinase/metabolism
20.
Cell ; 183(5): 1354-1366.e13, 2020 11 25.
Article in English | MEDLINE | ID: mdl-33065030

ABSTRACT

The COVID-19 pandemic has led to extensive morbidity and mortality throughout the world. Clinical features that drive SARS-CoV-2 pathogenesis in humans include inflammation and thrombosis, but the mechanistic details underlying these processes remain to be determined. In this study, we demonstrate endothelial disruption and vascular thrombosis in histopathologic sections of lungs from both humans and rhesus macaques infected with SARS-CoV-2. To define key molecular pathways associated with SARS-CoV-2 pathogenesis in macaques, we performed transcriptomic analyses of bronchoalveolar lavage and peripheral blood and proteomic analyses of serum. We observed macrophage infiltrates in lung and upregulation of macrophage, complement, platelet activation, thrombosis, and proinflammatory markers, including C-reactive protein, MX1, IL-6, IL-1, IL-8, TNFα, and NF-κB. These results suggest a model in which critical interactions between inflammatory and thrombosis pathways lead to SARS-CoV-2-induced vascular disease. Our findings suggest potential therapeutic targets for COVID-19.


Subject(s)
COVID-19/complications , COVID-19/immunology , SARS-CoV-2/genetics , Thrombosis/complications , Vascular Diseases/complications , Aged, 80 and over , Animals , Bronchoalveolar Lavage , C-Reactive Protein/analysis , COVID-19/blood , COVID-19/pathology , Complement Activation , Cytokines/blood , Female , Humans , Inflammation/blood , Inflammation/immunology , Inflammation/virology , Lung/pathology , Macaca mulatta , Macrophages/immunology , Male , Platelet Activation , Thrombosis/blood , Thrombosis/pathology , Transcriptome , Vascular Diseases/blood , Vascular Diseases/pathology
SELECTION OF CITATIONS
SEARCH DETAIL