Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 230
Filter
1.
Curr Issues Mol Biol ; 46(1): 909-922, 2024 Jan 20.
Article in English | MEDLINE | ID: mdl-38275672

ABSTRACT

Chisocheton plants from the family Meliaceae have traditionally been used to treat several diseases; however, scientific evidence is limited. The most abundant chemical constituents of this plant are the limonoids, which are known for their various biological activities, including anti-inflammatory effects. However, the anti-inflammatory effects and underlying mechanisms of action of the constituents of Chisocheton plants have not been fully explored. In this report, we evaluated the anti-inflammatory activity of 17 limonoid compounds from Chisocheton plant primarily by measuring their inhibitory effects on the production of pro-inflammatory cytokines, including TNF-α, IL-6, IL-1ß, and MCP-1, in LPS-stimulated THP-1 cells using an ELISA assay. Compounds 3, 5, 9, and 14-17 exhibited significant activity in inhibiting the evaluated pro-inflammatory markers, with IC50 values less than 20 µM and a high selectivity index (SI) range. Compounds 3, 5, 9, and 15 significantly suppressed the expression of phosphorylated p38 MAPK in THP-1 cells stimulated with LPS. These findings support the use of limonoids from Chisocheton plants as promising candidates for anti-inflammatory therapy.

2.
Chem Biodivers ; 21(8): e202401118, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38790139

ABSTRACT

Phytochemical study on the methanol extract of the stem barks of Aphanamixis polystachya led to the isolation of four previously undescribed (1-4) and ten known compounds (5-14). Their chemical structures were elucidated to be 11-methoxysawaranospiroride C (1), 6α,9S,10,13-tetrahydroxymegastigmane-3-one (2), 11-hydroxyaphanamixin B (3), (2Z,6E,13E)-2,6,13-triene-11,15-dihydroxyphytanic acid (4), cinnacasside D (5), cinnacasside E (6), vilsonol F (7), (3S,5R,6S,7E,9R)-3,5,6,9-tetrahydroxy-7-en-megastigmane (8), (3S,5R,6R,7E,9R)-3,6,9,10-tetrahydroxy-7-en-megastigmane (9), citroside A (10), threo-1-(3,4,5-trimethoxyphenyl)-1,2,3-propanetriol (11), 3,4,5-trimethoxyphenyl-1-O-ß-D-glucopyranoside (12), p-coumaric acid (13), ferulic acid (14) by HR-ESI-MS, ECD, 1D-, and 2D-NMR spectra. Compounds 1, 3, 4, and 9 showed NO production inhibitory activity in LPS activated RAW 264.7 cells with IC50 values of 42.0, 67.9, 20.5, and 78.6 µM, respectively, while the remaining compounds were inactive with IC50 values over 100 µM.


Subject(s)
Lipopolysaccharides , Nitric Oxide , Plant Bark , Mice , RAW 264.7 Cells , Lipopolysaccharides/antagonists & inhibitors , Lipopolysaccharides/pharmacology , Animals , Plant Bark/chemistry , Nitric Oxide/antagonists & inhibitors , Nitric Oxide/biosynthesis , Nitric Oxide/metabolism , Plant Stems/chemistry , Plant Extracts/chemistry , Plant Extracts/pharmacology , Plant Extracts/isolation & purification , Molecular Structure , Structure-Activity Relationship
3.
J Asian Nat Prod Res ; 26(8): 883-891, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38602500

ABSTRACT

Four new tirucallane-type triterpenoids, polystanins H-K (1-4), were obtained from the stems and leaves of Aphanamixis polystachya. Their structures were elucidated by analysis of the spectroscopic data and comparison with literature data. Compounds 1 and 2 showed week inhibitory effects against NO production in LPS-stimulated RAW264.7 cells. All the isolates were investigated for their antifungal activities against drug-resistant Candida albicans.


Subject(s)
Antifungal Agents , Candida albicans , Nitric Oxide , Triterpenes , Triterpenes/chemistry , Triterpenes/pharmacology , Triterpenes/isolation & purification , Mice , Animals , Molecular Structure , Candida albicans/drug effects , RAW 264.7 Cells , Nitric Oxide/biosynthesis , Nitric Oxide/antagonists & inhibitors , Antifungal Agents/pharmacology , Antifungal Agents/chemistry , Antifungal Agents/isolation & purification , Plant Leaves/chemistry , Microbial Sensitivity Tests , Lipopolysaccharides/pharmacology , Meliaceae/chemistry , Plant Stems/chemistry , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/chemistry , Drugs, Chinese Herbal/isolation & purification
4.
Int J Mol Sci ; 25(14)2024 Jul 17.
Article in English | MEDLINE | ID: mdl-39063059

ABSTRACT

Plants of the Meliaceae family have long attracted researchers' interest due to their various insecticidal activities, with triterpenes being the main active ingredients. In this paper, we discuss 93 triterpenoids with insecticidal activity from 37 insecticidal plant species of 15 genera (Munronia, Neobeguea, Pseudocedrela, Nymania, Quivisia, Ruagea, Dysoxylum, Soymida, Lansium, Sandoricum, Walsura, Trichilia, Swietenia, Turraea, and Xylocarpus) in the family Meliaceae. Among these genera, Trichilia deserves further research, with twelve species possessing insecticidal activity. The 93 insecticidal molecules included 27 ring-seco limonoids (comprising 1 ring A-seco group chemical, 1 ring B-seco group chemical, 5 ring D-seco group chemicals, 14 rings A,B-seco group chemicals, 5 rings B,D-seco group chemicals, and 1 rings A,B,D-seco group chemical), 22 ring-intact limonoids (comprising 5 cedrelone-class chemicals, 6 trichilin-class chemicals, 7 havanensin-class chemicals, 2 azadirone-class chemicals, 1 vilasinin-class chemical, and 1 other chemical), 33 2,30-linkage chemicals (comprising 25 mexicanolide-class chemicals and 8 phragmalin-class chemicals), 3 1,n-linkage-group chemicals, 3 onoceranoid-type triterpenoids, 2 apotirucallane-type terpenoids, 2 kokosanolide-type tetranortriterpenoids, and 1 cycloartane triterpene. In particular, 59 molecules showed antifeedant activity, 30 molecules exhibited poisonous effects, and 9 molecules possessed growth regulatory activity. Particularly, khayasin, beddomei lactone, 3ß,24,25-trihydroxycycloartane, humilinolides A-E and methyl-2-hydroxy-3ß-isobutyroxy-1-oxomeliac-8(30)-enate showed excellent insecticidal activities, which were comparable to that of azadirachtin and thus deserved more attention. Moreover, it was noteworthy that various chemicals (such as 12α-diacetoxywalsuranolide, 11ß,12α-diacetoxycedrelone, 1α,7α,12α-triacetoxy-4α-carbomethoxy-11ß-hydroxy-14ß,15ß-epoxyhavanensin, and 11-epi-21-hydroxytoonacilide, etc.) from Turraea showed excellent insecticidal activity. Specially, the insecticidal activity of khayasin from Neobeguea against the coconut leaf beetle were similar to that of rotenone. Therefore, it was a promising candidate insecticide for the control of the coconut leaf beetle.


Subject(s)
Insecticides , Meliaceae , Triterpenes , Meliaceae/chemistry , Triterpenes/pharmacology , Triterpenes/chemistry , Insecticides/pharmacology , Insecticides/chemistry , Animals , Limonins/pharmacology , Limonins/chemistry , Plant Extracts/chemistry , Plant Extracts/pharmacology
5.
Plant Biotechnol J ; 21(3): 574-590, 2023 03.
Article in English | MEDLINE | ID: mdl-36453987

ABSTRACT

Meliaceae is a useful plant family owing to its high-quality timber and its many limonoids that have pharmacological and biological activities. Although some genomes of Meliaceae species have been reported, many questions regarding their unique family features, namely wood quality and natural products, have not been answered. In this study, we provide the whole-genome sequence of Melia azedarach comprising 237.16 Mb with a contig N50 of 8.07 Mb, and an improved genome sequence of Azadirachta indica comprising 223.66 Mb with a contig N50 of 8.91 Mb. Moreover, genome skimming data, transcriptomes and other published genomes were comprehensively analysed to determine the genes and proteins that produce superior wood and valuable limonoids. Phylogenetic analysis of chloroplast genomes, single-copy gene families and single-nucleotide polymorphisms revealed that Meliaceae should be classified into two subfamilies: Cedreloideae and Melioideae. Although the Meliaceae species did not undergo additional whole-genome duplication events, the secondary wall biosynthetic genes of the woody Cedreloideae species, Toona sinensis, expanded significantly compared to those of A. indica and M. azedarach, especially in downstream transcription factors and cellulose/hemicellulose biosynthesis-related genes. Moreover, expanded special oxidosqualene cyclase catalogues can help diversify Sapindales skeletons, and the clustered genes that regulate terpene chain elongation, cyclization and modification would support their roles in limonoid biosynthesis. The expanded clans of terpene synthase, O-methyltransferase and cytochrome P450, which are mainly derived from tandem duplication, are responsible for the different limonoid classes among the species. These results are beneficial for further investigations of wood development and limonoid biosynthesis.


Subject(s)
Azadirachta , Limonins , Meliaceae , Meliaceae/genetics , Limonins/pharmacology , Phylogeny , Wood , Azadirachta/genetics
6.
J Chem Ecol ; 49(1-2): 77-86, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36542197

ABSTRACT

The mahogany shoot borer, Hypsipyla grandella Zeller (Lepidoptera: Pyralidae), is one of the most economically important pests in all American tropical forests because it prevents the establishment of monoculture plantations of the family Meliaceae, such as Spanish cedar, Cedrela odorata L. Various studies have focussed on the bioecological aspects and the chemical and silvicultural control of this pest. However, relatively little is known about the biological interactions between this insect and its host plant. In this study, the shoot borer's behavior and attraction response to cedar host plants was evaluated in field cages. We also identified the volatiles emitted by healthy C. odorata plants that were attractive to H. grandella adults. The attraction to headspace volatiles from cedar plants and a synthetic blend were evaluated in a Y-glass tube olfactometer. We observed that virgin and mated females exhibited low activity at night, frequent movement of the antennae, sporadic flight activity, and short (< 10 s) and long (> 30 s) wing-fanning. Virgin females assumed a calling position, whereas mated females exhibited three periods of oviposition. The results showed that all evaluated categories - virgin females, virgin males, and mated females - were attracted to cedar plants. We identified the following volatile compounds: α-pinene, (E)-ß-ocimene, 2-ethyl-1-hexanol, limonene, nonanal, (E)-4,8-dimethyl-1,3,7-nonatriene, α-copaene, ß-caryophyllene, and germacrene D. A synthetic blend significantly attracted virgin male and mated female shoot borers. Our results suggested that C. odorata volatiles compounds are responsible for the attraction of H. grandella.


Subject(s)
Moths , Volatile Organic Compounds , Animals , Female , Male , Feeding Behavior , Plant Extracts/chemistry , Limonene , Oviposition
7.
Chem Biodivers ; 20(2): e202200909, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36565063

ABSTRACT

The dipeptidyl peptidase-IV (DPP-IV) inhibitory activity of Khaya senegalensis extracts was evaluated. The DPP-IV from a rat kidney was purified to a purification fold of 2.3. Among extracts from K. senegalensis, the hexane extract had the best DPP-IV inhibitory activity, with IC50 value of 1.56±0.61 µg/mL and was fractionated to eleven fractions (A-K). Fraction I had the best DPP-IV inhibition via uncompetitive pattern. GC-MS analysis of fraction I showed that the major bioactive compounds were 3-amino-3-hydroxyimino-N-phenylpropanamide (1) and 11-(2-cyclopenten-1-yl)undecanoic acid (2), with good binding affinities toward DPP-IV, based on molecular docking,. They were then subjected to molecular dynamic simulation using WEBGRO and utilizing a GROMACS system for 100 ns. The 3-amino-3-hydroxyimino-N-phenylpropanamide-DPP-IV complex was more stable and compact than the other complex. K. senegalensis contains compounds like 1 that might be used for the design of new DPP-IV inhibitors.


Subject(s)
Dipeptidyl-Peptidase IV Inhibitors , Molecular Dynamics Simulation , Molecular Docking Simulation , Dipeptidyl-Peptidase IV Inhibitors/chemistry , Dipeptidyl-Peptidase IV Inhibitors/metabolism , Dipeptidyl-Peptidase IV Inhibitors/pharmacology
8.
J Asian Nat Prod Res ; 25(7): 634-640, 2023.
Article in English | MEDLINE | ID: mdl-36259349

ABSTRACT

The methanol extract of the seeds of Khaya ivorensis afforded two new mexicanolide limonoids, ivorensines A and B (1 and 2), together with one known compound, ruageanin D (3). The structures of the isolated compounds were established based on 1 D and 2 D (1H-1H COSY, HMQC, and HMBC) NMR spectroscopy, in addition to high resolution mass spectrometry. The isolated limonoids were tested in vitro for antimicrobial potentials against 5 pathogenic microorganisms. As a result, compounds 1-3 exhibited antimicrobial activity against the tested Gram negative bacteria at the minimum inhibitory concentration values less than 50 µg/ml.


Subject(s)
Limonins , Meliaceae , Limonins/chemistry , Molecular Structure , Meliaceae/chemistry , Seeds/chemistry
9.
J Asian Nat Prod Res ; 25(8): 803-809, 2023.
Article in English | MEDLINE | ID: mdl-36409205

ABSTRACT

Chisocarpene A (1) is a new tirucallane-type triterpenoid together with odoratone (2) and 24-methylenecycloartanol (3), isolated from the stem bark of Chisocheton lasiocarpus. The chemical structures of compounds 1-3 were elucidated through a detailed analysis of their spectroscopic data (IR, MS, 1 D, and 2 D NMR). The isolated compounds were evaluated for cytotoxic activity against the MCF-7 breast cancer cell line using a resazurin-based assay. Compound 1 showed the most potent activity (IC50 26.56 ± 1.01 µM) and was two-fold more active than the positive control.

10.
Molecules ; 28(13)2023 Jun 30.
Article in English | MEDLINE | ID: mdl-37446797

ABSTRACT

Phytochemical investigation on the fruits of C. tabularis led to the isolation of five new phragmalin-type limonoids (1-5) and four known ones (6-9). The structures of the new compounds 1-5, named chuktabamalins A-E, were elucidated via spectroscopic techniques (HRESIMS, 1D and 2D NMR) and were comparable with the literature data of known compounds. In addition, new compounds were evaluated for in vitro anti-inflammatory activity. Compounds 1, 2, 3 and 5 showed moderate anti-inflammatory activity with IC50 values of 21.72 ± 2.79, 23.29 ± 1.00, 47.08 ± 3.47 and 66.67 ± 2.89 µM, respectively.


Subject(s)
Limonins , Meliaceae , Molecular Structure , Limonins/pharmacology , Limonins/chemistry , Fruit , Magnetic Resonance Spectroscopy , Meliaceae/chemistry
11.
Molecules ; 28(12)2023 Jun 20.
Article in English | MEDLINE | ID: mdl-37375428

ABSTRACT

Sesquiterpenoids, an important class of natural products possessing three isoprene-derived units, are widely distributed across plants and have a variety of biological activities. All sesquiterpenoids are derived from farnesyl pyrophosphate (FPP), a biosynthesis precursor that can form various carbon skeletons. In order to provide a reference for further research and development of these compounds, this review focused on the increasing number of isolated and volatile sesquiterpenoids found to be produced by plants of the Meliaceae family between 1968 and 2023. The related articles were collected from SciFinder, Google Scholar, and PubMed. According to a literature review, several studies were started for more than 55 years on the plant's stem barks, twigs, leaves, flowers, seeds, and pericarps, where approximately 413 sesquiterpenoid compounds from several groups such as eudesmane, aromadendrane, cadinane, guaiane, bisabolane, furanoeremophilane, humulene, germacrane, and oppositane-type were isolated and identified with some minor products. Additionally, the hypothetical route of sesquiterpenoids biosynthesis from this family was identified, and eudesmane-type was reported to be 27% of the total compounds. The antimicrobial, antidiabetic, antioxidant, antiplasmodial, antiviral, and cytotoxic activities of the isolated compounds and major volatile sesquiterpenoids constituent on essential oil were also evaluated. The result showed the fundamental of using the sesquiterpenoid compounds from the Meliaceae family in traditional medicine and the discovery of new drugs.


Subject(s)
Meliaceae , Sesquiterpenes, Eudesmane , Sesquiterpenes , Medicine, Traditional , Flowers , Sesquiterpenes/pharmacology , Molecular Structure
12.
Molecules ; 28(22)2023 Nov 15.
Article in English | MEDLINE | ID: mdl-38005325

ABSTRACT

Swietenia macrophylla King is a plant commonly known as Brazilian mahogany. The wood from its stem is highly prized for its exceptional quality, while its leaves are valued for their high content of phragmalin-type limonoids, a subclass of compounds known for their significant biological activities, including antimalarial, antitumor, antiviral, and anti-inflammatory properties. In this context, twelve isolated limonoids from S. macrophylla leaves were employed as standards in mass spectrometry-based molecular networking to unveil new potential mass spectrometry signatures for phragmalin-type limonoids. Consequently, ultra-performance liquid chromatography coupled with high-resolution mass spectrometry was utilized for data acquisition. Subsequently, the obtained data were analyzed using the Global Natural Products Social Molecular Networking platform based on spectral similarity. In summary, this study identified 24 new putative phragmalin-type limonoids for the first time in S. macrophylla. These compounds may prove valuable in guiding future drug development efforts, leveraging the already established biological activities associated with limonoids.


Subject(s)
Limonins , Meliaceae , Limonins/chemistry , Meliaceae/chemistry , Mass Spectrometry , Brazil , Molecular Structure
13.
Molecules ; 28(20)2023 Oct 23.
Article in English | MEDLINE | ID: mdl-37894704

ABSTRACT

Plasmodium falciparum and Leishmania sp. resistance to antiparasitic drugs has become a major concern in malaria and leishmaniasis control. These diseases are public health problems with significant socioeconomic impacts, and mostly affect disadvantaged populations living in remote tropical areas. This challenge emphasizes the need to search for new chemical scaffolds that preferably possess novel modes of action to contribute to antimalarial and antileishmanial research programs. This study aimed to investigate the antimalarial and antileishmanial properties of a methanol extract (KS-MeOH) of the stem bark of the Cameroonian medicinal plant Khaya senegalensis and its isolated compounds. The purification of KS-MeOH led to the isolation of a new ordered limonoid derivative, 21ß-hydroxybourjotinolone A (1a), together with 15 known compounds (1bc-14) using a repeated column chromatography. Compound 1a was obtained in an epimeric mixture of 21α-melianodiol (1b) and 21ß-melianodiol (1c). Structural characterization of the isolated compounds was achieved with HRMS, and 1D- and 2D-NMR analyses. The extracts and compounds were screened using pre-established in vitro methods against synchronized ring stage cultures of the multidrug-resistant Dd2 and chloroquine-sensitive/sulfadoxine-resistant 3D7 strains of Plasmodium falciparum and the promastigote form of Leishmania donovani (1S(MHOM/SD/62/1S). In addition, the samples were tested for cytotoxicity against RAW 264.7 macrophages. Positive controls consisted of artemisinin and chloroquine for P. falciparum, amphotericin B for L. donovani, and podophyllotoxin for cytotoxicity against RAW 264.7 cells. The extract and fractions exhibited moderate to potent antileishmanial activity with 50% inhibitory concentrations (IC50) ranging from 5.99 ± 0.77 to 2.68 ± 0.42 µg/mL, while compounds displayed IC50 values ranging from 81.73 ± 0.12 to 6.43 ± 0.06 µg/mL. They were weakly active against the chloroquine-sensitive/sulfadoxine-resistant Pf3D7 strain but highly potent toward the multidrug-resistant PfDd2 (extracts, IC50 2.50 ± 0.12 to 4.78 ± 0.36 µg/mL; compounds IC50 2.93 ± 0.02 to 50.97 ± 0.37 µg/mL) with selectivity indices greater than 10 (SIDd2 > 10) for the extract and fractions and most of the derived compounds. Of note, the limonoid mixture [21ß-hydroxylbourjotinolone A (1a) + 21α-melianodiol (1b) + 21ß-melianodiol (1c)] exhibited moderate activity against P. falciparum and L. donovani. This novel antiplasmodial and antileishmanial chemical scaffold qualifies as a promising starting point for further medicinal chemistry-driven development of a dually active agent against two major infectious diseases affecting humans in Africa.


Subject(s)
Antimalarials , Antiprotozoal Agents , Limonins , Malaria, Falciparum , Meliaceae , Humans , Antimalarials/chemistry , Limonins/pharmacology , Limonins/analysis , Plant Extracts/chemistry , Sulfadoxine/analysis , Plant Bark/chemistry , Antiprotozoal Agents/pharmacology , Antiprotozoal Agents/analysis , Chloroquine , Meliaceae/chemistry , Plasmodium falciparum
14.
Molecules ; 28(2)2023 Jan 12.
Article in English | MEDLINE | ID: mdl-36677833

ABSTRACT

Meliaceae plants are found worldwide in tropical or subtropical climates. They are important ethnobotanically as sources of traditional medicine, with 575 species and 51 genera. Previous research found that microorganisms are plant pioneers to produce secondary metabolites with diverse compound structures and bioactivities. Several plants of the Meliaceae family contain secondary metabolites isolated from endophytic fungi. Furthermore, related articles from 2002 to 2022 were collected from SciFinder, Google Scholar, and PubMed. About 276 compounds were isolated from endophytic fungi such as terpenoids, polyketides, lactones, pyrones, quinone, anthraquinones, xanthones, coumarines, isocoumarines, resorcylic acid lactones, cytochalasins, aromatics, ester, quinols, alkaloids, nitro compound, fatty acids, and sugars with bioactivities such as antioxidant, antibacterial, antifungal, anti-influenza, neuroprotective activities, anti-HIV, cytotoxic, allelopathic, anti-inflammatory, antifeedant effects, and BSLT toxicity. Meanwhile, secondary metabolites isolated from endophytic fungi were reported as one of the sources of active compounds for medicinal chemistry. This comprehensive review summarizes the ethnobotanical uses and secondary metabolites derived from Meliaceae endophytic fungi.


Subject(s)
Meliaceae , Plants , Ethnobotany , Medicine, Traditional , Fungi/chemistry , Phytochemicals/pharmacology , Phytochemicals/metabolism
15.
Molecules ; 28(5)2023 Feb 24.
Article in English | MEDLINE | ID: mdl-36903387

ABSTRACT

Lansium domesticum Corr. is a member of the Meliaceae family that is widely spread in tropical and subtropical region of Asia and America. Traditionally, the fruit of this plant has been consumed because of its sweet taste. However, the fruit peels and the seeds of this plant have been rarely utilized. The previous chemical investigation of this plant showed the presence of secondary metabolites with many biological activities, including cytotoxic triterpenoid. Triterpenoids is a class of secondary metabolites which contain thirty carbon atoms in the main skeleton. The high modification of this type of compound, including the ring opening, highly oxygenated carbons, and the degradation of its carbon chain to give the nor-triterpenoid structure, is responsible for its cytotoxic activity. In this paper, we isolated and elucidated the chemical structure of two new onoceranoid triterpenes, kokosanolides E (1) and F (2), from the fruit peels of L. domesticum Corr., along with a new tetranortriterpenoid, kokosanolide G (3), from the seeds of L. domesticum Corr. The structural determination of compounds 1-3 was undertaken through FTIR spectroscopic analysis, 1D and 2D NMR, mass spectrometry, as well as through a comparison of the chemical shifts of the partial structures of compounds 1-3 with the literature data. The cytotoxic properties of compounds 1-3 were tested against MCF-7 breast cancer cells using the MTT assay. Moderate activity was shown by compounds 1 and 3, with IC50 values of 45.90 and 18.41 µg/mL, respectively, while compound 2 showed no activity (IC50 168.20 µg/mL). For the onoceranoid-type triterpene, the high symmetrical structure of compound 1 is presumably the reason for its better cytotoxic activity compared with that of compound 2. Compound 3 showed moderate activity, mainly because of the presence of the furan ring, which, based on the literature, gives better cytotoxic activity in a tetranortriterpenoid-type structure. The findings of three new triterpenoid compounds from L. domesticum indicate the significant value of this plant as a source of new compounds.


Subject(s)
Antineoplastic Agents , Limonins , Meliaceae , Triterpenes , Triterpenes/chemistry , Limonins/analysis , Seeds/chemistry , Fruit/chemistry , Antineoplastic Agents/analysis , Meliaceae/chemistry , Molecular Structure
16.
Molecules ; 28(19)2023 Sep 28.
Article in English | MEDLINE | ID: mdl-37836681

ABSTRACT

Six new tirucallane-type triterpenoids, named munropenes A-F (1-6), were extracted from the whole plants of Munronia pinnata using a water extraction method. Their chemical structures were determined based on detailed spectroscopic data. The relative configurations of the acyclic structures at C-17 of munropenes A-F (1-6) were established using carbon-proton spin-coupling constants (2,3JC,H) and inter-proton spin-coupling constants (3JH,H). Furthermore, the absolute configurations of munropenes A-F (1-6) were determined through high-performance liquid chromatography (HPLC), single-crystal X-ray diffraction, and electronic circular dichroism (ECD) analyses. The antiproliferative effects of munropenes A-F were evaluated in five tumor cell lines: HCT116, A549, HepG2, MCF7, and MDAMB. Munropenes A, B, D, and F (1, 2, 4, and 6) inhibited proliferation in the HCT116 cell line with IC50 values of 40.90, 19.13, 17.66, and 32.62 µM, respectively.


Subject(s)
Protons , Triterpenes , Humans , Triterpenes/pharmacology , Triterpenes/chemistry , Cell Line, Tumor , Crystallography, X-Ray , HCT116 Cells , Molecular Structure
17.
Phytochem Rev ; 21(3): 725-764, 2022.
Article in English | MEDLINE | ID: mdl-34104125

ABSTRACT

Flavaglines are formed by cycloaddition of a flavonoid nucleus with a cinnamic acid moiety representing a typical chemical character of the genus Aglaia of the family Meliaceae. Based on biosynthetic considerations 148 derivatives are grouped together into three skeletal types representing 77 cyclopenta[b]benzofurans, 61 cyclopenta[bc]benzopyrans, and 10 benzo[b]oxepines. Apart from different hydroxy, methoxy, and methylenedioxy groups of the aromatic rings, important structural variation is created by different substitutions and stereochemistries of the central cyclopentane ring. Putrescine-derived bisamides constitute important building blocks occurring as cyclic 2-aminopyrrolidines or in an open-chained form, and are involved in the formation of pyrimidinone flavaglines. Regarding the central role of cinnamic acid in the formation of the basic skeleton, rocagloic acid represents a biosynthetic precursor from which aglafoline- and rocaglamide-type cyclopentabenzofurans can be derived, while those of the rocaglaol-type are the result of decarboxylation. Broad-based comparison revealed characteristic substitution trends which contribute as chemical markers to natural delimitation and grouping of taxonomically problematic Aglaia species. A wide variety of biological activities ranges from insecticidal, antifungal, antiprotozoal, and anti-inflammatory properties, especially to pronounced anticancer and antiviral activities. The high insecticidal activity of flavaglines is comparable with that of the well-known natural insecticide azadirachtin. Comparative feeding experiments informed about structure-activity relationships and exhibited different substitutions of the cyclopentane ring essential for insecticidal activity. Parallel studies on the antiproliferative activity of flavaglines in various tumor cell lines revealed similar structural prerequisites that let expect corresponding molecular mechanisms. An important structural modification with very high cytotoxic potency was found in the benzofuran silvestrol characterized by an unusual dioxanyloxy subunit. It possessed comparable cytotoxicity to that of the natural anticancer compounds paclitaxel (Taxol®) and camptothecin without effecting normal cells. The primary effect was the inhibition of protein synthesis by binding to the translation initiation factor eIF4A, an ATP-dependent DEAD-box RNA helicase. Flavaglines were also shown to bind to prohibitins (PHB) responsible for regulation of important signaling pathways, and to inhibit the transcriptional factor HSF1 deeply involved in metabolic programming, survival, and proliferation of cancer cells. Flavaglines were shown to be not only promising anticancer agents but gained now also high expectations as agents against emerging RNA viruses like SARS-CoV-2. Targeting the helicase eIF4A with flavaglines was recently described as pan-viral strategy for minimizing the impact of future RNA virus pandemics.

18.
Am J Bot ; 109(10): 1622-1640, 2022 10.
Article in English | MEDLINE | ID: mdl-36098061

ABSTRACT

PREMISE: Reconciling the use of taxonomy to partition morphological variation and describe genetic divergence within and among closely related species is a persistent challenge in phylogenetics. We reconstructed phylogenetic relationships among Cedrela odorata (Meliaceae) and five closely allied species to test the genetic basis for the current model of species delimitation in this economically valuable and threatened genus. METHODS: We prepared a nuclear species tree with the program SNPhylo and 16,000 single-nucleotide polymorphisms from 168 Cedrela specimens. Based on clades present and ancestral patterns ADMIXTURE, we designed nine species delimitation models and compared each model to current taxonomy with Bayes factor delimitation. Timing of major lineage divergences was estimated with the program SNAPP. RESULTS: The resulting analysis revealed that modern C. odorata evolved from two genetically distinct ancestral sources. All species delimitation models tested better fit the data than the model representing current taxonomic delimitation. Models with the greatest marginal likelihoods separated Mesoamerican C. odorata and South American C. odorata into two species and lumped C. angustifolia and C. montana as a single species. We estimated that Cedrela diversified in South America within the last 19 million years following one or more dispersal events from Mesoamerican lineages. CONCLUSIONS: Our analyses show that the present taxonomic understanding within the genus obscures divergent lineages in C. odorata due in part to morphological differentiation and taxonomic distinctions that are not predictably associated with genetic divergence. A more accurate application of taxonomy to C. odorata and related species may aid in its conservation, management, and restoration efforts.


Subject(s)
Cedrela , Cedrela/genetics , Cedrela/anatomy & histology , Phylogeny , Bayes Theorem , Species Specificity , South America
19.
Anal Bioanal Chem ; 414(20): 6093-6106, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35727329

ABSTRACT

Meliaceae plants have been extensively used in agriculture, folklore, and traditional medicine. They are the major storehouses for structurally diverse limonoids (meliacins) possessing various bioactivities like antifeedant, insecticidal, antimicrobial, etc. However accurate detection of these tetranortriterpenes from the vast pool of metabolites in plant tissue extracts or biological sample is a crucial challenge. Though the mass spectrum (MS) provides the molecular mass and the corresponding elemental composition, it cannot be relied precisely. The exact identification of a specific metabolite demands the MS/MS spectrum containing the signature product ions. In the present study, we have developed the UHPLC Q-Orbitrap-based method for identification, quantification, and characterization of limonoids in different plant tissue extracts requiring minimum plant material. Using this method, we carried out the limonoid profiling in different tissue extracts of sixteen Meliaceae plants and the identification of limonoids was performed by comparing the retention time (RT), ESI-( +)-MS spectrum, and HCD-MS/MS of the purified fifteen limonoids used as reference standards. Our results revealed that early intermediates of the limonoid biosynthetic pathway such as azadiradione, epoxyazadiradione, and gedunin occurred more commonly in Meliaceae plants. The MS/MS spectrum library of the fifteen limonoids generated in this study can be utilized for identification of these limonoids in other plant tissue extracts, botanical fertilizers, agrochemical formulations, and bio pesticides.


Subject(s)
Limonins , Meliaceae , Chromatography, High Pressure Liquid/methods , Limonins/analysis , Meliaceae/chemistry , Tandem Mass Spectrometry/methods , Tissue Extracts
20.
Chem Biodivers ; 19(4): e202101008, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35194923

ABSTRACT

Three new aglain derivatives (1-3), one known aglain derivative (4), two known rocaglamide derivatives (5 and 6), four known triterpenoids (7-10), and three steroids (11-13) were isolated from Aglaia odorata Lour. Their structures were established through the analysis of detailed spectroscopic data and electronic circular dichroism calculations. Five compounds (1 and 4-7) exhibited cytotoxic activities on human leukemia cells (HEL) and human breast cancer cells with IC50 values in the range of 0.03-8.40 µM. In particular, the cytotoxicity of compound 5 was six times stronger than that of the positive control (adriamycin) in HEL cell lines.


Subject(s)
Aglaia , Antineoplastic Agents, Phytogenic , Antineoplastic Agents , Triterpenes , Aglaia/chemistry , Antineoplastic Agents/pharmacology , Antineoplastic Agents, Phytogenic/chemistry , Antineoplastic Agents, Phytogenic/pharmacology , Circular Dichroism , Humans , Molecular Structure , Plant Extracts/chemistry , Triterpenes/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL