Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 954
Filter
1.
Cell ; 184(1): 194-206.e14, 2021 01 07.
Article in English | MEDLINE | ID: mdl-33357447

ABSTRACT

Wnts are evolutionarily conserved ligands that signal at short range to regulate morphogenesis, cell fate, and stem cell renewal. The first and essential steps in Wnt secretion are their O-palmitoleation and subsequent loading onto the dedicated transporter Wntless/evenness interrupted (WLS/Evi). We report the 3.2 Å resolution cryogenic electron microscopy (cryo-EM) structure of palmitoleated human WNT8A in complex with WLS. This is accompanied by biochemical experiments to probe the physiological implications of the observed association. The WLS membrane domain has close structural homology to G protein-coupled receptors (GPCRs). A Wnt hairpin inserts into a conserved hydrophobic cavity in the GPCR-like domain, and the palmitoleate protrudes between two helices into the bilayer. A conformational switch of highly conserved residues on a separate Wnt hairpin might contribute to its transfer to receiving cells. This work provides molecular-level insights into a central mechanism in animal body plan development and stem cell biology.


Subject(s)
Intracellular Signaling Peptides and Proteins/chemistry , Intracellular Signaling Peptides and Proteins/metabolism , Receptors, G-Protein-Coupled/chemistry , Receptors, G-Protein-Coupled/metabolism , Wnt Proteins/metabolism , Amino Acid Sequence , Animals , Disulfides/metabolism , Glycosylation , Humans , Hydrophobic and Hydrophilic Interactions , Intracellular Signaling Peptides and Proteins/isolation & purification , Models, Molecular , Protein Binding , Protein Domains , Protein Structure, Secondary , Protein Transport , Receptors, G-Protein-Coupled/isolation & purification , Receptors, G-Protein-Coupled/ultrastructure , Structural Homology, Protein , Structure-Activity Relationship , Wnt Proteins/chemistry , Wnt Proteins/isolation & purification , Wnt Proteins/ultrastructure
2.
Annu Rev Biochem ; 89: 741-768, 2020 06 20.
Article in English | MEDLINE | ID: mdl-32569526

ABSTRACT

Complex carbohydrates are essential for many biological processes, from protein quality control to cell recognition, energy storage, and cell wall formation. Many of these processes are performed in topologically extracellular compartments or on the cell surface; hence, diverse secretion systems evolved to transport the hydrophilic molecules to their sites of action. Polyprenyl lipids serve as ubiquitous anchors and facilitators of these transport processes. Here, we summarize and compare bacterial biosynthesis pathways relying on the recognition and transport of lipid-linked complex carbohydrates. In particular, we compare transporters implicated in O antigen and capsular polysaccharide biosyntheses with those facilitating teichoic acid and N-linked glycan transport. Further, we discuss recent insights into the generation, recognition, and recycling of polyprenyl lipids.


Subject(s)
Escherichia coli Proteins/chemistry , Escherichia coli/metabolism , Gene Expression Regulation, Bacterial , Glycolipids/biosynthesis , O Antigens/biosynthesis , Polyprenols/metabolism , Transferases (Other Substituted Phosphate Groups)/chemistry , ATP-Binding Cassette Transporters/chemistry , ATP-Binding Cassette Transporters/genetics , ATP-Binding Cassette Transporters/metabolism , Bacillus subtilis/genetics , Bacillus subtilis/metabolism , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Biological Transport , Carbon-Oxygen Ligases/chemistry , Carbon-Oxygen Ligases/genetics , Carbon-Oxygen Ligases/metabolism , Escherichia coli/genetics , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Glycosyltransferases/chemistry , Glycosyltransferases/genetics , Glycosyltransferases/metabolism , Klebsiella pneumoniae/genetics , Klebsiella pneumoniae/metabolism , Membrane Transport Proteins/chemistry , Membrane Transport Proteins/genetics , Membrane Transport Proteins/metabolism , Models, Molecular , Protein Structure, Secondary , Pseudomonas aeruginosa/genetics , Pseudomonas aeruginosa/metabolism , Teichoic Acids/metabolism , Transferases (Other Substituted Phosphate Groups)/genetics , Transferases (Other Substituted Phosphate Groups)/metabolism
3.
Annu Rev Biochem ; 89: 583-603, 2020 06 20.
Article in English | MEDLINE | ID: mdl-31874046

ABSTRACT

P-type ATPases are found in all kingdoms of life and constitute a wide range of cation transporters, primarily for H+, Na+, K+, Ca2+, and transition metal ions such as Cu(I), Zn(II), and Cd(II). They have been studied through a wide range of techniques, and research has gained very significant insight on their transport mechanism and regulation. Here, we review the structure, function, and dynamics of P2-ATPases including Ca2+-ATPases and Na,K-ATPase. We highlight mechanisms of functional transitions that are associated with ion exchange on either side of the membrane and how the functional cycle is regulated by interaction partners, autoregulatory domains, and off-cycle states. Finally, we discuss future perspectives based on emerging techniques and insights.


Subject(s)
Adenosine Triphosphate/chemistry , Copper-Transporting ATPases/chemistry , H(+)-K(+)-Exchanging ATPase/chemistry , Sarcoplasmic Reticulum Calcium-Transporting ATPases/chemistry , Sodium-Potassium-Exchanging ATPase/chemistry , Adenosine Triphosphate/metabolism , Animals , Binding Sites , Cations, Divalent , Cations, Monovalent , Copper-Transporting ATPases/genetics , Copper-Transporting ATPases/metabolism , H(+)-K(+)-Exchanging ATPase/genetics , H(+)-K(+)-Exchanging ATPase/metabolism , Humans , Ion Transport , Models, Molecular , Protein Binding , Protein Interaction Domains and Motifs , Protein Structure, Secondary , Protons , Sarcoplasmic Reticulum Calcium-Transporting ATPases/genetics , Sarcoplasmic Reticulum Calcium-Transporting ATPases/metabolism , Single Molecule Imaging , Sodium-Potassium-Exchanging ATPase/genetics , Sodium-Potassium-Exchanging ATPase/metabolism , Substrate Specificity
4.
Annu Rev Biochem ; 88: 551-576, 2019 06 20.
Article in English | MEDLINE | ID: mdl-30485755

ABSTRACT

Energy-coupling factor (ECF)-type ATP-binding cassette (ABC) transporters catalyze membrane transport of micronutrients in prokaryotes. Crystal structures and biochemical characterization have revealed that ECF transporters are mechanistically distinct from other ABC transport systems. Notably, ECF transporters make use of small integral membrane subunits (S-components) that are predicted to topple over in the membrane when carrying the bound substrate from the extracellular side of the bilayer to the cytosol. Here, we review the phylogenetic diversity of ECF transporters as well as recent structural and biochemical advancements that have led to the postulation of conceptually different mechanistic models. These models can be described as power stroke and thermal ratchet. Structural data indicate that the lipid composition and bilayer structure are likely to have great impact on the transport function. We argue that study of ECF transporters could lead to generic insight into membrane protein structure, dynamics, and interaction.


Subject(s)
ATP-Binding Cassette Transporters/metabolism , ATP-Binding Cassette Transporters/chemistry , ATP-Binding Cassette Transporters/genetics , Adenosine Triphosphate/metabolism , Animals , Archaea/metabolism , Archaeal Proteins/chemistry , Archaeal Proteins/genetics , Archaeal Proteins/metabolism , Bacteria/metabolism , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Biological Transport , Crystallography, X-Ray , Humans , Models, Molecular , Phylogeny , Protein Conformation
5.
Physiol Rev ; 2024 Aug 22.
Article in English | MEDLINE | ID: mdl-39172219

ABSTRACT

In the past decade, evidence for numerous roles of copper (Cu) in mammalian physiology has grown exponentially. The discoveries of Cu involvement in cell signaling, autophagy, cell motility, differentiation, and regulated cell death (cuproptosis) have markedly extended the list of already known functions of Cu, such as a cofactor of essential metabolic enzymes, a protein structural component, and a regulator of protein trafficking. Novel and unexpected functions of Cu transporting proteins and enzymes have been identified, and new disorders of Cu homeostasis have been described. Significant progress has been made in the mechanistic studies of two classic disorders of Cu metabolism, Menkes disease and Wilson disease, which paved ways to novel approaches to their treatment. Discovery of cuproptosis and the role of Cu in cells metastatic growth have markedly increased interest in targeting Cu homeostatic pathways to treat cancer. In this review, we summarize the established concepts in the field of mammalian Cu physiology, and discuss how new discoveries of the past decade expand and modify these concepts. The roles of Cu in brain metabolism, in cells' functional speciation and a recently discovered regulated cell death have attracted significant attention and are highlighted in this review.

6.
Annu Rev Biochem ; 84: 895-921, 2015.
Article in English | MEDLINE | ID: mdl-26034894

ABSTRACT

Cellulose is the most abundant biopolymer on Earth, and certain organisms from bacteria to plants and animals synthesize cellulose as an extracellular polymer for various biological functions. Humans have used cellulose for millennia as a material and an energy source, and the advent of a lignocellulosic fuel industry will elevate it to the primary carbon source for the burgeoning renewable energy sector. Despite the biological and societal importance of cellulose, the molecular mechanism by which it is synthesized is now only beginning to emerge. On the basis of recent advances in structural and molecular biology on bacterial cellulose synthases, we review emerging concepts of how the enzymes polymerize glucose molecules, how the nascent polymer is transported across the plasma membrane, and how bacterial cellulose biosynthesis is regulated during biofilm formation. Additionally, we review evolutionary commonalities and differences between cellulose synthases that modulate the nature of the cellulose product formed.


Subject(s)
Cellulose/biosynthesis , Plants/metabolism , Catalytic Domain , Cell Wall/chemistry , Electron Transport , Mixed Function Oxygenases/chemistry , Mixed Function Oxygenases/metabolism , Plants/enzymology
7.
Mol Cell ; 82(19): 3661-3676.e8, 2022 10 06.
Article in English | MEDLINE | ID: mdl-36206740

ABSTRACT

Mitochondrial Ca2+ uptake, mediated by the mitochondrial Ca2+ uniporter, regulates oxidative phosphorylation, apoptosis, and intracellular Ca2+ signaling. Previous studies suggest that non-neuronal uniporters are exclusively regulated by a MICU1-MICU2 heterodimer. Here, we show that skeletal-muscle and kidney uniporters also complex with a MICU1-MICU1 homodimer and that human/mouse cardiac uniporters are largely devoid of MICUs. Cells employ protein-importation machineries to fine-tune the relative abundance of MICU1 homo- and heterodimers and utilize a conserved MICU intersubunit disulfide to protect properly assembled dimers from proteolysis by YME1L1. Using the MICU1 homodimer or removing MICU1 allows mitochondria to more readily take up Ca2+ so that cells can produce more ATP in response to intracellular Ca2+ transients. However, the trade-off is elevated ROS, impaired basal metabolism, and higher susceptibility to death. These results provide mechanistic insights into how tissues can manipulate mitochondrial Ca2+ uptake properties to support their unique physiological functions.


Subject(s)
Calcium-Binding Proteins/metabolism , Calcium , Cation Transport Proteins/metabolism , Mitochondrial Membrane Transport Proteins/metabolism , Adenosine Triphosphate , Animals , Calcium/metabolism , Calcium Channels , Calcium-Binding Proteins/genetics , Disulfides/metabolism , Humans , Mice , Mitochondrial Membrane Transport Proteins/genetics , Reactive Oxygen Species/metabolism
8.
EMBO J ; 43(14): 2979-3008, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38839991

ABSTRACT

Lipid-protein interactions play a multitude of essential roles in membrane homeostasis. Mitochondrial membranes have a unique lipid-protein environment that ensures bioenergetic efficiency. Cardiolipin (CL), the signature mitochondrial lipid, plays multiple roles in promoting oxidative phosphorylation (OXPHOS). In the inner mitochondrial membrane, the ADP/ATP carrier (AAC in yeast; adenine nucleotide translocator, ANT in mammals) exchanges ADP and ATP, enabling OXPHOS. AAC/ANT contains three tightly bound CLs, and these interactions are evolutionarily conserved. Here, we investigated the role of these buried CLs in AAC/ANT using a combination of biochemical approaches, native mass spectrometry, and molecular dynamics simulations. We introduced negatively charged mutations into each CL-binding site of yeast Aac2 and established experimentally that the mutations disrupted the CL interactions. While all mutations destabilized Aac2 tertiary structure, transport activity was impaired in a binding site-specific manner. Additionally, we determined that a disease-associated missense mutation in one CL-binding site in human ANT1 compromised its structure and transport activity, resulting in OXPHOS defects. Our findings highlight the conserved significance of CL in AAC/ANT structure and function, directly tied to specific lipid-protein interactions.


Subject(s)
Cardiolipins , Mitochondrial ADP, ATP Translocases , Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae , Cardiolipins/metabolism , Binding Sites , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/chemistry , Humans , Mitochondrial ADP, ATP Translocases/metabolism , Mitochondrial ADP, ATP Translocases/genetics , Mitochondrial ADP, ATP Translocases/chemistry , Oxidative Phosphorylation , Adenine Nucleotide Translocator 1/metabolism , Adenine Nucleotide Translocator 1/genetics , Molecular Dynamics Simulation , Protein Binding , Mitochondria/metabolism , Mitochondria/genetics , Mitochondrial Membranes/metabolism , Mutation , Mutation, Missense
9.
Traffic ; 24(10): 475-488, 2023 10.
Article in English | MEDLINE | ID: mdl-37434343

ABSTRACT

The epsin-related adaptor proteins Ent3p and Ent5p participate in budding of clathrin coated vesicles in transport between trans-Golgi network and endosomes in yeast. Transport of the arginine permease Can1p was analyzed, which recycles between plasma membrane and endosomes and can be targeted to the vacuole for degradation. ent3∆ cells accumulate Can1p-GFP in endosomes. Can1p-GFP is transported faster to the vacuole upon induction of degradation in ent5∆ cells than in wild type cells. The C-terminal domain of Ent5p was sufficient to restore recycling of the secretory SNARE GFP-Snc1p between plasma membrane and TGN in ent3∆ ent5∆ cells. The SNARE Tlg2p was identified as interaction partner of the Ent5p ENTH domain by in vitro binding assays and the interaction site on Ent5p was mapped. Tlg2p functions in transport from early endosomes to the trans-Golgi network and in homotypic fusion of these organelles. Tlg2p is partially shifted to denser fractions in sucrose density gradients of organelles from ent5∆ cells while distribution of Kex2p is unaffected demonstrating that Ent5p acts as cargo adaptor for Tlg2p in vivo. Taken together we show that Ent3p and Ent5p have different roles in transport and function as cargo adaptors for distinct SNAREs.


Subject(s)
SNARE Proteins , Saccharomyces cerevisiae Proteins , SNARE Proteins/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Adaptor Proteins, Vesicular Transport/metabolism , Saccharomyces cerevisiae/metabolism , trans-Golgi Network/metabolism , Endosomes/metabolism
10.
J Biol Chem ; 300(9): 107712, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39178949

ABSTRACT

Membrane transport proteins undergo multistep conformational changes to fulfill the transport of substrates across biological membranes. Substrate release and uptake are the most important events of these multistep reactions that accompany significant conformational changes. Thus, their relevant structural intermediates should be identified to better understand the molecular mechanism. However, their identifications have not been achieved for most transporters due to the difficulty of detecting the intermediates. Herein, we report the success of these identifications for a light-driven chloride transporter halorhodopsin (HR). We compared the time course of two flash-induced signals during a single transport cycle. One is a potential change of Cl--selective membrane, which enabled us to detect tiny Cl--concentration changes due to the Cl- release and the subsequent Cl--uptake reactions by HR. The other is the absorbance change of HR reflecting the sequential formations and decays of structural intermediates. Their comparison revealed not only the intermediates associated with the key reactions but also the presence of two additional Cl--binding sites on the Cl--transport pathways. The subsequent mutation studies identified one of the sites locating the protein surface on the releasing side. Thus, this determination also clarified the Cl--transport pathway from the initial binding site until the release to the medium.


Subject(s)
Chlorides , Halobacteriaceae , Halorhodopsins , Halorhodopsins/metabolism , Halorhodopsins/chemistry , Halorhodopsins/genetics , Chlorides/metabolism , Chlorides/chemistry , Halobacteriaceae/metabolism , Halobacteriaceae/chemistry , Halobacteriaceae/genetics , Binding Sites , Ion Transport , Biological Transport
11.
J Biol Chem ; 300(5): 107215, 2024 May.
Article in English | MEDLINE | ID: mdl-38522518

ABSTRACT

Sugar absorption is crucial for life and relies on glucose transporters, including sodium-glucose cotransporters (SGLTs). Although the structure of SGLTs has been resolved, the substrate selectivity of SGLTs across diverse isoforms has not been determined owing to the complex substrate-recognition processes and limited analysis methods. Therefore, this study used voltage-clamp fluorometry (VCF) to explore the substrate-binding affinities of human SGLT1 in Xenopus oocytes. VCF analysis revealed high-affinity binding of D-glucose and D-galactose, which are known transported substrates. D-fructose, which is not a transported substrate, also bound to SGLT1, suggesting potential recognition despite the lack of transport activity. VCF analysis using the T287N mutant of the substrate-binding pocket, which has reduced D-glucose transport capacity, showed that its D-galactose-binding affinity exceeded its D-glucose-binding affinity. This suggests that the change in the VCF signal was due to substrate binding to the binding pocket. Both D-fructose and L-sorbose showed similar binding affinities, indicating that SGLT1 preferentially binds to pyranose-form sugars, including D-fructopyranose. Electrophysiological analysis confirmed that D-fructose binding did not affect the SGLT1 transport function. The significance of the VCF assay lies in its ability to measure sugar-protein interactions in living cells, thereby bridging the gap between structural analyses and functional characterizations of sugar transporters. Our findings also provide insights into SGLT substrate selectivity and the potential for developing medicines with reduced side effects by targeting non-glucose sugars with low bioreactivity.


Subject(s)
Fluorometry , Glucose , Oocytes , Sodium-Glucose Transporter 1 , Xenopus laevis , Sodium-Glucose Transporter 1/metabolism , Sodium-Glucose Transporter 1/genetics , Sodium-Glucose Transporter 1/chemistry , Animals , Humans , Fluorometry/methods , Glucose/metabolism , Oocytes/metabolism , Protein Binding , Patch-Clamp Techniques , Galactose/metabolism , Fructose/metabolism , Fructose/chemistry , Binding Sites
12.
J Biol Chem ; 300(9): 107687, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39159813

ABSTRACT

The pharmacology of amino acid transporters in the SLC6 family is poorly developed compared to that of the neurotransmitter transporters. To identify new inhibitors of the proline transporter SIT1 (SLC6A20), its expression in Xenopus laevis oocytes was optimized. Trafficking of SIT1 was augmented by co-expression of angiotensin-converting enzyme 2 (ACE2) in oocytes but there was no strict requirement for co-expression of ACE2. A pharmacophore-guided screen identified tiagabine as a potent non-competitive inhibitor of SIT1. To understand its binding mode, we determined the cryo-electron microscopy (cryo-EM) structure of ACE2-SIT1 bound with tiagabine. The inhibitor binds close to the orthosteric proline binding site, but due to its size extends into the cytosolic vestibule. This causes the transporter to adopt an inward-open conformation, in which the intracellular gate is blocked. This study provides the first structural insight into inhibition of SIT1 and generates tools for a better understanding of the ACE2-SIT1 complex. These findings may have significance for SARS-CoV-2 binding to its receptor ACE2 in human lung alveolar cells where SIT1 and ACE2 are functionally expressed.


Subject(s)
Angiotensin-Converting Enzyme 2 , Cryoelectron Microscopy , Tiagabine , Xenopus laevis , Angiotensin-Converting Enzyme 2/metabolism , Angiotensin-Converting Enzyme 2/chemistry , Animals , Humans , Tiagabine/chemistry , Tiagabine/metabolism , Oocytes/metabolism , Binding Sites , Amino Acid Transport Systems, Neutral/metabolism , Amino Acid Transport Systems, Neutral/chemistry , Amino Acid Transport Systems, Neutral/genetics , Nipecotic Acids/chemistry , Nipecotic Acids/pharmacology
13.
J Biol Chem ; : 107851, 2024 Sep 30.
Article in English | MEDLINE | ID: mdl-39357825

ABSTRACT

Tripartite ATP-independent periplasmic (TRAP) transporters are analogous to ABC transporters in that they use a substrate-binding protein to scavenge metabolites (e.g., N-acetylneuraminate) and deliver them to the membrane components for import. TRAP substrate-binding proteins are thought to bind the substrate using a two-state (open and closed) induced-fit mechanism. We solved the structure of the TRAP N-acetylneuraminate substrate-binding protein from Aggregatibacter actinomycetemcomitans (AaSiaP) in both the open ligand-free and closed liganded conformations. Surprisingly, we also observed an intermediate conformation, where AaSiaP is mostly closed and is bound to a non-cognate ligand, acetate, which hints at how N-acetylneuraminate binding stabilises a fully closed state. AaSiaP preferentially binds N-acetylneuraminate (KD = 0.4 µM) compared to N-glycolylneuraminate (KD = 4.4 µM), which is explained by the closed-N-acetylneuraminate bound structure. Small-angle X-ray scattering data alongside molecular dynamics simulations suggest the AaSiaP adopts a more open state in solution than in crystal. However, the open unliganded conformation can also sample closed conformations. Molecular dynamics simulations also demonstrate the importance of water molecules for stabilising the closed conformation. Although our data is consistent with an induced fit model of binding, we suggest that the open unliganded conformation may sample multiple states capable of binding substrate. The mechanism by which the ligand is released for import remains to be determined.

14.
J Biol Chem ; 300(8): 107589, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39032653

ABSTRACT

Transition metal ions are critically important across all kingdoms of life. The chemical properties of iron, copper, zinc, manganese, cobalt, and nickel make them very attractive for use as cofactors in metalloenzymes and/or metalloproteins. Their versatile chemistry in aqueous solution enables them to function both as electron donors and acceptors, and thus participate in both reduction and oxidation reactions respectively. Transition metal ions can also function as nonredox multidentate coordination sites that play essential roles in macromolecular structure and function. Malfunction in transition metal transport and homeostasis has been linked to a wide number of human diseases including cancer, diabetes, and neurodegenerative disorders. Transition metal transporters are central players in the physiology of transition metals whereby they move transition metals in and out of cellular compartments. In this review, we provide a comprehensive overview of in vitro reconstitution of the activity of integral membrane transition metal transporters and discuss strategies that have been successfully implemented to overcome the challenges. We also discuss recent advances in our understanding of transition metal transport mechanisms and the techniques that are currently used to decipher the molecular basis of transport activities of these proteins. Deep mechanistic insights into transition metal transport systems will be essential to understand their malfunction in human diseases and target them for potential therapeutic strategies.


Subject(s)
Transition Elements , Humans , Transition Elements/metabolism , Transition Elements/chemistry , Animals
15.
J Biol Chem ; 300(3): 105723, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38311172

ABSTRACT

Gram-negative bacteria use TonB-dependent transport to take up nutrients from the external environment, employing the Ton complex to import a variety of nutrients that are either scarce or too large to cross the outer membrane unaided. The Ton complex contains an inner-membrane motor (ExbBD) that generates force, as well as nutrient-specific transport proteins on the outer membrane. These two components are coupled by TonB, which transmits the force from the inner to the outer membrane. TonB contains an N-terminus anchored in the inner membrane, a C-terminal domain that binds the outer-membrane transporter, and a proline-rich linker connecting the two. While much is known about the interaction between TonB and outer-membrane transporters, the critical interface between TonB and ExbBD is less well understood. Here, we identify a conserved motif within TonB that we term the D-box, which serves as an attachment point for ExbD. We characterize the interaction between ExbD and the D-box both functionally and structurally, showing that a homodimer of ExbD captures one copy of the D-box peptide via beta-strand recruitment. We additionally show that both the D-box motif and ExbD are conserved in a range of Gram-negative bacteria, including members of the ESKAPE group of pathogens. The ExbD:D-box interaction is likely to represent an important aspect of force transduction between the inner and outer membranes. Given that TonB-dependent transport is an important contributor to virulence, this interaction is an intriguing potential target for novel antibacterial therapies.


Subject(s)
Bacterial Proteins , Membrane Proteins , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Biological Transport , Escherichia coli/metabolism , Escherichia coli Proteins/metabolism , Membrane Proteins/chemistry , Membrane Proteins/metabolism , Membrane Transport Proteins/metabolism , Protein Binding
16.
Mol Microbiol ; 121(2): 304-323, 2024 02.
Article in English | MEDLINE | ID: mdl-38178634

ABSTRACT

In animal pathogens, assembly of the type III secretion system injectisome requires the presence of so-called pilotins, small lipoproteins that assist the formation of the secretin ring in the outer membrane. Using a combination of functional assays, interaction studies, proteomics, and live-cell microscopy, we determined the contribution of the pilotin to the assembly, function, and substrate selectivity of the T3SS and identified potential new downstream roles of pilotin proteins. In absence of its pilotin SctG, Yersinia enterocolitica forms few, largely polar injectisome sorting platforms and needles. Accordingly, most export apparatus subcomplexes are mobile in these strains, suggesting the absence of fully assembled injectisomes. Remarkably, while absence of the pilotin all but prevents export of early T3SS substrates, such as the needle subunits, it has little effect on secretion of late T3SS substrates, including the virulence effectors. We found that although pilotins interact with other injectisome components such as the secretin in the outer membrane, they mostly localize in transient mobile clusters in the bacterial membrane. Together, these findings provide a new view on the role of pilotins in the assembly and function of type III secretion injectisomes.


Subject(s)
Type III Secretion Systems , Yersinia enterocolitica , Animals , Type III Secretion Systems/genetics , Type III Secretion Systems/metabolism , Secretin/metabolism , Substrate Specificity , Yersinia enterocolitica/genetics , Protein Binding , Bacterial Proteins/genetics , Bacterial Proteins/metabolism
17.
EMBO J ; 40(19): e107664, 2021 10 01.
Article in English | MEDLINE | ID: mdl-34423453

ABSTRACT

Remodeling of host cellular membrane transport pathways is a common pathogenic trait of many intracellular microbes that is essential to their intravacuolar life cycle and proliferation. The bacterium Brucella abortus generates a host endoplasmic reticulum-derived vacuole (rBCV) that supports its intracellular growth, via VirB Type IV secretion system-mediated delivery of effector proteins, whose functions and mode of action are mostly unknown. Here, we show that the effector BspF specifically promotes Brucella replication within rBCVs by interfering with vesicular transport between the trans-Golgi network (TGN) and recycling endocytic compartment. BspF targeted the recycling endosome, inhibited retrograde traffic to the TGN, and interacted with the Arf6 GTPase-activating Protein (GAP) ACAP1 to dysregulate Arf6-/Rab8a-dependent transport within the recycling endosome, which resulted in accretion of TGN-associated vesicles by rBCVs and enhanced bacterial growth. Altogether, these findings provide mechanistic insight into bacterial modulation of membrane transport used to promote their own proliferation within intracellular vacuoles.


Subject(s)
ADP-Ribosylation Factor 6/metabolism , Brucella abortus/physiology , Brucellosis/metabolism , Brucellosis/microbiology , Host-Pathogen Interactions , Vacuoles/microbiology , rab GTP-Binding Proteins/metabolism , Animals , Bacterial Proteins/metabolism , Brucellosis/immunology , Endosomes/metabolism , Endosomes/microbiology , GTPase-Activating Proteins/metabolism , HeLa Cells , Host-Pathogen Interactions/genetics , Host-Pathogen Interactions/immunology , Humans , Mice , Models, Biological , Protein Binding , Protein Transport , Type IV Secretion Systems , trans-Golgi Network
18.
J Virol ; 98(9): e0059924, 2024 Sep 17.
Article in English | MEDLINE | ID: mdl-39136459

ABSTRACT

Herpes simplex virus 1 (HSV-1) is an alpha herpesvirus that infects a majority of the world population. The mechanisms and cellular host factors involved in the intracellular transport and exocytosis of HSV-1 particles are not fully understood. To elucidate these late steps in the replication cycle, we developed a live-cell fluorescence microscopy assay of HSV-1 virion intracellular trafficking and exocytosis. This method allows us to track individual virus particles and identify the precise moment and location of particle exocytosis using a pH-sensitive reporter. We show that HSV-1 uses the host cell's post-Golgi secretory pathway during egress. The small GTPase, Rab6, binds to nascent secretory vesicles at the trans-Golgi network and plays important, but non-essential, roles in vesicle traffic and exocytosis at the plasma membrane, therefore making it a useful marker of the Golgi and post-Golgi secretory pathway. We show that HSV-1 particles colocalize with Rab6a in the region of the Golgi, cotraffic with Rab6a to the cell periphery, and undergo exocytosis from Rab6a vesicles. Consistent with previous reports, we find that HSV-1 particles accumulate at preferential egress sites in infected cells. The secretory pathway mediates this preferential/polarized egress, since Rab6a vesicles accumulate near the plasma membrane similarly in uninfected cells. These data suggest that, following particle envelopment, HSV-1 egress follows a pre-existing cellular secretory pathway to exit infected cells rather than novel, virus-induced mechanisms. IMPORTANCE: Herpes simplex virus 1 (HSV-1) infects a majority of people. It establishes a life-long latent infection and occasionally reactivates, typically causing characteristic oral or genital lesions. Rarely in healthy natural hosts, but more commonly in zoonotic infections and in elderly, newborn, or immunocompromised patients, HSV-1 can cause severe herpes encephalitis. The precise cellular mechanisms used by HSV-1 remain an important area of research. In particular, the egress pathways that newly assembled virus particles use to exit from infected cells are unclear. In this study, we used fluorescence microscopy to visualize individual virus particles exiting from cells and found that HSV-1 particles use the pre-existing cellular secretory pathway.


Subject(s)
Exocytosis , Golgi Apparatus , Herpesvirus 1, Human , Secretory Pathway , Virus Release , rab GTP-Binding Proteins , Herpesvirus 1, Human/physiology , Herpesvirus 1, Human/metabolism , rab GTP-Binding Proteins/metabolism , Humans , Animals , Golgi Apparatus/metabolism , Golgi Apparatus/virology , Vero Cells , trans-Golgi Network/metabolism , trans-Golgi Network/virology , Chlorocebus aethiops , Herpes Simplex/virology , Herpes Simplex/metabolism , Virion/metabolism , HeLa Cells , Cell Membrane/metabolism , Cell Membrane/virology
19.
Mol Cell ; 67(6): 962-973.e5, 2017 Sep 21.
Article in English | MEDLINE | ID: mdl-28918898

ABSTRACT

In the endoplasmic reticulum (ER), Ero1 catalyzes disulfide bond formation and promotes glutathione (GSH) oxidation to GSSG. Since GSSG cannot be reduced in the ER, maintenance of the ER glutathione redox state and levels likely depends on ER glutathione import and GSSG export. We used quantitative GSH and GSSG biosensors to monitor glutathione import into the ER of yeast cells. We found that glutathione enters the ER by facilitated diffusion through the Sec61 protein-conducting channel, while oxidized Bip (Kar2) inhibits transport. Increased ER glutathione import triggers H2O2-dependent Bip oxidation through Ero1 reductive activation, which inhibits glutathione import in a negative regulatory loop. During ER stress, transport is activated by UPR-dependent Ero1 induction, and cytosolic glutathione levels increase. Thus, the ER redox poise is tuned by reciprocal control of glutathione import and Ero1 activation. The ER protein-conducting channel is permeable to small molecules, provided the driving force of a concentration gradient.


Subject(s)
Endoplasmic Reticulum/enzymology , Fungal Proteins/metabolism , Glutathione/metabolism , Glycoproteins/metabolism , HSP70 Heat-Shock Proteins/metabolism , Oxidoreductases Acting on Sulfur Group Donors/metabolism , SEC Translocation Channels/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/metabolism , Cytosol/enzymology , Facilitated Diffusion , Fungal Proteins/genetics , Glutathione Disulfide/metabolism , Glycoproteins/genetics , HSP70 Heat-Shock Proteins/genetics , Hydrogen Peroxide/metabolism , Intracellular Membranes/enzymology , Membrane Proteins/genetics , Membrane Proteins/metabolism , Oxidation-Reduction , Oxidoreductases Acting on Sulfur Group Donors/genetics , SEC Translocation Channels/genetics , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/genetics , Signal Transduction , Time Factors , Unfolded Protein Response
20.
Proc Natl Acad Sci U S A ; 119(1)2022 01 04.
Article in English | MEDLINE | ID: mdl-34969853

ABSTRACT

Adenosine diphosphate (ADP)-ribosylation is a posttranslational modification involved in key regulatory events catalyzed by ADP-ribosyltransferases (ARTs). Substrate identification and localization of the mono-ADP-ribosyltransferase PARP12 at the trans-Golgi network (TGN) hinted at the involvement of ARTs in intracellular traffic. We find that Golgin-97, a TGN protein required for the formation and transport of a specific class of basolateral cargoes (e.g., E-cadherin and vesicular stomatitis virus G protein [VSVG]), is a PARP12 substrate. PARP12 targets an acidic cluster in the Golgin-97 coiled-coil domain essential for function. Its mutation or PARP12 depletion, delays E-cadherin and VSVG export and leads to a defect in carrier fission, hence in transport, with consequent accumulation of cargoes in a trans-Golgi/Rab11-positive intermediate compartment. In contrast, PARP12 does not control the Golgin-245-dependent traffic of cargoes such as tumor necrosis factor alpha (TNFα). Thus, the transport of different basolateral proteins to the plasma membrane is differentially regulated by Golgin-97 mono-ADP-ribosylation by PARP12. This identifies a selective regulatory mechanism acting on the transport of Golgin-97- vs. Golgin-245-dependent cargoes. Of note, PARP12 enzymatic activity, and consequently Golgin-97 mono-ADP-ribosylation, depends on the activation of protein kinase D (PKD) at the TGN during traffic. PARP12 is directly phosphorylated by PKD, and this is essential to stimulate PARP12 catalytic activity. PARP12 is therefore a component of the PKD-driven regulatory cascade that selectively controls a major branch of the basolateral transport pathway. We propose that through this mechanism, PARP12 contributes to the maintenance of E-cadherin-mediated cell polarity and cell-cell junctions.


Subject(s)
ADP-Ribosylation/physiology , Autoantigens/metabolism , Cadherins/metabolism , Cell Membrane/metabolism , Golgi Apparatus/metabolism , Golgi Matrix Proteins/metabolism , Poly(ADP-ribose) Polymerases/metabolism , Protein Kinase C/metabolism , Antigens, CD , Catalysis , HeLa Cells , Humans , Protein Transport , Tumor Necrosis Factor-alpha , trans-Golgi Network/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL