Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 9.266
Filter
Add more filters

Publication year range
1.
Cell ; 176(3): 597-609.e18, 2019 01 24.
Article in English | MEDLINE | ID: mdl-30661754

ABSTRACT

Many evolutionary years separate humans and macaques, and although the amygdala and cingulate cortex evolved to enable emotion and cognition in both, an evident functional gap exists. Although they were traditionally attributed to differential neuroanatomy, functional differences might also arise from coding mechanisms. Here we find that human neurons better utilize information capacity (efficient coding) than macaque neurons in both regions, and that cingulate neurons are more efficient than amygdala neurons in both species. In contrast, we find more overlap in the neural vocabulary and more synchronized activity (robustness coding) in monkeys in both regions and in the amygdala of both species. Our findings demonstrate a tradeoff between robustness and efficiency across species and regions. We suggest that this tradeoff can contribute to differential cognitive functions between species and underlie the complementary roles of the amygdala and the cingulate cortex. In turn, it can contribute to fragility underlying human psychopathologies.


Subject(s)
Amygdala/physiology , Gyrus Cinguli/physiology , Neurons/physiology , Adult , Animals , Biological Evolution , Child , Child, Preschool , Cognition/physiology , Emotions/physiology , Female , Humans , Macaca , Macaca mulatta , Magnetic Resonance Imaging , Male , Middle Aged , Nerve Net/metabolism , Nerve Net/physiology , Prefrontal Cortex/physiology , Species Specificity
2.
Cell ; 175(6): 1688-1700.e14, 2018 11 29.
Article in English | MEDLINE | ID: mdl-30415834

ABSTRACT

Human brain networks that encode variation in mood on naturalistic timescales remain largely unexplored. Here we combine multi-site, semi-chronic, intracranial electroencephalography recordings from the human limbic system with machine learning methods to discover a brain subnetwork that correlates with variation in individual subjects' self-reported mood over days. First we defined the subnetworks that influence intrinsic brain dynamics by identifying regions that showed coordinated changes in spectral coherence. The most common subnetwork, found in 13 of 21 subjects, was characterized by ß-frequency coherence (13-30 Hz) between the amygdala and hippocampus. Increased variability of this subnetwork correlated with worsening mood across these 13 subjects. Moreover, these subjects had significantly higher trait anxiety than the 8 of 21 for whom this amygdala-hippocampus subnetwork was absent. These results demonstrate an approach for extracting network-behavior relationships from complex datasets, and they reveal a conserved subnetwork associated with a psychological trait that significantly influences intrinsic brain dynamics and encodes fluctuations in mood.


Subject(s)
Affect , Amygdala/physiopathology , Anxiety/physiopathology , Hippocampus/physiopathology , Nerve Net/physiopathology , Adult , Electroencephalography , Female , Humans , Machine Learning , Male , Signal Processing, Computer-Assisted
3.
Cell ; 175(1): 71-84.e18, 2018 09 20.
Article in English | MEDLINE | ID: mdl-30173913

ABSTRACT

Light exerts a range of powerful biological effects beyond image vision, including mood and learning regulation. While the source of photic information affecting mood and cognitive functions is well established, viz. intrinsically photosensitive retinal ganglion cells (ipRGCs), the central mediators are unknown. Here, we reveal that the direct effects of light on learning and mood utilize distinct ipRGC output streams. ipRGCs that project to the suprachiasmatic nucleus (SCN) mediate the effects of light on learning, independently of the SCN's pacemaker function. Mood regulation by light, on the other hand, requires an SCN-independent pathway linking ipRGCs to a previously unrecognized thalamic region, termed perihabenular nucleus (PHb). The PHb is integrated in a distinctive circuitry with mood-regulating centers and is both necessary and sufficient for driving the effects of light on affective behavior. Together, these results provide new insights into the neural basis required for light to influence mood and learning.


Subject(s)
Affect/radiation effects , Learning/radiation effects , Light , Affect/physiology , Animals , Brain/physiology , Circadian Rhythm , Learning/physiology , Mice , Mice, Inbred C57BL , Phototherapy/methods , Retina/metabolism , Retina/physiology , Retinal Ganglion Cells/metabolism , Retinal Ganglion Cells/physiology , Retinal Ganglion Cells/radiation effects , Signal Transduction/physiology , Suprachiasmatic Nucleus/metabolism , Vision, Ocular/physiology , Visual Pathways/metabolism , Visual Perception/physiology
4.
Proc Natl Acad Sci U S A ; 121(9): e2214756121, 2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38394243

ABSTRACT

Sleep, circadian rhythms, and mental health are reciprocally interlinked. Disruption to the quality, continuity, and timing of sleep can precipitate or exacerbate psychiatric symptoms in susceptible individuals, while treatments that target sleep-circadian disturbances can alleviate psychopathology. Conversely, psychiatric symptoms can reciprocally exacerbate poor sleep and disrupt clock-controlled processes. Despite progress in elucidating underlying mechanisms, a cohesive approach that integrates the dynamic interactions between psychiatric disorder with both sleep and circadian processes is lacking. This review synthesizes recent evidence for sleep-circadian dysfunction as a transdiagnostic contributor to a range of psychiatric disorders, with an emphasis on biological mechanisms. We highlight observations from adolescent and young adults, who are at greatest risk of developing mental disorders, and for whom early detection and intervention promise the greatest benefit. In particular, we aim to a) integrate sleep and circadian factors implicated in the pathophysiology and treatment of mood, anxiety, and psychosis spectrum disorders, with a transdiagnostic perspective; b) highlight the need to reframe existing knowledge and adopt an integrated approach which recognizes the interaction between sleep and circadian factors; and c) identify important gaps and opportunities for further research.


Subject(s)
Mental Disorders , Sleep Wake Disorders , Young Adult , Adolescent , Humans , Mental Disorders/etiology , Mental Disorders/therapy , Sleep/physiology , Circadian Rhythm/physiology , Mental Health , Mood Disorders
5.
Pharmacol Rev ; 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39013601

ABSTRACT

Over four decades of research support the link between Alzheimer's disease (AD) and somatostatin (somatotropin-releasing inhibitory factor, SRIF). SRIF and SRIF-expressing neurons play an essential role in brain function, modulating hippocampal activity and memory formation. Loss of SRIF and SRIF-expressing neurons in the brain rests at the center of a series of interdependent pathological events driven by amyloid-beta peptide (Aß), culminating in cognitive decline and dementia. The connection between the SRIF and AD further extends to the neuropsychiatric symptoms, seizure activity, and inflammation. Whereas, preclinical AD investigations show SRIF or SRIF-receptor agonist administration capable of enhancing cognition. SRIF receptor subtype-4 activation in particular presents unique attributes, with the potential to mitigate learning and memory decline, reduce comorbid symptoms, and enhance enzymatic degradation of Aß in the brain. Here we review the links between SRIF and AD, along with the therapeutic implications. Significance Statement Somatostatin and somatostatin-expressing neurons in the brain are extensively involved in cognition. Loss of somatostatin and somatostatin-expressing neurons in Alzheimer's disease rests at the center of a series of interdependent pathological events contributing to cognitive decline and dementia. Targeting somatostatin mediated processes has significant therapeutic potential for the treatment of Alzheimer's disease.

6.
Proc Natl Acad Sci U S A ; 120(26): e2214505120, 2023 06 27.
Article in English | MEDLINE | ID: mdl-37339227

ABSTRACT

Sleep loss robustly disrupts mood and emotion regulation in healthy individuals but can have a transient antidepressant effect in a subset of patients with depression. The neural mechanisms underlying this paradoxical effect remain unclear. Previous studies suggest that the amygdala and dorsal nexus (DN) play key roles in depressive mood regulation. Here, we used functional MRI to examine associations between amygdala- and DN-related resting-state connectivity alterations and mood changes after one night of total sleep deprivation (TSD) in both healthy adults and patients with major depressive disorder using strictly controlled in-laboratory studies. Behavioral data showed that TSD increased negative mood in healthy participants but reduced depressive symptoms in 43% of patients. Imaging data showed that TSD enhanced both amygdala- and DN-related connectivity in healthy participants. Moreover, enhanced amygdala connectivity to the anterior cingulate cortex (ACC) after TSD associated with better mood in healthy participants and antidepressant effects in depressed patients. These findings support the key role of the amygdala-cingulate circuit in mood regulation in both healthy and depressed populations and suggest that rapid antidepressant treatment may target the enhancement of amygdala-ACC connectivity.


Subject(s)
Depressive Disorder, Major , Adult , Humans , Depressive Disorder, Major/diagnostic imaging , Depressive Disorder, Major/drug therapy , Sleep Deprivation/diagnostic imaging , Amygdala/diagnostic imaging , Gyrus Cinguli/diagnostic imaging , Antidepressive Agents/pharmacology , Antidepressive Agents/therapeutic use , Magnetic Resonance Imaging/methods
7.
Front Neuroendocrinol ; 73: 101121, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38253240

ABSTRACT

Early life stress (ELS) is defined as an acute or chronic stressor that negatively impacts a child's development. ELS is associated with substance use and mental health problems. This narrative literature review focuses on sex and gender differences in the effects of ELS on 1) adolescent neuroendocrine development; 2) pubertal brain maturation; and 3) development of internalizing symptoms and subsequent substance use. We posit that ELS may generate larger hormonal dysregulation in females than males during puberty, increasing internalizing symptoms and substance use. Future research should consider sex and gender differences in neuroendocrine developmental processes when studying the link between ELS and negative health outcomes.


Subject(s)
Neurosecretory Systems , Sex Characteristics , Stress, Psychological , Substance-Related Disorders , Humans , Substance-Related Disorders/physiopathology , Adolescent , Neurosecretory Systems/metabolism , Male , Female , Stress, Psychological/metabolism , Stress, Psychological/physiopathology , Adverse Childhood Experiences , Adolescent Development/physiology
8.
Front Neuroendocrinol ; 72: 101111, 2024 01.
Article in English | MEDLINE | ID: mdl-37967755

ABSTRACT

Worldwide, over 150 million adolescent and adult women use oral contraceptives (OC). An association between OC-use and the emergence of symptoms of mental disorders has been suggested. This systematic review and meta-analysis provide an overview of published research regarding symptoms of mental disorders in association with OC-use, factoring the influence of OC types, age of first-use, duration of OC-intake, and previous diagnoses of mental disorders. A systematic literature search was conducted between June-July 2022. 22 studies were included. While most found no significant OC-use effects on mental symptoms, some hinted at OCs as a potential risk. The existing evidence regarding the potential link between progestin-only OC-use and an elevated risk of mental symptoms in comparison to combined OC-use remains inconclusive. However, due to emerging indications suggesting that the formulation of OC might play a role in mental health outcomes, this topic warrants further investigation. Moreover, indications of an increased risk for depressive symptoms in adolescent OC-users should be noted. Hence, while general population effects seem unlikely, they cannot be completely disregarded. The decision on OC-use should depend on the patient's medical history and should be re-evaluated regularly.


Subject(s)
Contraceptives, Oral , Mental Disorders , Adult , Adolescent , Humans , Female , Contraceptives, Oral/adverse effects , Contraception
9.
EMBO J ; 40(3): e105819, 2021 02 01.
Article in English | MEDLINE | ID: mdl-33300615

ABSTRACT

Neurogenesis in the adult hippocampus declines with age, a process that has been implicated in cognitive and emotional impairments. However, the mechanisms underlying this decline have remained elusive. Here, we show that the age-dependent downregulation of lamin B1, one of the nuclear lamins in adult neural stem/progenitor cells (ANSPCs), underlies age-related alterations in adult hippocampal neurogenesis. Our results indicate that higher levels of lamin B1 in ANSPCs safeguard against premature differentiation and regulate the maintenance of ANSPCs. However, the level of lamin B1 in ANSPCs declines during aging. Precocious loss of lamin B1 in ANSPCs transiently promotes neurogenesis but eventually depletes it. Furthermore, the reduction of lamin B1 in ANSPCs recapitulates age-related anxiety-like behavior in mice. Our results indicate that the decline in lamin B1 underlies stem cell aging and impacts the homeostasis of adult neurogenesis and mood regulation.


Subject(s)
Aging/metabolism , Anxiety/genetics , Down-Regulation , Hippocampus/cytology , Lamin Type B/genetics , Lamin Type B/metabolism , Aging/genetics , Animals , Cell Differentiation , Cell Line , Disease Models, Animal , Female , Hippocampus/metabolism , Male , Mice , Neural Stem Cells/cytology , Neural Stem Cells/metabolism , Neurogenesis , Rats
10.
Annu Rev Neurosci ; 40: 539-556, 2017 07 25.
Article in English | MEDLINE | ID: mdl-28525301

ABSTRACT

The discovery of a third type of photoreceptors in the mammalian retina, intrinsically photosensitive retinal ganglion cells (ipRGCs), has had a revolutionary impact on chronobiology. We can now properly account for numerous non-vision-related functions of light, including its effect on the circadian system. Here, we give an overview of ipRGCs and their function as it relates specifically to mood and biological rhythms. Although circadian disruptions have been traditionally hypothesized to be the mediators of light's effects on mood, here we present an alternative model that dispenses with assumptions of causality between the two phenomena and explains mood regulation by light via another ipRGC-dependent mechanism.


Subject(s)
Affect/physiology , Circadian Rhythm/physiology , Photoreceptor Cells/metabolism , Retinal Ganglion Cells/metabolism , Rod Opsins/metabolism , Animals , Photoperiod
11.
Proc Natl Acad Sci U S A ; 119(38): e2206348119, 2022 09 20.
Article in English | MEDLINE | ID: mdl-36095195

ABSTRACT

Shift workers have a 25 to 40% higher risk of depression and anxiety partly due to a misalignment between the central circadian clock and daily environmental/behavioral cycles that may negatively affect mood and emotional well-being. Hence, evidence-based circadian interventions are required to prevent mood vulnerability in shift work settings. We used a stringently controlled 14-d circadian paradigm to assess mood vulnerability during simulated night work with either daytime and nighttime or daytime-only eating as compared with simulated day work (baseline). Simulated night work with daytime and nighttime eating increased depression-like mood levels by 26.2% (p-value adjusted using False Discovery Rates, pFDR = 0.001; effect-size r = 0.78) and anxiety-like mood levels by 16.1% (pFDR = 0.001; effect-size r = 0.47) compared to baseline, whereas this did not occur with simulated night work in the daytime-only eating group. Importantly, a larger degree of internal circadian misalignment was robustly associated with more depression-like (r = 0.77; P = 0.001) and anxiety-like (r = 0.67; P = 0.002) mood levels during simulated night work. These findings offer a proof-of-concept demonstration of an evidence-based meal timing intervention that may prevent mood vulnerability in shift work settings. Future studies are required to establish if changes in meal timing can prevent mood vulnerability in night workers.


Subject(s)
Anxiety , Circadian Clocks , Depressive Disorder , Meals , Shift Work Schedule , Work Schedule Tolerance , Adult , Anxiety/prevention & control , Circadian Rhythm , Depressive Disorder/prevention & control , Female , Humans , Male , Meals/psychology , Shift Work Schedule/psychology , Work Schedule Tolerance/psychology , Young Adult
12.
Front Neuroendocrinol ; 68: 101040, 2023 01.
Article in English | MEDLINE | ID: mdl-36243109

ABSTRACT

Millions of women around the world use combined oral contraceptives (OCs), yet surprisingly little is known about their central nervous system (CNS) effects. This article provides a short overview of the basic pharmacology of OCs, emphasizing features that may be relevant to understanding their effects in the CNS. Historical and recent findings from studies of cognitive function, mood, and negative affect (depressive changes under OC use) are then reviewed. We also present data from an archival dataset from our own laboratory in which we explore dysphoric changes in women using four generations of contraceptive progestins. Current data in the field are consistent with a modest effect of OC use on CNS variables, but conclusions based on current findings must be made very cautiously because of multiple methodological issues in many published studies to date, and inconsistencies in the findings. Directions for future research over the next 10 years are suggested. (150 words).


Subject(s)
Contraceptives, Oral, Combined , Progestins , Female , Humans , Contraceptives, Oral, Combined/pharmacology , Central Nervous System
13.
Front Neuroendocrinol ; 69: 101066, 2023 04.
Article in English | MEDLINE | ID: mdl-37015302

ABSTRACT

Orexins (also known as hypocretins) are neuropeptides located exclusively in hypothalamic neurons that have extensive projections throughout the central nervous system and bind two different G protein-coupled receptors (OX1R and OX2R). Since its discovery in 1998, the orexin system has gained the interest of the scientific community as a potential therapeutic target for the treatment of different pathological conditions. Considering previous basic science research, a dual orexin receptor antagonist, suvorexant, was the first orexin agent to be approved by the US Food and Drug Administration to treat insomnia. In this review, we discuss and update the main preclinical and human studies involving the orexin system with several psychiatric and neurodegenerative diseases. This system constitutes a nice example of how basic scientific research driven by curiosity can be the best route to the generation of new and powerful pharmacological treatments.


Subject(s)
Neurodegenerative Diseases , Neuropeptides , Animals , Humans , Orexins/metabolism , Orexin Receptors/metabolism , Neurodegenerative Diseases/drug therapy , Receptors, G-Protein-Coupled
14.
Eur J Neurosci ; 60(2): 3828-3842, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38571281

ABSTRACT

Ca2+/calmodulin-dependent protein kinase IIα (CaMKIIα) is widely expressed in the brain and is involved in various functions, including memory formation, mood and sleep. We previously reported that CaMKIIα is involved in the circadian molecular clock. Mice lacking functional CaMKIIα (K42R mice) exhibited a gradual increase in activity time (α decompression) of running-wheel (RW) activity due to a lengthened circadian period (τ) of activity offset under constant darkness (DD). In the present study, to investigate the functional roles of CaMKIIα in behavioural rhythms, we measured RW and general movements simultaneously under prolonged DD. Tau became longer as the relative intensity of behaviour activity within an activity time shifted from activity onset towards activity offset. In some K42R mice, α was gradually expanded with a marked reduction of RW activity, while general movements persisted without noticeable decline, which was followed by an abrupt shortening of α (α compression) with differential phase shifts of the activity onset and offset and recovery of RW activity. These results suggest that an internal coupling between the oscillators controlling activity onset and offset is bidirectional but with different strengths. The α compression occurred recurrently in 38% of K42R mice examined with an average interval of 37 days in association with attenuation of RW activity but never in the wild-type (WT) mice. Consistent with behavioural rhythms, the circadian period of the PER2::LUC rhythm in the cultured suprachiasmatic nucleus (SCN) slice was significantly longer in K42R than in WT. These findings are best interpreted by assuming that a loss of functional CaMKIIα attenuates the coupling between the onset and offset oscillators.


Subject(s)
Calcium-Calmodulin-Dependent Protein Kinase Type 2 , Circadian Rhythm , Suprachiasmatic Nucleus , Animals , Male , Mice , Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism , Calcium-Calmodulin-Dependent Protein Kinase Type 2/genetics , Circadian Clocks/physiology , Circadian Rhythm/physiology , Mice, Inbred C57BL , Motor Activity/physiology , Period Circadian Proteins/metabolism , Period Circadian Proteins/genetics , Suprachiasmatic Nucleus/physiology , Suprachiasmatic Nucleus/metabolism
15.
Eur J Neurosci ; 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-39099373

ABSTRACT

Mitochondria-endoplasmic reticulum contacts (MERCs) mediate a close and continuous communication between both organelles that is essential for the transfer of calcium and lipids to mitochondria, necessary for cellular signalling and metabolic pathways. Their structural and molecular characterisation has shown the involvement of many proteins that bridge the membranes of the two organelles and maintain the structural stability and function of these contacts. The crosstalk between the two organelles is fundamental for proper neuronal function and is now recognised as a component of many neurological disorders. In fact, an increasing proportion of MERC proteins take part in the molecular and cellular basis of pathologies affecting the nervous system. Here we review the alterations in MERCs that have been reported for these pathologies, from neurodevelopmental and neuropsychiatric disorders to neurodegenerative diseases. Although mitochondrial abnormalities in these debilitating conditions have been extensively attributed to the high energy demand of neurons, a distinct role for MERCs is emerging as a new field of research. Understanding the molecular details of such alterations may open the way to new paths of therapeutic intervention.

16.
Hum Brain Mapp ; 45(11): e26766, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39046072

ABSTRACT

Mood variability, the day-to-day fluctuation in mood, differs between individuals and develops during adolescence. Because adolescents show higher mood variability and average mood than children and adults, puberty might be a potential biological mechanism underlying this increase. The goal of this preregistered developmental study was to examine the neural and hormonal underpinnings of adolescent-specific within-person changes in mood variability, with a specific focus on testosterone, cortisol, pubertal status, and resting-state functional brain connectivity. Data from two longitudinal cohorts were used: the L-CID twin study (aged 7-13, N at the first timepoint = 258) and the accelerated Leiden Self-Concept study (SC; aged 11-21, N at the first timepoint = 138). In both studies resting-state functional magnetic resonance imaging (rs-fMRI) data was collected, as well as daily mood. Additionally, in the SC study self-reported puberty testosterone and cortisol were collected. Random intercept cross-lagged panel models (RI-CLPM) were used to study the within-person relations between these biological measures and mood variability and average mood. Mood variability and average mood peaked in adolescence and testosterone levels and self-reported puberty also showed an increase. Connectivity between prefrontal cortex (dlPFC and vmPFC) and subcortical regions (caudate, amygdala) decreased across development. Moreover, higher testosterone predicted average negative mood at the next time point, but not vice versa. Further, stronger vmPFC-amygdala functional connectivity predicted decreases in mood variability. Here, we show that brain connectivity during development is an important within-person biological mechanism of the development of mood in adolescents. PRACTITIONER POINTS: Mood variability peaks in adolescence. Within-person changes in testosterone predict within-person changes in mood. Within-person changes in vmPFC-amygdala connectivity predict within-person changes in mood variability.


Subject(s)
Affect , Hydrocortisone , Magnetic Resonance Imaging , Puberty , Testosterone , Humans , Adolescent , Child , Male , Testosterone/blood , Affect/physiology , Female , Hydrocortisone/blood , Hydrocortisone/metabolism , Longitudinal Studies , Puberty/physiology , Young Adult , Brain/diagnostic imaging , Brain/growth & development , Brain/physiology , Adult , Connectome , Prefrontal Cortex/diagnostic imaging , Prefrontal Cortex/physiology , Prefrontal Cortex/growth & development , Amygdala/diagnostic imaging , Amygdala/physiology , Amygdala/growth & development , Adolescent Development/physiology
17.
J Neurovirol ; 2024 Mar 28.
Article in English | MEDLINE | ID: mdl-38546936

ABSTRACT

Although older adults with HIV are at high risk for mild neurocognitive disorders, a subset experience successful cognitive aging (SCA). HIV is associated with an increased risk of vascular depression (VasDep), which can affect cognitive and daily functioning. The current study examined whether VasDep impedes SCA among older adults with HIV. 136 persons with HIV aged 50 years and older were classified as either SCA+ (n = 37) or SCA- (n = 99) based on a battery of demographically adjusted neurocognitive tests and self-reported cognitive symptoms. Participants were also stratified on the presence of vascular disease (e.g., hypertension) and current depression as determined by the Composite International Diagnostic Interview and the Depression/Dejection scale of the Profile of Mood States. A Cochran-Armitage test revealed a significant additive effect of vascular disease and depression on SCA in this sample of older adults with HIV (z = 4.13, p <.0001). Individuals with VasDep had the lowest frequency of SCA+ (0%), which differed significantly from the group with only vascular disease (30%, OR = 0.04, CI = 0.002,0.68)) and the group with neither vascular disease nor depression (47% OR = 0.02, CI = 0.33,0.001). Findings were not confounded by demographics, HIV disease severity, or other psychiatric and medical factors (ps > 0.05). These data suggest that presence of VasDep may be a barrier to SCA in older adults with HIV disease. Prospective, longitudinal studies with neuroimaging-based operationalizations of VasDep are needed to further clarify this risk factor's role in the maintenance of cognitive and brain health in persons with HIV disease.

18.
Hum Reprod ; 39(6): 1291-1302, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38614956

ABSTRACT

STUDY QUESTION: How does the gut bacteriome differ based on mood disorders (MDs) in women with polycystic ovary syndrome (PCOS), and how can the gut bacteriome contribute to the associations between these two conditions? SUMMARY ANSWER: Women with PCOS who also have MDs exhibited a distinct gut bacteriome with reduced alpha diversity and a significantly lower abundance of Butyricicoccus compared to women with PCOS but without MDs. WHAT IS KNOWN ALREADY: Women with PCOS have a 4- to 5-fold higher risk of having MDs compared to women without PCOS. The gut bacteriome has been suggested to influence the pathophysiology of both PCOS and MDs. STUDY DESIGN, SIZE, DURATION: This population-based cohort study was derived from the Northern Finland Birth Cohort 1966 (NFBC1966), which includes all women born in Northern Finland in 1966. Women with PCOS who donated a stool sample at age 46 years (n = 102) and two BMI-matched controls for each case (n = 205), who also responded properly to the MD criteria scales, were included. PARTICIPANTS/MATERIALS, SETTING, METHODS: A total of 102 women with PCOS and 205 age- and BMI-matched women without PCOS were included. Based on the validated MD criteria, the subjects were categorized into MD or no-MD groups, resulting in the following subgroups: PCOS no-MD (n = 84), PCOS MD (n = 18), control no-MD (n = 180), and control MD (n = 25). Clinical characteristics were assessed at age 31 years and age 46 years, and stool samples were collected from the women at age 46 years, followed by the gut bacteriome analysis using 16 s rRNA sequencing. Alpha diversity was assessed using observed features and Shannon's index, with a focus on genera, and beta diversity was characterized using principal components analysis (PCA) with Bray-Curtis Dissimilarity at the genus level. Associations between the gut bacteriome and PCOS-related clinical features were explored by Spearman's correlation coefficient. A P-value for multiple testing was adjusted with the Benjamini-Hochberg false discovery rate (FDR) method. MAIN RESULTS AND THE ROLE OF CHANCE: We observed changes in the gut bacteriome associated with MDs, irrespective of whether the women also had PCOS. Similarly, PCOS MD cases showed a lower alpha diversity (Observed feature, PCOS no-MD, median 272; PCOS MD, median 208, FDR = 0.01; Shannon, PCOS no-MD, median 5.95; PCOS MD, median 5.57, FDR = 0.01) but also a lower abundance of Butyricicoccus (log-fold changeAnalysis of Compositions of Microbiomes with Bias Correction (ANCOM-BC)=-0.90, FDRANCOM-BC=0.04) compared to PCOS no-MD cases. In contrast, in the controls, the gut bacteriome did not differ based on MDs. Furthermore, in the PCOS group, Sutterella showed positive correlations with PCOS-related clinical parameters linked to obesity (BMI, r2=0.31, FDR = 0.01; waist circumference, r2=0.29, FDR = 0.02), glucose metabolism (fasting glucose, r2=0.46, FDR < 0.001; fasting insulin, r2=0.24, FDR = 0.05), and gut barrier integrity (zonulin, r2=0.25, FDR = 0.03). LIMITATIONS, REASONS FOR CAUTION: Although this was the first study to assess the link between the gut bacteriome and MDs in PCOS and included the largest PCOS dataset for the gut microbiome analysis, the number of subjects stratified by the presence of MDs was limited when contrasted with previous studies that focused on MDs in a non-selected population. WIDER IMPLICATIONS OF THE FINDINGS: The main finding is that gut bacteriome is associated with MDs irrespective of the PCOS status, but PCOS may also modulate further the connection between the gut bacteriome and MDs. STUDY FUNDING/COMPETING INTEREST(S): This research was funded by the European Union's Horizon 2020 Research and Innovation Programme under the Marie Sklodowska-Curie Grant Agreement (MATER, No. 813707), the Academy of Finland (project grants 315921, 321763, 336449), the Sigrid Jusélius Foundation, Novo Nordisk Foundation (NNF21OC0070372), grant numbers PID2021-12728OB-100 (Endo-Map) and CNS2022-135999 (ROSY) funded by MCIN/AEI/10.13039/501100011033 and ERFD A Way of Making Europe. The study was also supported by EU QLG1-CT-2000-01643 (EUROBLCS) (E51560), NorFA (731, 20056, 30167), USA/NIH 2000 G DF682 (50945), the Estonian Research Council (PRG1076, PRG1414), EMBO Installation (3573), and Horizon 2020 Innovation Grant (ERIN, No. EU952516). The funders did not participate in any process of the study. We have no conflicts of interest to declare. TRIAL REGISTRATION NUMBER: N/A.


Subject(s)
Gastrointestinal Microbiome , Mood Disorders , Polycystic Ovary Syndrome , Humans , Female , Polycystic Ovary Syndrome/complications , Polycystic Ovary Syndrome/microbiology , Finland/epidemiology , Middle Aged , Mood Disorders/epidemiology , Adult , Cohort Studies , Case-Control Studies , Feces/microbiology
19.
Osteoporos Int ; 35(2): 227-242, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37831102

ABSTRACT

This study determines the effectiveness of exercise rehabilitation interventions on depressive symptoms in older adults after hip fracture. Ovid MEDLINE, Embase, Global Health, APAPsych, CENTRAL, CIHAHL, PEDro and Open Grey were searched from database inception to June 10, 2022 for definitive, pilot or feasibility randomised controlled trials of rehabilitation interventions (versus any comparator) which reported depressive symptoms among older adults post hip fracture. Nonrandomised trials and those not published in English were excluded. Selection, quality appraisal (Cochrane Risk of Bias 2) and extraction in duplicate. Results were synthesised narratively and with meta-analysis (Hedge's g for intervention effect, I2 for heterogeneity). Eight trials (1146 participants) were included. Interventions were predominantly face-to-face exercise rehabilitation (range three to 56 sessions) at home versus usual care. Three trials were assigned overall low risk of bias, three some concerns and two high risk. The pooled effect of rehabilitation on depressive symptoms at intervention end favoured the intervention group (Hedges's g -0.43; 95% CI: -0.87, 0.01; four trials). Three trials demonstrated no between group difference following adjustment for baseline depressive symptoms. One trial found lower odds of depression when the intervention additionally included falls prevention, nutrition consultation and depression management. There is a potential benefit of exercise rehabilitation interventions on depressive symptoms after hip fracture. A mechanism for benefit may relate to baseline symptom severity, exercise frequency, frequency of health professional contacts, addition of a psychological component or of the quality of the underlying trials. To appropriately inform clinical guidelines, further appropriately powered trials with follow-up are warranted. TRIAL REGISTRATION: ClinicalTrials.gov Identifier: CRD42022342099.


Subject(s)
Depression , Hip Fractures , Humans , Aged , Depression/etiology , Exercise Therapy/methods , Quality of Life
20.
J Gen Intern Med ; 39(8): 1423-1430, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38326585

ABSTRACT

BACKGROUND: Smoking rates among people living with behavioral health conditions (BHC) range from 30 to 65% and are 2-4 times higher than rates found in the general population. Starting tobacco treatment during a hospital stay is effective for smoking cessation, but little is known regarding treatment response among inpatients with BHC. OBJECTIVE: This study pooled data across multiple clinical trials to determine the relative success in quitting among participants with BHC compared to other study participants. PARTICIPANTS: Adults who smoke (≥ 18 years old) from five hospital-based smoking cessation randomized clinical trials. DESIGN: A retrospective analysis using data from the electronic health record to identify participants with primary diagnoses related to BHC. Recruitment and data analysis were conducted from 2011 to 2016. We used propensity score matching to pair patients with BHC to those with similar characteristics and logistic regression to determine differences between groups. MEASURES: The main outcome was self-reported 30-day abstinence 6 months post-discharge. RESULTS: Of 6612 participants, 798 patients had a BHC-related primary diagnosis. The matched sample included 642 pairs. Nearly 1 in 3 reported using tobacco medications after hospitalization, with no significant difference between patients with and without BHC (29.3% vs. 31.5%; OR (95% CI) = 0.90 (0.71, 1.14), p = 0.40). Nearly 1 in 5 patients with BHC reported abstinence at 6 months; however, their odds of abstinence were 30% lower than among people without BHC (OR (95% CI) = 0.70 (0.53,0.92), p = 0.01). CONCLUSION: When offered tobacco treatment, hospitalized patients with BHC were as likely as people without BHC to accept and engage in treatment. However, patients with BHC were less likely to report abstinence compared to those without BHC. Hospitals are a feasible and promising venue for tobacco treatment among inpatients with BHC. More studies are needed to identify treatment approaches that help people with BHC achieve long-term abstinence.


Subject(s)
Hospitalization , Smoking Cessation , Humans , Smoking Cessation/methods , Smoking Cessation/psychology , Male , Female , Middle Aged , Retrospective Studies , Adult , Hospitalization/statistics & numerical data , Mental Disorders/epidemiology , Mental Disorders/therapy , Mental Disorders/psychology , Aged
SELECTION OF CITATIONS
SEARCH DETAIL