Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 50
Filter
1.
Small ; 20(12): e2307005, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37940625

ABSTRACT

Solar-driven interfacial desalination is widely considered to be a promising technology to address the global water crisis. This study proposes a novel electrospun nanofiber-based all-in-one vertically interfacial solar evaporator endowed with a high steam generation rate, steady omnidirectional evaporation, and enduring ultrahigh-salinity brine desalination. In particular, the electrospun nanofiber is collected into the tubular structure, followed by spraying with a dense crosslinked poly(vinyl alcohol) film, which renders them sufficiently strong for the preparation of a vertically array evaporator. The integrated evaporator made an individual capillary as a unit to form multiple thermal localization interfaces and steam dissipation channels, realizing zone heating of water. Thus a high steam generation rate exceeding 4.0 kg m-2 h-1 in pure water is demonstrated even under omnidirectional sunlight, and outperforms existing evaporators. Moreover, salt ions in the photothermal layer can be effectively transported to the water in capillaries and subsequently exchanged with the bulk water due to the strong action of capillary force, which ensures an ultrahigh desalination rate (≈12.5 kg m-2 h-1 under 3 sun) in 25 wt% concentration brine over 300 min. As such, this work provides a meaningful roadmap for the development of state-of-the-art solar-driven interfacial desalination.

2.
J Nanobiotechnology ; 22(1): 322, 2024 Jun 08.
Article in English | MEDLINE | ID: mdl-38849858

ABSTRACT

The ideal tissue engineering scaffold should facilitate rapid cell infiltration and provide an optimal immune microenvironment during interactions with the host. Electrospinning can produce two-dimensional (2D) membranes mimicking the extracellular matrix. However, their dense structure hinders cell penetration, and their thin form restricts scaffold utility. In this study, latticed hydrogels were three-dimensional (3D) printed onto electrospun membranes. This technique allowed for layer-by-layer assembly of the membranes into 3D scaffolds, which maintained their resilience impressively under both dry and wet conditions. We assessed the cellular and host responses of these 3D nanofiber scaffolds by comparing random membranes and mesh-like membranes with three different mesh sizes (250, 500, and 750 µm). It was found that scaffolds with a mesh size of 500 µm were superior for M2 macrophage phenotype polarization, vascularization, and matrix deposition. Furthermore, it was confirmed by subsequent experiments such as RNA sequencing that the mesh-like topology may promote polarization to the M2 phenotype by affecting the PI3K/AKT pathway. In conclusion, our work offers a novel method for transforming 2D nanofiber membranes into 3D scaffolds. This method boasts flexibility, allowing for the use of varied electrospun membranes and hydrogels in terms of structure and composition. It has vast potential in tissue repair and regeneration.


Subject(s)
Hydrogels , Nanofibers , Printing, Three-Dimensional , Regenerative Medicine , Tissue Engineering , Tissue Scaffolds , Nanofibers/chemistry , Tissue Scaffolds/chemistry , Tissue Engineering/methods , Regenerative Medicine/methods , Hydrogels/chemistry , Animals , Mice , Macrophages/metabolism , Extracellular Matrix/metabolism , Extracellular Matrix/chemistry , RAW 264.7 Cells , Humans
3.
Nano Lett ; 23(3): 1044-1051, 2023 Feb 08.
Article in English | MEDLINE | ID: mdl-36655867

ABSTRACT

Electrospun fibers have received wide attention in various fields ranging from the environment and healthcare to energy. However, nearly all electrospun fibers suffer from a pseudonanoscale diameter, resulting in fabricated membranes with a large pore size and limited separation performance. Herein, we report a novel strategy based on manipulating the equilibrium of stretch deformation and phase separation of electrospun jets to develop true-nanoscale fibers for effective selective separation. The obtained fibers present true-nanoscale diameters (∼67 nm), 1 order of magnitude less than those of common electrospun fibers, which endows the resultant membranes with remarkable nanostructural characteristics and separation performances in areas of protective textiles (waterproofness of 113 kPa and breathability of 4.1 kg m-2 d-1), air filtration (efficiency of 99.3% and pressure drop of 127.4 Pa), and water purification (flux of 81.5 kg m-2 h-1 and salt rejection of 99.94%). This work may shed light on developing high-performance separation materials for various applications.

4.
Small ; 19(26): e2301200, 2023 06.
Article in English | MEDLINE | ID: mdl-36942696

ABSTRACT

Techniques beyond crystal engineering are critical for manufacturing covalent organic frameworks (COFs) and to explore them for advanced applications. However, COFs are normally obtained as insoluble, unmeltable, and thus nonprocessible microcrystalline powders. Therefore, it is a significant challenge to implement COFs into larger architectures and structural control on different length scales. Herein, a facile strategy is presented to prepare flexible COF nanofiber membranes by in-situ growth of COFs on polyacrylonitrile (PAN) nanofiber substrates via a reversible polycondensation-termination approach. The obtained PAN@COF nanofiber membranes with vertically aligned COF nanoplates combine a large functional surface with efficient mass transport, thus making it a promising adsorbent, for example, for water purification. The antibiotic pollutant ofloxacin (OFX) is removed from water with a superior absorption capacity of ≈236 mg g-1 and removal efficiency as high as 98%. The here presented in-situ growth of COFs on nanofiber membranes can be extended to various Schiff base-derived COF materials with different compositions, providing a highly efficient way to construct flexible COF-based membranes for several applications.


Subject(s)
Metal-Organic Frameworks , Nanofibers , Anti-Bacterial Agents , Adsorption , Commerce
5.
Small ; 19(33): e2207330, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37078831

ABSTRACT

Electrospinning technology has attracted extensive attention in recent decades and is widely used to prepare nanofiber membranes from hundreds of polymers. Polyvinyl formal acetal (PVFA), as a polymer with excellent properties such as high strength and heat resistance, is not reported on the electrospun water treatment membrane. In this paper, the preparation process of electrospun PVFA nanofiber membrane is optimized, and the effect of sodium chloride (NaCl) addition on the physical and mechanical properties and microfiltration performance of nanofiber membrane is also explored. And the hydrophobic PVFA nanofiber filter layer is then combined with a hydrophilic nonwoven support layer to construct a composite micro/nanofiber membrane with a pore-size gradient structure and a hydrophilic/hydrophobic asymmetric structure. Finally, unidirectional water transport and water treatment performance are further investigated. The results show that the tensile breaking strength of the composite membrane can reach up to 37.8 MPa, the retention rate for particles with the size of 0.1-0.3 µm is 99.7%, and the water flux is 513.4 L m-2 h-1 under the hydrostatic pressure. Moreover, it still has a retention of more than 98% after three repeated uses. Therefore, the electrospun PVFA composite membrane has a great potential in microfiltration.

6.
Small ; 18(21): e2201470, 2022 May.
Article in English | MEDLINE | ID: mdl-35460175

ABSTRACT

The properties of separators significantly affect the efficiency, stability, and safety of the lithium-based batteries. Therefore, the improvement of the separator material is critical. Polyetherketone (PEK) has excellent general properties, such as mechanical strength, chemical stability, and thermal stability. Thus, it is expected to be an optimal separator material. However, its low solubility-induced poor processibility makes it difficult to be used for nanoscale product manufacturing. In this work, the soluble precursor polymer is prepared by introducing a "protecting" group into monomer, and fabricated into nanofiber membrane, which can be converted into polyetherketone nanofiber membrane by a simple acid treatment. The membrane prepared by this chemical-induced crystallization method exhibits superior chemical, thermal stability, and mechanical strength. Li-O2 batteries with the fabricated membrane as separator have a high cycling stability (194 cycles at 200 mA g-1 and 500 mAh g-1 ). This work broadens the application field of PEK and provides a potential route for battery separators.

7.
Nanotechnology ; 33(26)2022 Apr 07.
Article in English | MEDLINE | ID: mdl-35290964

ABSTRACT

The fine particulate matter (PM) pollution has become a serious concern to public health. As the core part of PM air filters, high-performance electrostatic nanofiber membranes are urgently needed. However, the existing air filters remain challenging to further decrease the pressure drop to improve the wearer comfort. On the other hand, the rapidly disappearing static electricity of the existing electrostatic nanofiber inevitably gives rise to a relatively short service life. Here, we demonstrate a novel and enhanced electrostatic nanofiber membrane by introducing the halloysite nanotubes (HNTs) to the traditional electrospun PAN nanofiber membrane. The optimal PAN-HNTs nanofiber membrane shows a high removal efficiency of 99.54%, a low pressure drop of 39 Pa, and a high quality factor of 0.89 Pa-1. This greatly improved filtration performance can be attributed to the increased surface area and diameter of nanofiber after introducing the HNTs as additives with suitable doping concentrations. More importantly, compared with the pure PAN nanofiber membrane, the electrostatic capacity of the PAN-HNTs nanofiber membrane is significantly enhanced, which is confirmed by the leaf electroscope. After introducing the HNTs as additives, the surface of the PAN-HNTs nanofiber membrane becomes hydrophilic, which benefits for preventing foulants from attaching to the surface. We anticipate that the PAN-HNTs nanofibers as high-performance membrane air filters will bring great benefits to public health.

8.
Mar Drugs ; 20(7)2022 Jun 30.
Article in English | MEDLINE | ID: mdl-35877730

ABSTRACT

Marine collagen is an ideal material for tissue engineering due to its excellent biological properties. However, the limited mechanical properties and poor stability of marine collagen limit its application in tissue engineering. Here, collagen was extracted from the skin of tilapia (Oreochromis nilotica). Collagen-thermoplastic polyurethane (Col-TPU) fibrous membranes were prepared using tilapia collagen as a foundational material, and their physicochemical and biocompatibility were investigated. Fourier transform infrared spectroscopy results showed that thermoplastic polyurethane was successfully combined with collagen, and the triple helix structure of collagen was retained. X-ray diffraction and differential scanning calorimetry results showed relatively good compatibility between collagen and TPU.SEM results showed that the average diameter of the composite nanofiber membrane decreased with increasing thermoplastic polyurethane proportion. The mechanical evaluation and thermogravimetric analysis showed that the thermal stability and tensile properties of Col-TPU fibrous membranes were significantly improved with increasing TPU. Cytotoxicity experiments confirmed that fibrous membranes with different ratios of thermoplastic polyurethane content showed no significant toxicity to fibroblasts; Col-TPU fibrous membranes were conducive to the migration and adhesion of cells. Thus, these Col-TPU composite nanofiber membranes might be used as a potential biomaterial in tissue regeneration.


Subject(s)
Nanofibers , Tilapia , Animals , Collagen/chemistry , Collagen/pharmacology , Nanofibers/chemistry , Polyurethanes/chemistry , Tissue Engineering/methods
9.
J Environ Manage ; 301: 113908, 2022 Jan 01.
Article in English | MEDLINE | ID: mdl-34626949

ABSTRACT

The direct discharge of significant amounts of polluted water into water bodies causes adverse ecological and human health effects. This severe deterioration in water quality creates significant challenges to meet the growing demand for clean water. Therefore, the world urgently needs environmentally friendly advanced technology to overcome this global crisis. In this regard, nanofiber-based membrane filtration is a promising technique in wastewater remediation because of their huge surface area, extremely porous structure, amenable pore size/pore size distribution, variety of material choices, and flexibility to modification with other functional materials. However, despite their unique properties, fouling, poor mechanical properties, shrinkage, and deformation are major drawbacks of nanofiber membranes for treating wastewater. This review presents a comprehensive overview of nanofiber membranes' fabrication and function in water purification applications as well as providing novel approaches to overcoming/alleviating the mentioned disadvantages. The review first presents nanofiber membrane preparation methods, focusing on electrospinning as a versatile and viable technique alongside discussing the parameters controlling nanofiber morphology. Afterward, the functionalization of nanofiber membranes by combining them with other nanomaterials, such as metal and metal-oxide nanoparticles, carbon nanotubes, metal-organic frameworks, and biomolecules, were demonstrated and discussed. In addition, nanofiber membranes functionalized with microorganisms were highlighted. Finally, we introduced and discussed in detail the most relevant and recent advances in nanofiber applications in wastewater treatment in the context of removing different pollutants (e.g., heavy metals, nutrients, radioactive elements, pharmaceuticals, and personal care products, dyes, and pesticides). Moreover, the promising antimicrobial ability of nanofiber membranes in removing microorganisms from wastewater has been fully underscored. We believe this comprehensive review could provide researchers with preliminary data and guide both researchers and producers engaged in the nanofiber membrane industry, letting them focus on the research gaps in wastewater treatment.


Subject(s)
Metals, Heavy , Nanofibers , Nanotubes, Carbon , Water Purification , Humans , Wastewater
10.
Molecules ; 27(21)2022 Oct 22.
Article in English | MEDLINE | ID: mdl-36363985

ABSTRACT

Simvastatin (SIM) particles are liposoluble drugs with large particle sizes, resulting in poor compatibility with electrospun polycaprolactone (PCL)/polyethylene glycol (PEG) nanofibers, so that part of them will be exposed to the electrospun nanofiber surface, which is easy to cause the burst release of drugs. Therefore, in this paper, stearic acid (SA) with good biocompatibility was innovatively added to increase the dispersion uniformity of SIM in the spinning solution, thus improving the performances of SIM-loaded PCL/PEG nanofiber membranes (NFMs). Accordingly, the effects of SA addition on the morphologies, mechanical properties, wettability, and drug release properties of the SIM-loaded NFMs were studied. The results showed that after SIM was dissolved in SA solution, the particle size of SIM was significantly reduced and could be evenly dispersed in the polymer spinning solution, thus obtaining the SIM-loaded composite NFMs with the best morphology and performance.


Subject(s)
Nanofibers , Polyethylene Glycols , Simvastatin , Delayed-Action Preparations , Polyesters , Drug Liberation
11.
Ecotoxicol Environ Saf ; 162: 354-364, 2018 Oct 30.
Article in English | MEDLINE | ID: mdl-30007185

ABSTRACT

Safety of drinking-water is an urgent for human health. It is critical to promote the cheap technologies for water purification to guarantee the free-pathogens-drinking water. The present study has been investigated the antibacterial activity of polyacrylonitrile (PAN) nanofibers membranes which decorated by Ag, CuO or ZnO nanoparticles as bactericides. The hybrid nanofiber composites were fabricated by electrospinning technique and the obtained membranes were characterized using SEM, EDX and FTIR. Their antibacterial activity was evaluated against E. coli and S. aureus. The data was revealed that the functionalization was successfully obtained by the incorporation of nanoparticles as an additive into the polymer solution which associated many superior properties. Continuous PAN membrane fibers with average diameters from 170 to 250 nm without any beads of plain and its hybrid membrane composites were obtained. The antimicrobial activity was estimated using both disk diffusion tests and growth kinetic models. The antibacterial activity was improved as the concentrations of nanoparticles enhanced. This study provided the real solution for production and inactivation of bacteria which related to the impregnated the PAN nanofibers membrane with Ag, CuO or ZnO NPs. The results have significant implications for finding a safe and an inexpensive path to solve the problems of drinking water, especially in the developing countries.


Subject(s)
Acrylic Resins/chemistry , Anti-Bacterial Agents , Drinking Water/chemistry , Nanofibers , Water Purification/methods , Copper/chemistry , Escherichia coli , Humans , Membranes, Artificial , Silver/chemistry , Staphylococcus aureus , Zinc Oxide/chemistry
12.
Small ; 13(4)2017 Jan.
Article in English | MEDLINE | ID: mdl-27717131

ABSTRACT

Directional fluid motion driven by the surface property of solid substrate is highly desirable for manipulating microfluidic liquid and collecting water from humid air. Studies on such liquid motion have been confined to dense material surfaces such as flat panels and single filaments. Recently, directional fluid transport through the thickness of thin porous materials has been reported by several research groups. Their studies not only attract fundamental, experimental and theoretical interest but also open novel application opportunities. This review article summarizes research progress in directional fluid transport across thin porous materials. It focuses on the materials preparation, basic properties associated with directional fluid transport in thin porous media, and their application development. The porous substrates, type of transporting fluids, structure-property attributes, and possible directional fluid transport mechanism are discussed. A perspective for future development in this field is proposed.

13.
Int J Biol Macromol ; 259(Pt 1): 129160, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38181908

ABSTRACT

The healing of wounds in diabetics is commonly delayed by recurring infections and persistent inflammation at the wound site. For this reason, we conducted a study using the electrospinning technique to create nanofiber membranes consisting of polyvinylpyrrolidone/chitosan (PVP/CS) and incorporated dihydromyricetin (DHM) into them. Infrared Fourier transform spectroscopy and scanning electron microscopy were used to analyze the nanofiber membrane. Experimental results in vitro have shown that PVP/CS/DHM has exceptional properties such as hydrophilicity, porosity, water vapor transport rate, antioxidant capacity, and antibacterial activity. Moreover, our study has demonstrated that the application of PVP/CS/DHM can significantly improve wound healing in diabetic mice. After an 18-day treatment period, a remarkable wound closure rate of 88.63 ± 1.37 % was achieved. The in vivo experiments revealed that PVP/CS/DHM can promote diabetic wound healing by suppressing the activation of TLR4/MyD88/NF-κB signaling pathway and enhancing autophagy-related protein as well as CD31 and HIF-1α expression in skin tissues. This study showed that PVP/CS/DHM is a promising wound dressing.


Subject(s)
Chitosan , Diabetes Mellitus, Experimental , Flavonols , Nanofibers , Mice , Animals , Chitosan/chemistry , Povidone , Diabetes Mellitus, Experimental/drug therapy , Nanofibers/chemistry , Wound Healing , Anti-Bacterial Agents/chemistry , Anti-Inflammatory Agents
14.
Materials (Basel) ; 17(16)2024 Aug 21.
Article in English | MEDLINE | ID: mdl-39203312

ABSTRACT

In this study, polyimide (PI) and polysulfonamide (PSA) were used as base materials, and polyethylene glycol (PEG) was added to successfully prepare PI/PSA/PEG nanofiber membranes through electrospinning technology. Subsequently, water etching was performed on the membranes, utilizing the water solubility of PEG to form the rough wrinkled structure, further enhancing the surface hydrophobicity. The experimental results showed that under the conditions of a spinning voltage of 10 kV, PI/PSA mass fraction of 15 wt.%, and PEG-to-PI/PSA mass ratio of 1/3, the obtained fiber membranes exhibit a uniform morphology (an average diameter of 0.73 µm) and excellent hydrophobicity (the initial water contact angle (WCA) reaching 130.4°). After PEG water etching, the surface of the PI/PSA/PEG hydrophobic membranes formed the rough wrinkled structure, which not only improved their mechanical properties but also further enhanced their hydrophobicity (the initial WCA increasing to 137.9°). Hence, fiber membranes are expected to have broad application prospects in fields such as waterproofing and moisture permeability.

15.
Int J Biol Macromol ; 276(Pt 2): 133966, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39029828

ABSTRACT

Active packaging can efficiently enhance the shelf life of food, realizing the encapsulation and effective release of antibacterial agents and antioxidants. Zein is a natural protein derived from corn, widely used in food packaging. In this work, zein-based nanofiber membranes (NFMs) with beaded structures for food packaging were fabricated in batch using a self-made free surface electrospinning. The characteristics of NFMs were investigated in terms of their morphologies, structures and properties. The results illustrated that the antioxidant activity of NFMs was significantly improved after adding licorice extracts. Moreover, after adding the eugenol to the zein/licorice extract NFMs, zein/licorice extract/eugenol (ZLE) NFM had outstanding antibacterial activities against Staphylococcus aureus and Escherichia coli, which effectively prolonged the shelf-life of the grapes when it was used to package grapes. It proved that ZLE NFM had great potential in food packaging applications.


Subject(s)
Anti-Bacterial Agents , Antioxidants , Escherichia coli , Food Packaging , Nanofibers , Staphylococcus aureus , Zein , Zein/chemistry , Food Packaging/methods , Nanofibers/chemistry , Staphylococcus aureus/drug effects , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Escherichia coli/drug effects , Antioxidants/pharmacology , Antioxidants/chemistry , Membranes, Artificial , Plant Extracts/chemistry , Plant Extracts/pharmacology , Eugenol/chemistry , Eugenol/pharmacology
16.
Biomimetics (Basel) ; 9(2)2024 Jan 25.
Article in English | MEDLINE | ID: mdl-38392116

ABSTRACT

New advances in materials science and medicine have enabled the development of new and increasingly sophisticated biomaterials. One of the most widely used biopolymers is polycaprolactone (PCL) because it has properties suitable for biomedical applications, tissue engineering scaffolds, or drug delivery systems. However, PCL scaffolds do not have adequate bioactivity, and therefore, alternatives have been studied, such as mixing PCL with bioactive polymers such as gelatin, to promote cell growth. Thus, this work will deal with the fabrication of nanofiber membranes by means of the electrospinning technique using PCL-based solutions (12 wt.% and 20 wt.%) and PCL with gelatin (12 wt.% and 8 wt.%, respectively). Formic acid and acetic acid, as well as mixtures of both in different proportions, have been used to prepare the preliminary solutions, thus supporting the electrospinning process by controlling the viscosity of the solutions and, therefore, the size and uniformity of the fibers. The physical properties of the solutions and the morphological, mechanical, and thermal properties of the membranes were evaluated. Results demonstrate that it is possible to achieve the determined properties of the samples with an appropriate selection of polymer concentrations as well as solvents.

17.
Acta Biomater ; 2024 Sep 23.
Article in English | MEDLINE | ID: mdl-39322044

ABSTRACT

Post-traumatic tendon adhesions significantly affect patient prognosis and quality of life, primarily stemming from the absence of effective preventive and curative measures in clinical practice. Current treatment modalities, including surgical excision and non-steroidal anti-inflammatory drugs, frequently exhibit limited efficacy or result in severe side effects. Consequently, the use of anti-adhesive barriers for drug delivery and implantation at the injury site to address peritendinous adhesion (PA) has attracted considerable attention. Electrospun nanofiber membranes (ENMs) have been extensively employed as drug-delivery platforms. In this study, we fabricated a polylactic acid (PLA)-dipyridamole (DP)-graft copolymer ENM called PLC-DP. This membrane exhibits enzyme-sensitive features, allowing more controlled and sustained drug release compared with conventional drug-loaded ENMs. In experiments, PLC-DP implantation reduced tissue adhesion by 47 % relative to the control group while not adversely affecting tendon healing. Mechanistically, PLC-DP effectively activates the FXYD domain containing ion-transport regulator 2 (FXYD2) protein, thereby downregulating the fibroblast-transforming growth factor beta (TGF-ß)/Smad3 signaling pathway. PLC-DP leverages the anti-adhesive properties of DP and the enzyme-sensitive characteristics of graft copolymers, providing a promising approach for the future clinical treatment and prevention of PA. STATEMENT OF SIGNIFICANCE: Peritendinous adhesions (PA) are a common and disabling condition that seriously affects the prognosis and quality of life of post-trauma patients. Current treatments often have limited efficacy or severe side effects, leaving a serious gap in clinical practice. We developed a significant biomaterial, poly(lactic acid)-dipyridamole graft copolymer electrospun nanofibrous membrane (PLC-DP), specifically for PA inhibition. In addition, this study uniquely combines dipyridamole, an anti-adhesive agent, and enzyme-sensitive copolymers in electrospun nanofibrous membrane. Unlike conventional drug-loaded electrospun nanofibrous membranes, PLC-DPs have enzyme-sensitive drug properties that allow for sustained drug release on demand. Our experiments showed that implantation of PLC-DP was effective in reducing tissue adhesions by 47 % without affecting tendon healing. We elucidated the mechanism behind this phenomenon, suggesting that PCD activates FXYD2 to inhibit TGF-ß-induced expression of Col III, which is a key factor in PA development.

18.
Regen Biomater ; 11: rbad114, 2024.
Article in English | MEDLINE | ID: mdl-38313825

ABSTRACT

The presence of excessive reactive oxygen species (ROS) at a skin wound site is an important factor affecting wound healing. ROS scavenging, which regulates the ROS microenvironment, is essential for wound healing. In this study, we used novel electrospun PCL/gelatin/arbutin (PCL/G/A) nanofibrous membranes as wound dressings, with PCL/gelatin (PCL/G) as the backbone, and plant-derived arbutin (hydroquinone-ß-d-glucopyranoside, ARB) as an effective antioxidant that scavenges ROS and inhibits bacterial infection in wounds. The loading of ARB increased the mechanical strength of the nanofibres, with a water vapour transmission rate of more than 2500 g/(m2 × 24 h), and the water contact angle decreased, indicating that hydrophilicity and air permeability were significantly improved. Drug release and degradation experiments showed that the nanofibre membrane controlled the drug release and exhibited favourable degradability. Haemolysis experiments showed that the PCL/G/A nanofibre membranes were biocompatible, and DPPH and ABTS+ radical scavenging experiments indicated that PCL/G/A could effectively scavenge ROS to reflect the antioxidant activity. In addition, haemostasis experiments showed that PCL/G/A had good haemostatic effects in vitro and in vivo. In vivo animal wound closure and histological staining experiments demonstrated that PCL/G/A increased collagen deposition and remodelled epithelial tissue regeneration while showing good in vivo biocompatibility and non-toxicity. In conclusion, we successfully prepared a multifunctional wound dressing, PCL/G/A, for skin wound healing and investigated its potential role in wound healing, which is beneficial for the clinical translational application of phytomedicines.

19.
Polymers (Basel) ; 16(17)2024 Aug 27.
Article in English | MEDLINE | ID: mdl-39274057

ABSTRACT

Temperature and pressure sensors currently encounter challenges such as slow response times, large sizes, and insufficient sensitivity. To address these issues, we developed tetraphenylethylene (TPE)-doped polyvinylidene fluoride (PVDF) nanofiber membranes using electrospinning, with process parameters optimized through a convolutional neural network (CNN). We systematically analyzed the effects of PVDF concentration, spinning voltage, tip-to-collector distance, and flow rate on fiber morphology and diameter. The CNN model achieved high predictive accuracy, resulting in uniform and smooth nanofibers under optimal conditions. Incorporating TPE enhanced the hydrophobicity and mechanical properties of the nanofibers. Additionally, the fluorescent properties of the TPE-doped nanofibers remained stable under UV exposure and exhibited significant linear responses to temperature and pressure variations. The nanofibers demonstrated a temperature sensitivity of -0.976 gray value/°C and pressure sensitivity with an increase in fluorescence intensity from 537 a.u. to 649 a.u. under 600 g pressure. These findings highlight the potential of TPE-doped PVDF nanofiber membranes for advanced temperature and pressure sensing applications.

20.
Chemosphere ; 349: 140866, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38056719

ABSTRACT

This study is dedicated to the enhancement of electrospun polyacrylonitrile (PAN) nanofiber membranes for their application in membrane bioreactor (MBR) processes. The improvement is achieved through the incorporation of graphitic carbon nitride nanotubes/carbon dots (g-C3N4 NT/CDs) and subsequent heat post-treatments at varying temperatures. Notably, the hot-pressing methodology effectively mitigates surface roughness and significantly reduces issues related to peeling during nanofiber experimentation. Our results demonstrate that the introduction of 0.5 wt% of g-C3N4 NT/CDs leads to a substantial enhancement in water flux. In particular, nanocomposite membranes subjected to hot-pressing at 90 °C for 10 min exhibited an impressive flux recovery ratio (FRR) of 70%. Furthermore, the heat-treated nanocomposite membranes exhibited remarkable antifouling properties and significantly reduced fouling rates when compared to their heat-treated bare counterparts. This study underscores the noteworthy potential of g-C3N4 NT/CDs-modified PAN nanofiber membranes to substantially elevate MBR performance, firmly positioning them as highly promising candidates for critical applications in the domains of water and wastewater treatment. However, it is imperative to underscore that the existing written material necessitates a comprehensive overhaul to align with the provided structural framework.


Subject(s)
Nanofibers , Nanotubes , Carbon , Nanofibers/chemistry , Water
SELECTION OF CITATIONS
SEARCH DETAIL