Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 365
Filter
1.
Mol Cell ; 73(5): 971-984.e5, 2019 03 07.
Article in English | MEDLINE | ID: mdl-30661983

ABSTRACT

Both the timing and kinetics of neurotransmitter release depend on the positioning of clustered Ca2+ channels in active zones to docked synaptic vesicles on presynaptic plasma membranes. However, how active zones form is not known. Here, we show that RIM and RIM-BP, via specific multivalent bindings, form dynamic and condensed assemblies through liquid-liquid phase separation. Voltage-gated Ca2+ channels (VGCCs), via C-terminal-tail-mediated direct binding to both RIM and RIM-BP, can be enriched to the RIM and RIM-BP condensates. We further show that RIM and RIM-BP, together with VGCCs, form dense clusters on the supported lipid membrane bilayers via phase separation. Therefore, RIMs and RIM-BPs are plausible organizers of active zones, and the formation of RIM and RIM-BP condensates may cluster VGCCs into nano- or microdomains and position the clustered Ca2+ channels with Ca2+ sensors on docked vesicles for efficient and precise synaptic transmissions.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Calcium Channels, N-Type/metabolism , GTP-Binding Proteins/metabolism , Intracellular Signaling Peptides and Proteins/metabolism , Presynaptic Terminals/metabolism , Synaptic Membranes/metabolism , Adaptor Proteins, Signal Transducing/genetics , Animals , Binding Sites , Calcium Channels, N-Type/genetics , GTP-Binding Proteins/genetics , Intrinsically Disordered Proteins/genetics , Intrinsically Disordered Proteins/metabolism , Kinetics , Membrane Microdomains/genetics , Membrane Microdomains/metabolism , Mice , Protein Binding , Protein Interaction Domains and Motifs , Rats , SNARE Proteins/genetics , SNARE Proteins/metabolism , Solubility , Synaptic Membranes/genetics , Synaptic Transmission
2.
Proc Natl Acad Sci U S A ; 121(26): e2315100121, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38889143

ABSTRACT

Synapses containing γ-aminobutyric acid (GABA) constitute the primary centers for inhibitory neurotransmission in our nervous system. It is unclear how these synaptic structures form and align their postsynaptic machineries with presynaptic terminals. Here, we monitored the cellular distribution of several GABAergic postsynaptic proteins in a purely glutamatergic neuronal culture derived from human stem cells, which virtually lacks any vesicular GABA release. We found that several GABAA receptor (GABAAR) subunits, postsynaptic scaffolds, and major cell-adhesion molecules can reliably coaggregate and colocalize at even GABA-deficient subsynaptic domains, but remain physically segregated from glutamatergic counterparts. Genetic deletions of both Gephyrin and a Gephyrin-associated guanosine di- or triphosphate (GDP/GTP) exchange factor Collybistin severely disrupted the coassembly of these postsynaptic compositions and their proper apposition with presynaptic inputs. Gephyrin-GABAAR clusters, developed in the absence of GABA transmission, could be subsequently activated and even potentiated by delayed supply of vesicular GABA. Thus, molecular organization of GABAergic postsynapses can initiate via a GABA-independent but Gephyrin-dependent intrinsic mechanism.


Subject(s)
Carrier Proteins , Membrane Proteins , Presynaptic Terminals , Receptors, GABA-A , Synapses , gamma-Aminobutyric Acid , Humans , Membrane Proteins/metabolism , Membrane Proteins/genetics , gamma-Aminobutyric Acid/metabolism , Receptors, GABA-A/metabolism , Receptors, GABA-A/genetics , Carrier Proteins/metabolism , Carrier Proteins/genetics , Presynaptic Terminals/metabolism , Synapses/metabolism , Synaptic Transmission/physiology , Rho Guanine Nucleotide Exchange Factors/metabolism , Rho Guanine Nucleotide Exchange Factors/genetics
3.
Proc Natl Acad Sci U S A ; 121(16): e2321447121, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38593076

ABSTRACT

The SNAP receptor (SNARE) proteins syntaxin-1, SNAP-25, and synaptobrevin mediate neurotransmitter release by forming tight SNARE complexes that fuse synaptic vesicles with the plasma membranes in microseconds. Membrane fusion is generally explained by the action of proteins on macroscopic membrane properties such as curvature, elastic modulus, and tension, and a widespread model envisions that the SNARE motifs, juxtamembrane linkers, and C-terminal transmembrane regions of synaptobrevin and syntaxin-1 form continuous helices that act mechanically as semirigid rods, squeezing the membranes together as they assemble ("zipper") from the N to the C termini. However, the mechanism underlying fast SNARE-induced membrane fusion remains unknown. We have used all-atom molecular dynamics simulations to investigate this mechanism. Our results need to be interpreted with caution because of the limited number and length of the simulations, but they suggest a model of membrane fusion that has a natural physicochemical basis, emphasizes local molecular events over general membrane properties, and explains extensive experimental data. In this model, the central event that initiates fast (microsecond scale) membrane fusion occurs when the SNARE helices zipper into the juxtamembrane linkers which, together with the adjacent transmembrane regions, promote encounters of acyl chains from both bilayers at the polar interface. The resulting hydrophobic nucleus rapidly expands into stalk-like structures that gradually progress to form a fusion pore, aided by the SNARE transmembrane regions and without clearly discernible intermediates. The propensity of polyunsaturated lipids to participate in encounters that initiate fusion suggests that these lipids may be important for the high speed of neurotransmitter release.


Subject(s)
Membrane Fusion , SNARE Proteins , SNARE Proteins/metabolism , Molecular Dynamics Simulation , R-SNARE Proteins , Syntaxin 1 , Neurotransmitter Agents , Lipids
4.
Proc Natl Acad Sci U S A ; 120(13): e2300363120, 2023 03 28.
Article in English | MEDLINE | ID: mdl-36961922

ABSTRACT

α- and ß-neurexins are extensively alternatively spliced, presynaptic cell-adhesion molecules that are thought to organize synapse assembly. However, recent data revealed that, in the hippocampus in vivo, the deletion of one neurexin isoform, Nrxn2, surprisingly increased excitatory synapse numbers and enhanced their presynaptic release probability, suggesting that Nrxn2 restricts, instead of enabling, synapse assembly. To delineate the synaptic function and mechanism of action of Nrxn2, we examined cultured hippocampal neurons as a reduced system. In heterologous synapse formation assays, different alternatively spliced Nrxn2ß isoforms robustly promoted synapse assembly similar to Nrxn1ß and Nrxn3ß, consistent with a general synaptogenic function of neurexins. Deletion of Nrxn2 from cultured hippocampal neurons, however, caused a significant increase in synapse density and release probability, replicating the in vivo data that suggested a synapse-restricting function. Rescue experiments revealed that two of the four Nrxn2ß splice variants (Nrxn2ß-SS4+/SS5- and Nrxn2ß-SS4+/SS5+) reversed the increase in synapse density in Nrxn2-deficient neurons, whereas only one of the four Nrxn2ß splice variants (Nrxn2ß-SS4+/SS5+) normalized the increase in release probability in Nrxn2-deficient neurons. Thus, a subset of Nrxn2 splice variants restricts synapse numbers and restrains their release probability in cultured neurons.


Subject(s)
Alternative Splicing , Synapses , Synapses/metabolism , Hippocampus/metabolism , Cell Adhesion Molecules/metabolism , Neurons/metabolism , Protein Isoforms/genetics , Protein Isoforms/metabolism , Neural Cell Adhesion Molecules/genetics , Neural Cell Adhesion Molecules/metabolism
5.
Proc Natl Acad Sci U S A ; 120(45): e2311484120, 2023 Nov 07.
Article in English | MEDLINE | ID: mdl-37903271

ABSTRACT

The synaptic vesicle protein Synaptophysin (Syp) has long been known to form a complex with the Vesicle associated soluble N-ethylmaleimide sensitive fusion protein attachment receptor (v-SNARE) Vesicle associated membrane protein (VAMP), but a more specific molecular function or mechanism of action in exocytosis has been lacking because gene knockouts have minimal effects. Utilizing fully defined reconstitution and single-molecule measurements, we now report that Syp functions as a chaperone that determines the number of SNAREpins assembling between a ready-release vesicle and its target membrane bilayer. Specifically, Syp directs the assembly of 12 ± 1 SNAREpins under each docked vesicle, even in the face of an excess of SNARE proteins. The SNAREpins assemble in successive waves of 6 ± 1 and 5 ± 2 SNAREpins, respectively, tightly linked to oligomerization of and binding to the vesicle Ca++ sensor Synaptotagmin. Templating of 12 SNAREpins by Syp is likely the direct result of its hexamer structure and its binding of VAMP2 dimers, both of which we demonstrate in detergent extracts and lipid bilayers.


Subject(s)
Membrane Fusion , Synaptic Vesicles , Synaptophysin/genetics , Synaptophysin/metabolism , Membrane Fusion/physiology , Synaptic Vesicles/metabolism , Synaptotagmins/metabolism , SNARE Proteins/metabolism , Exocytosis/physiology
6.
Proc Natl Acad Sci U S A ; 120(34): e2309516120, 2023 08 22.
Article in English | MEDLINE | ID: mdl-37590407

ABSTRACT

Here, we introduce the full functional reconstitution of genetically validated core protein machinery (SNAREs, Munc13, Munc18, Synaptotagmin, and Complexin) for synaptic vesicle priming and release in a geometry that enables detailed characterization of the fate of docked vesicles both before and after release is triggered with Ca2+. Using this setup, we identify new roles for diacylglycerol (DAG) in regulating vesicle priming and Ca2+-triggered release involving the SNARE assembly chaperone Munc13. We find that low concentrations of DAG profoundly accelerate the rate of Ca2+-dependent release, and high concentrations reduce clamping and permit extensive spontaneous release. As expected, DAG also increases the number of docked, release-ready vesicles. Dynamic single-molecule imaging of Complexin binding to release-ready vesicles directly establishes that DAG accelerates the rate of SNAREpin assembly mediated by chaperones, Munc13 and Munc18. The selective effects of physiologically validated mutations confirmed that the Munc18-Syntaxin-VAMP2 "template" complex is a functional intermediate in the production of primed, release-ready vesicles, which requires the coordinated action of Munc13 and Munc18.


Subject(s)
Diglycerides , Synaptic Vesicles , Humans , Exocytosis , Synaptic Transmission , Synaptotagmins , Blister
7.
Semin Cell Dev Biol ; 139: 3-12, 2023 04.
Article in English | MEDLINE | ID: mdl-35918217

ABSTRACT

Alzheimer's disease (AD) is a neurodegenerative disease characterized by the progressive deterioration of cognitive functions. Due to the extended global life expectancy, the prevalence of AD is increasing among aging populations worldwide. While AD is a multifactorial disease, synaptic dysfunction is one of the major neuropathological changes that occur early in AD, before clinical symptoms appear, and is associated with the progression of cognitive deterioration. However, the underlying pathological mechanisms leading to this synaptic dysfunction remains unclear. Recent large-scale genomic analyses have identified more than 40 genetic risk factors that are associated with AD. In this review, we discuss the functional roles of these genes in synaptogenesis and synaptic functions under physiological conditions, and how their functions are dysregulated in AD. This will provide insights into the contributions of these encoded proteins to synaptic dysfunction during AD pathogenesis.


Subject(s)
Alzheimer Disease , Cognition Disorders , Neurodegenerative Diseases , Humans , Alzheimer Disease/metabolism , Synapses/genetics , Synapses/metabolism , Neurodegenerative Diseases/metabolism , Cognition Disorders/pathology , Risk Factors
8.
EMBO Rep ; 24(10): e56808, 2023 Oct 09.
Article in English | MEDLINE | ID: mdl-37642556

ABSTRACT

Nervous system function rests on the formation of functional synapses between neurons. We have identified TRMT9B as a new regulator of synapse formation and function in Drosophila. TRMT9B has been studied for its role as a tumor suppressor and is one of two metazoan homologs of yeast tRNA methyltransferase 9 (Trm9), which methylates tRNA wobble uridines. Whereas Trm9 homolog ALKBH8 is ubiquitously expressed, TRMT9B is enriched in the nervous system. However, in the absence of animal models, TRMT9B's role in the nervous system has remained unstudied. Here, we generate null alleles of TRMT9B and find it acts postsynaptically to regulate synaptogenesis and promote neurotransmission. Through liquid chromatography-mass spectrometry, we find that ALKBH8 catalyzes canonical tRNA wobble uridine methylation, raising the question of whether TRMT9B is a methyltransferase. Structural modeling studies suggest TRMT9B retains methyltransferase function and, in vivo, disruption of key methyltransferase residues blocks TRMT9B's ability to rescue synaptic overgrowth, but not neurotransmitter release. These findings reveal distinct roles for TRMT9B in the nervous system and highlight the significance of tRNA methyltransferase family diversification in metazoans.


Subject(s)
Saccharomyces cerevisiae , tRNA Methyltransferases , Animals , tRNA Methyltransferases/genetics , tRNA Methyltransferases/metabolism , Methylation , Saccharomyces cerevisiae/genetics , Uridine/chemistry , Uridine/genetics , Uridine/metabolism , RNA, Transfer/genetics , RNA, Transfer/metabolism
9.
Brain ; 2024 May 03.
Article in English | MEDLINE | ID: mdl-38701344

ABSTRACT

The implication of 5-hydroxytryptamine 2C receptor (5-HT2CR) in depression is a topic of debate, and the underlying mechanisms remain largely unclear. We now elucidate hippocampal excitation-inhibition (E/I) balance underlies the regulatory effects of 5-HT2CR in depression. Molecular biological analyses showed that chronic mild stress (CMS) reduced the expression of 5-HT2CR in hippocampus. We revealed that inhibition of 5-HT2CR induced depressive-like behaviors, reduced GABA release and shifted the E/I balance towards excitation in CA3 pyramidal neurons by using behavioral analyses, microdialysis coupled with mass spectrum, and electrophysiological recording. Moreover, 5-HT2CR modulated neuronal nitric oxide synthase (nNOS)-carboxy-terminal PDZ ligand of nNOS (CAPON) interaction through influencing intracellular Ca2+ release, as determined by fiber photometry and coimmunoprecipitation. Notably, disruption of nNOS-CAPON by specific small molecule compound ZLc-002 or AAV-CMV-CAPON-125C-GFP, abolished 5-HT2CR inhibition-induced depressive-like behaviors, as well as the impairment in soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) complex assembly-mediated GABA vesicle release and a consequent E/I imbalance. Importantly, optogenetic inhibition of CA3 GABAergic neurons prevented the effects of AAV-CMV-CAPON-125C-GFP on depressive behaviors in the presence of 5-HT2CR antagonist. Conclusively, our findings disclose the regulatory role of 5-HT2CR in depressive-like behaviors and highlight the hippocampal nNOS-CAPON coupling-triggered E/I imbalance as a pivotal cellular event underpinning the behavioral consequences of 5-HT2CR inhibition.

10.
Proc Natl Acad Sci U S A ; 119(38): e2208337119, 2022 09 20.
Article in English | MEDLINE | ID: mdl-36103579

ABSTRACT

Synchronous release at neuronal synapses is accomplished by a machinery that senses calcium influx and fuses the synaptic vesicle and plasma membranes to release neurotransmitters. Previous studies suggested the calcium sensor synaptotagmin (Syt) is a facilitator of vesicle docking and both a facilitator and inhibitor of fusion. On phospholipid monolayers, the Syt C2AB domain spontaneously oligomerized into rings that are disassembled by Ca2+, suggesting Syt rings may clamp fusion as membrane-separating "washers" until Ca2+-mediated disassembly triggers fusion and release [J. Wang et al., Proc. Natl. Acad. Sci. U.S.A. 111, 13966-13971 (2014)].). Here, we combined mathematical modeling with experiment to measure the mechanical properties of Syt rings and to test this mechanism. Consistent with experimental results, the model quantitatively recapitulates observed Syt ring-induced dome and volcano shapes on phospholipid monolayers and predicts rings are stabilized by anionic phospholipid bilayers or bulk solution with ATP. The selected ring conformation is highly sensitive to membrane composition and bulk ATP levels, a property that may regulate vesicle docking and fusion in ATP-rich synaptic terminals. We find the Syt molecules hosted by a synaptic vesicle oligomerize into a halo, unbound from the vesicle, but in proximity to sufficiently phosphatidylinositol 4,5-bisphosphate (PIP2)-rich plasma membrane (PM) domains, the PM-bound trans Syt ring conformation is preferred. Thus, the Syt halo serves as landing gear for spatially directed docking at PIP2-rich sites that define the active zones of exocytotic release, positioning the Syt ring to clamp fusion and await calcium. Our results suggest the Syt ring is both a Ca2+-sensitive fusion clamp and a high-fidelity sensor for directed docking.


Subject(s)
Synaptic Vesicles , Synaptotagmin I , Adenosine Triphosphate/metabolism , Calcium/metabolism , Phosphatidylinositol 4,5-Diphosphate/chemistry , Synaptic Vesicles/metabolism , Synaptotagmin I/chemistry
11.
J Neurosci ; 43(9): 1475-1491, 2023 03 01.
Article in English | MEDLINE | ID: mdl-36732068

ABSTRACT

Synaptotagmin 9 (SYT9) is a tandem C2 domain Ca2+ sensor for exocytosis in neuroendocrine cells; its function in neurons remains unclear. Here, we show that, in mixed-sex cultures, SYT9 does not trigger rapid synaptic vesicle exocytosis in mouse cortical, hippocampal, or striatal neurons, unless it is massively overexpressed. In striatal neurons, loss of SYT9 reduced the frequency of spontaneous neurotransmitter release events (minis). We delved into the underlying mechanism and discovered that SYT9 was localized to dense-core vesicles that contain substance P (SP). Loss of SYT9 impaired SP release, causing the observed decrease in mini frequency. This model is further supported by loss of function mutants. Namely, Ca2+ binding to the C2A domain of SYT9 triggered membrane fusion in vitro, and mutations that disrupted this activity abolished the ability of SYT9 to regulate both SP release and mini frequency. We conclude that SYT9 indirectly regulates synaptic transmission in striatal neurons by controlling SP release.SIGNIFICANCE STATEMENT Synaptotagmin 9 (SYT9) has been described as a Ca2+ sensor for dense-core vesicle (DCV) exocytosis in neuroendocrine cells, but its role in neurons remains unclear, despite widespread expression in the brain. This article examines the role of SYT9 in synaptic transmission across cultured cortical, hippocampal, and striatal neuronal preparations. We found that SYT9 regulates spontaneous neurotransmitter release in striatal neurons by serving as a Ca2+ sensor for the release of the neuromodulator substance P from DCVs. This demonstrates a novel role for SYT9 in neurons and uncovers a new field of study into neuromodulation by SYT9, a protein that is widely expressed in the brain.


Subject(s)
Substance P , Synaptic Vesicles , Animals , Mice , Synaptotagmins/metabolism , Substance P/metabolism , Synaptic Vesicles/metabolism , Synaptic Transmission/physiology , Neurons/metabolism , Exocytosis , Neurotransmitter Agents/metabolism , Synaptotagmin I/metabolism , Calcium/metabolism
12.
J Physiol ; 2024 Jul 21.
Article in English | MEDLINE | ID: mdl-39034608

ABSTRACT

The synaptic vesicle (SV) cycle ensures the release of neurotransmitters and the replenishment of SVs to sustain neuronal activity. Multiple endocytosis and sorting pathways contribute to the recapture of the SV membrane and proteins after fusion. Adaptor protein (AP) complexes are among the critical components of the SV retrieval machinery. The canonical clathrin adaptor AP2 ensures the replenishment of most SVs across many neuronal populations. An alternative AP1/AP3-dependent process mediates the formation of a subset of SVs that differ from AP2 vesicles in molecular composition and respond preferentially during higher frequency firing. Furthermore, recent studies show that vesicular transporters for different neurotransmitters depend to a different extent on the AP3 pathway and this affects the release properties of the respective neurotransmitters. This review focuses on the current understanding of the AP-dependent molecular and functional diversity among SVs. We also discuss the contribution of these pathways to the regulation of neurotransmitter release across neuronal populations.

13.
J Neurochem ; 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39091022

ABSTRACT

Following exocytosis, the recapture of plasma membrane-stranded vesicular proteins into recycling synaptic vesicles (SVs) is essential for sustaining neurotransmission. Surface clustering of vesicular proteins has been proposed to act as a 'pre-assembly' mechanism for endocytosis that ensures high-fidelity retrieval of SV cargo. Here, we used single-molecule imaging to examine the nanoclustering of synaptotagmin-1 (Syt1) and synaptic vesicle protein 2A (SV2A) in hippocampal neurons. Syt1 forms surface nanoclusters through the interaction of its C2B domain with SV2A, which are sensitive to mutations in this domain (Syt1K326A/K328A) and SV2A knockdown. SV2A co-clustering with Syt1 is reduced by blocking SV2A's cognate interaction with Syt1 (SV2AT84A). Surprisingly, impairing SV2A-Syt1 nanoclustering enhanced the plasma membrane recruitment of key endocytic protein dynamin-1, causing accelerated Syt1 endocytosis, altered intracellular sorting and decreased trafficking of Syt1 to Rab5-positive endocytic compartments. Therefore, SV2A and Syt1 are segregated from the endocytic machinery in surface nanoclusters, limiting dynamin recruitment and negatively regulating Syt1 entry into recycling SVs.

14.
Eur J Neurosci ; 59(9): 2293-2319, 2024 May.
Article in English | MEDLINE | ID: mdl-38483240

ABSTRACT

Ca2+-dependent K+ (BK) channels at varicosities in Xenopus nerve-muscle cell cultures were used to quantify experimentally the instantaneous active zone [Ca2+]AZ resulting from different rates and durations of Ca2+ entry in the absence of extrinsic buffers and correlate this with neurotransmitter release. Ca2+ tail currents produce mean peak [Ca2+]AZ ~ 30 µM; with continued influx, [Ca2+]AZ reaches ~45-60 µM at different rates depending on Ca2+ driving force and duration of influx. Both IBK and release are dependent on Ca2+ microdomains composed of both N- and L-type Ca channels. Domains collapse with a time constant of ~0.6 ms. We have constructed an active zone (AZ) model that approximately fits this data, and depends on incorporation of the high-capacity, low-affinity fixed buffer represented by phospholipid charges in the plasma membrane. Our observations suggest that in this preparation, (1) some BK channels, but few if any of the Ca2+ sensors that trigger release, are located within Ca2+ nanodomains while a large fraction of both are located far enough from Ca channels to be blockable by EGTA, (2) the IBK is more sensitive than the excitatory postsynaptic current (EPSC) to [Ca2+]AZ (K1/2-26 µM vs. ~36 µM [Ca2+]AZ); (3) with increasing [Ca2+]AZ, the IBK grows with a Hill coefficient of 2.5, the EPSC with a coefficient of 3.9; (4) release is dependent on the highest [Ca2+] achieved, independent of the time to reach it; (5) the varicosity synapses differ from mature frog nmjs in significant ways; and (6) BK channels are useful reporters of local [Ca2+]AZ.


Subject(s)
Calcium , Neurotransmitter Agents , Animals , Calcium/metabolism , Neurotransmitter Agents/metabolism , Cells, Cultured , Large-Conductance Calcium-Activated Potassium Channels/metabolism , Neurons/metabolism , Xenopus laevis , Muscle Cells/metabolism , Synaptic Transmission/physiology , Synapses/metabolism
15.
Biochem Soc Trans ; 2024 Jul 31.
Article in English | MEDLINE | ID: mdl-39082978

ABSTRACT

Various cell types release neurotransmitters, hormones and many other compounds that are stored in secretory vesicles by exocytosis via the formation of a fusion pore traversing the vesicular membrane and the plasma membrane. This process of membrane fusion is mediated by the Soluble N-ethylmaleimide-Sensitive Factor Attachment Proteins REceptor (SNARE) protein complex, which in neurons and neuroendocrine cells is composed of the vesicular SNARE protein Synaptobrevin and the plasma membrane proteins Syntaxin and SNAP25 (Synaptosomal-Associated Protein of 25 kDa). Before a vesicle can undergo fusion and release of its contents, it must dock at the plasma membrane and undergo a process named 'priming', which makes it ready for release. The primed vesicles form the readily releasable pool, from which they can be rapidly released in response to stimulation. The stimulus is an increase in Ca2+ concentration near the fusion site, which is sensed primarily by the vesicular Ca2+ sensor Synaptotagmin. Vesicle priming involves at least the SNARE proteins as well as Synaptotagmin and the accessory proteins Munc18, Munc13, and Complexin but additional proteins may also participate in this process. This review discusses the current views of the interactions and the structural changes that occur among the proteins of the vesicle priming machinery.

16.
Neurochem Res ; 49(2): 453-465, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37897557

ABSTRACT

α2-Adrenoreceptors (ARs) are main Gi-protein coupled autoreceptors in sympathetic nerve terminals and targets for dexmedetomidine (DEX), a widely used sedative. We hypothesize that α2-ARs are also potent regulators of neuromuscular transmission via G protein-gated inwardly rectifying potassium (GIRK) channels. Using extracellular microelectrode recording of postsynaptic potentials, we found DEX-induced inhibition of spontaneous and evoked neurotransmitter release as well as desynchronization of evoked exocytotic events in the mouse diaphragm neuromuscular junction. These effects were suppressed by SKF-86,466, a selective α2-AR antagonist. An activator of GIRK channels ML297 had the same effects on neurotransmitter release as DEX. By contrast, inhibition of GIRK channels with tertiapin-Q prevented the action of DEX on evoked neurotransmitter release, but not on spontaneous exocytosis. The synaptic vesicle exocytosis is strongly dependent on Ca2+ influx through voltage-gated Ca2+ channels (VGCCs), which can be negatively regulated via α2-AR - GIRK channel axis. Indeed, inhibition of P/Q-, L-, N- or R-type VGCCs prevented the inhibitory action of DEX on evoked neurotransmitter release; antagonists of P/Q- and N-type channels also suppressed the DEX-mediated desynchronization of evoked exocytotic events. Furthermore, inhibition of P/Q-, L- or N-type VGCCs precluded the frequency decrease of spontaneous exocytosis upon DEX application. Thus, α2-ARs acting via GIRK channels and VGCCs (mainly, P/Q- and N-types) exert inhibitory effect on the neuromuscular communication by attenuating and desynchronizing evoked exocytosis. In addition, α2-ARs can suppress spontaneous exocytosis through GIRK channel-independent, but VGCC-dependent pathway.


Subject(s)
Neuromuscular Junction , Synaptic Transmission , Mice , Animals , Synaptic Transmission/physiology , Neuromuscular Junction/physiology , Potassium , GTP-Binding Proteins , Neurotransmitter Agents/pharmacology
17.
Proc Natl Acad Sci U S A ; 118(4)2021 01 26.
Article in English | MEDLINE | ID: mdl-33468652

ABSTRACT

Neurotransmitter release is governed by eight central proteins among other factors: the neuronal SNAREs syntaxin-1, synaptobrevin, and SNAP-25, which form a tight SNARE complex that brings the synaptic vesicle and plasma membranes together; NSF and SNAPs, which disassemble SNARE complexes; Munc18-1 and Munc13-1, which organize SNARE complex assembly; and the Ca2+ sensor synaptotagmin-1. Reconstitution experiments revealed that Munc18-1, Munc13-1, NSF, and α-SNAP can mediate Ca2+-dependent liposome fusion between synaptobrevin liposomes and syntaxin-1-SNAP-25 liposomes, but high fusion efficiency due to uncontrolled SNARE complex assembly did not allow investigation of the role of synaptotagmin-1 on fusion. Here, we show that decreasing the synaptobrevin-to-lipid ratio in the corresponding liposomes to very low levels leads to inefficient fusion and that synaptotagmin-1 strongly stimulates fusion under these conditions. Such stimulation depends on Ca2+ binding to the two C2 domains of synaptotagmin-1. We also show that anchoring SNAP-25 on the syntaxin-1 liposomes dramatically enhances fusion. Moreover, we uncover a synergy between synaptotagmin-1 and membrane anchoring of SNAP-25, which allows efficient Ca2+-dependent fusion between liposomes bearing very low synaptobrevin densities and liposomes containing very low syntaxin-1 densities. Thus, liposome fusion in our assays is achieved with a few SNARE complexes in a manner that requires Munc18-1 and Munc13-1 and that depends on Ca2+ binding to synaptotagmin-1, all of which are fundamental features of neurotransmitter release in neurons.


Subject(s)
Munc18 Proteins/metabolism , Nerve Tissue Proteins/metabolism , Neurons/metabolism , Synaptic Vesicles/metabolism , Synaptosomal-Associated Protein 25/metabolism , Synaptotagmin I/metabolism , Animals , Calcium/metabolism , Gene Expression Regulation , Liposomes/chemistry , Liposomes/metabolism , Membrane Fusion , Munc18 Proteins/genetics , Nerve Tissue Proteins/genetics , Neurons/cytology , Neurotransmitter Agents/genetics , Neurotransmitter Agents/metabolism , Phospholipids/chemistry , Phospholipids/metabolism , Rats , Synaptic Transmission , Synaptic Vesicles/chemistry , Synaptosomal-Associated Protein 25/genetics , Synaptotagmin I/genetics , Syntaxin 1/genetics , Syntaxin 1/metabolism , Vesicle-Associated Membrane Protein 2/genetics , Vesicle-Associated Membrane Protein 2/metabolism
18.
Int J Mol Sci ; 25(6)2024 Mar 08.
Article in English | MEDLINE | ID: mdl-38542102

ABSTRACT

The preBötzinger complex (preBötC) and the Bötzinger complex (BötC) are interconnected neural circuits that are involved in the regulation of breathing in mammals. Fast inhibitory neurotransmission is known to play an important role in the interaction of these two regions. Moreover, the corelease of glycine and GABA has been described in the respiratory network, but the contribution of the individual neurotransmitter in different pathways remains elusive. In sagittal brainstem slices of neonatal mice, we employed a laser point illumination system to activate glycinergic neurons expressing channelrhodopsin-2 (ChR2). This approach allowed us to discern the contribution of glycine and GABA to postsynaptic currents of individual whole-cell clamped neurons in the preBötC and BötC through the application of glycine and GABA receptor-specific antagonists. In more than 90% of the recordings, both transmitters contributed to the evoked IPSCs, with the glycinergic component being larger than the GABAergic component. The GABAergic component appeared to be most prominent when stimulation and recording were both performed within the preBötC. Taken together, our data suggest that GABA-glycine cotransmission is the default mode in the respiratory network of neonatal mice with regional differences that may be important in tuning the network activity.


Subject(s)
Glycine , gamma-Aminobutyric Acid , Mice , Animals , Glycine/metabolism , gamma-Aminobutyric Acid/metabolism , Synaptic Transmission/physiology , Neurons/metabolism , GABA Antagonists/pharmacology , Mammals/metabolism
19.
J Neurosci ; 42(12): 2385-2403, 2022 03 23.
Article in English | MEDLINE | ID: mdl-35063999

ABSTRACT

Efficient and reliable neurotransmission requires precise coupling between action potentials (APs), Ca2+ entry and neurotransmitter release. However, Ca2+ requirements for release, including the number of channels required, their subtypes, and their location with respect to primed vesicles, remains to be precisely defined for central synapses. Indeed, Ca2+ entry may occur through small numbers or even single open Ca2+ channels, but these questions remain largely unexplored in simple active zone (AZ) synapses common in the nervous system, and key to addressing Ca2+ channel and synaptic dysfunction underlying numerous neurologic and neuropsychiatric disorders. Here, we present single channel analysis of evoked AZ Ca2+ entry, using cell-attached patch clamp and lattice light-sheet microscopy (LLSM), resolving small channel numbers evoking Ca2+ entry following depolarization, at single AZs in individual central lamprey reticulospinal presynaptic terminals from male and females. We show a small pool (mean of 23) of Ca2+ channels at each terminal, comprising N-(CaV2.2), P/Q-(CaV2.1), and R-(CaV2.3) subtypes, available to gate neurotransmitter release. Significantly, of this pool only one to seven channels (mean of 4) open on depolarization. High temporal fidelity lattice light-sheet imaging reveals AP-evoked Ca2+ transients exhibiting quantal amplitude variations of 0-6 event sizes between individual APs and stochastic variation of precise locations of Ca2+ entry within the AZ. Further, total Ca2+ channel numbers at each AZ correlate to the number of presynaptic primed synaptic vesicles. Dispersion of channel openings across the AZ and the similar number of primed vesicles and channels indicate that Ca2+ entry via as few as one channel may trigger neurotransmitter release.SIGNIFICANCE STATEMENT Presynaptic Ca2+ entry through voltage-gated calcium channels (VGCCs) causes neurotransmitter release. To understand neurotransmission, its modulation, and plasticity, we must quantify Ca2+ entry and its relationship to vesicle fusion. This requires direct recordings from active zones (AZs), previously possible only at calyceal terminals containing many AZs, where few channels open following action potentials (APs; Sheng et al., 2012), and even single channel openings may trigger release (Stanley, 1991, 1993). However, recording from more conventional terminals with single AZs commonly found centrally has thus far been impossible. We addressed this by cell-attached recordings from acutely dissociated single lamprey giant axon AZs, and by lattice light sheet microscopy of presynaptic Ca2+ entry. We demonstrate nanodomains of presynaptic VGCCs coupling with primed vesicles with 1:1 stoichiometry.


Subject(s)
Calcium , Presynaptic Terminals , Animals , Female , Lampreys , Male , Neurotransmitter Agents , Presynaptic Terminals/physiology , Synaptic Transmission/physiology , Synaptic Vesicles
20.
J Neurosci ; 42(34): 6487-6505, 2022 08 24.
Article in English | MEDLINE | ID: mdl-35896423

ABSTRACT

Retinal bipolar cells (BCs) compose the canonical vertical excitatory pathway that conveys photoreceptor output to inner retinal neurons. Although synaptic transmission from BC terminals is thought to rely almost exclusively on Ca2+ influx through voltage-gated Ca2+ (CaV) channels mediating L-type currents, the molecular identity of CaV channels in BCs is uncertain. Therefore, we combined molecular and functional analyses to determine the expression profiles of CaV α1, ß, and α2δ subunits in mouse rod bipolar (RB) cells, BCs from which the dynamics of synaptic transmission are relatively well-characterized. We found significant heterogeneity in CaV subunit expression within the RB population from mice of either sex, and significantly, we discovered that transmission from RB synapses was mediated by Ca2+ influx through P/Q-type (CaV2.1) and N-type (CaV2.2) conductances as well as the previously-described L-type (CaV1) and T-type (CaV3) conductances. Furthermore, we found both CaV1.3 and CaV1.4 proteins located near presynaptic ribbon-type active zones in RB axon terminals, indicating that the L-type conductance is mediated by multiple CaV1 subtypes. Similarly, CaV3 α1, ß, and α2δ subunits also appear to obey a "multisubtype" rule, i.e., we observed a combination of multiple subtypes, rather than a single subtype as previously thought, for each CaV subunit in individual cells.SIGNIFICANCE STATEMENT Bipolar cells (BCs) transmit photoreceptor output to inner retinal neurons. Although synaptic transmission from BC terminals is thought to rely almost exclusively on Ca2+ influx through L-type voltage-gated Ca2+ (CaV) channels, the molecular identity of CaV channels in BCs is uncertain. Here, we report unexpectedly high molecular diversity of CaV subunits in BCs. Transmission from rod bipolar (RB) cell synapses can be mediated by Ca2+ influx through P/Q-type (CaV2.1) and N-type (CaV2.2) conductances as well as the previously-described L-type (CaV1) and T-type (CaV3) conductances. Furthermore, CaV1, CaV3, ß, and α2δ subunits appear to obey a "multisubtype" rule, i.e., a combination of multiple subtypes for each subunit in individual cells, rather than a single subtype as previously thought.


Subject(s)
Calcium Channels, L-Type , Synapses , Animals , Calcium/metabolism , Calcium Channels, L-Type/genetics , Calcium Channels, L-Type/metabolism , Mice , Presynaptic Terminals/metabolism , Retina/metabolism , Synapses/physiology , Synaptic Transmission/physiology
SELECTION OF CITATIONS
SEARCH DETAIL