Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Publication year range
1.
Gels ; 8(11)2022 Nov 17.
Article in English | MEDLINE | ID: mdl-36421568

ABSTRACT

Psoriasis is chronic autoimmune disease that affects 2-5% of the global population. Fluocinolone acetonide (FLU) and acitretin (ACT) are widely used antipsoriatic drugs that belong to BCS classes II and IV, respectively. FLU exhibits side effects, such as skin irritation and a burning sensation. ACT also shows adverse effects, such as gingivitis, teratogenic effects and xerophthalmia. In the present study, topical nanostructured lipid carriers (NLCs) were fabricated to reduce the side effects and enhance the therapeutic efficacy. FLU-ACT-coloaded NLCs were prepared by the modified microemulsion method and optimized by the Box-Behnken model of Design Expert® version 12. The optimization was based on the particle size (PS), zeta potential (ZP) and percentage of encapsulation efficiency (%EE). The physicochemical analyses were performed by TEM, FTIR, XRD and DSC to assess the morphology, chemical interactions between excipients, crystallinity and thermal behavior of the optimized FLU-ACT-coloaded NLCs. The FLU-ACT-coloaded NLCs were successfully loaded into gel and characterized appropriately. The dialysis bag method and Franz diffusion cells were used for the in vitro release and ex vivo permeation studies, respectively. The optimized FLU-ACT-coloaded NLCs had the desired particle size of 288.2 ± 2.3 nm, ZP of -34.2 ± 1.0 mV and %EE values of 81.6 ± 1.1% for ACT and 75 ± 1.3% for FLU. The TEM results confirmed the spherical morphology, while the FTIR results showed the absence of chemical interactions of any type among the ingredients of the FLU-ACT-coloaded NLCs. The XRD and DSC analyses confirmed the amorphous nature and thermal behavior. The in vitro study showed the sustained release of the FLU and ACT from the optimized FLU-ACT-coloaded NLCs and FLU-ACT-coloaded NLC gel compared with the FLU-ACT suspension and conventional gel. The ex vivo study confirmed the minimal permeation of both drugs from the FLU-ACT-coloaded NLC gel.

2.
Curr Drug Deliv ; 14(3): 386-393, 2017.
Article in English | MEDLINE | ID: mdl-27501715

ABSTRACT

BACKGROUND: Semisolid SLNs are novel strategy for dermal drug administration instead of incorporating the SLN dispersions into conventional semisolids. Etofenamate loaded semisolid SLNs were successfully prepared and in vitro characterization of formulations were performed in our previous study. The present study is an attempt to evaluate the dermal behavior of the semisolid SLNs selected on the basis of previous research and investigate the properties in terms of the convenience for topical applications. OBJECTIVE: The objective of this study is to evaluate the skin penetration characteristics of semisolid SLN formulations. The occlusive and mechanical properties of semisolid SLNs were also evaluated because of their impression on the dermal behavior of the formulations. METHOD: The occlusive properties were investigated by in vitro occlusion test. Texture analysis was performed to define the hardness, compressibility, adhesiveness, cohesiveness and elasticity of the formulations. Rat skin was chosen to evaluate the ex vivo penetration of etofenamate loaded semisolid SLNs and commercial gel product. Coumarin-6 was used to visualize the dermal distribution of the semisolid SLN formulations. For monitorizing the penetration of coumarin-6 into the skin samples Confocal Laser Scanning Microscopy was employed. RESULTS: The occlusive and mechanical properties of C1 coded semisolid SLN formulation were found more favorable in comparison with P1. The cumulative etofenamate amount in skin samples was found to be 39.88 ± 1.50 µg/cm2 for C1 and 30.56 ± 2.10 µg/cm2 for P1 coded formulations. According to CLSM images, greater fluorescence intensities and deeper skin penetrations were obtained with both of the semisolid SLNs in comparison to plain Carbopol gel. CONCLUSION: It can be concluded that the semisolid SLNs are promising alternative dermal drug delivery systems to the conventional dosage forms.


Subject(s)
Drug Delivery Systems , Flufenamic Acid/analogs & derivatives , Skin Absorption , Administration, Cutaneous , Animals , Coumarins , Flufenamic Acid/pharmacokinetics , In Vitro Techniques , Male , Nanoparticles , Rats , Rats, Sprague-Dawley , Thiazoles
SELECTION OF CITATIONS
SEARCH DETAIL