Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 7.743
Filter
Add more filters

Publication year range
1.
Proc Natl Acad Sci U S A ; 120(39): e2302101120, 2023 09 26.
Article in English | MEDLINE | ID: mdl-37729195

ABSTRACT

Osteosarcoma (OS) is the most common primary malignant bone cancer in children and adolescents. While numerous other cancers now have promising therapeutic advances, treatment options for OS have remained unchanged since the advent of standard chemotherapeutics and offer less than a 25% 5-y survival rate for those with metastatic disease. This dearth of clinical progress underscores a lack of understanding of OS progression and necessitates the study of this disease in an innovative system. Here, we adapt a previously described engineered bone marrow (eBM) construct for use as a three-dimensional platform to study how microenvironmental and immune factors affect OS tumor progression. We form eBM by implanting acellular bone-forming materials in mice and explanting the cellularized constructs after 8 wk for study. We interrogate the influence of the anatomical implantation site on eBM tissue quality, test ex vivo stability under normoxic (5% O2) and standard (21% O2) culture conditions, culture OS cells within these constructs, and compare them to human OS samples. We show that eBM stably recapitulates the composition of native bone marrow. OS cells exhibit differential behavior dependent on metastatic potential when cultured in eBM, thus mimicking in vivo conditions. Furthermore, we highlight the clinical applicability of eBM as a drug-screening platform through doxorubicin treatment and show that eBM confers a protective effect on OS cells that parallel clinical responses. Combined, this work presents eBM as a cellular construct that mimics the complex bone marrow environment that is useful for mechanistic bone cancer research and drug screening.


Subject(s)
Bone Neoplasms , Osteosarcoma , Adolescent , Child , Humans , Animals , Mice , Early Detection of Cancer , Bone Marrow , Drug Evaluation, Preclinical , Bone Neoplasms/drug therapy
2.
J Pathol ; 262(2): 147-160, 2024 02.
Article in English | MEDLINE | ID: mdl-38010733

ABSTRACT

TP53 is the most frequently mutated gene in human cancer. This gene shows not only loss-of-function mutations but also recurrent missense mutations with gain-of-function activity. We have studied the primary bone malignancy osteosarcoma, which harbours one of the most rearranged genomes of all cancers. This is odd since it primarily affects children and adolescents who have not lived the long life thought necessary to accumulate massive numbers of mutations. In osteosarcoma, TP53 is often disrupted by structural variants. Here, we show through combined whole-genome and transcriptome analyses of 148 osteosarcomas that TP53 structural variants commonly result in loss of coding parts of the gene while simultaneously preserving and relocating the promoter region. The transferred TP53 promoter region is fused to genes previously implicated in cancer development. Paradoxically, these erroneously upregulated genes are significantly associated with the TP53 signalling pathway itself. This suggests that while the classical tumour suppressor activities of TP53 are lost, certain parts of the TP53 signalling pathway that are necessary for cancer cell survival and proliferation are retained. In line with this, our data suggest that transposition of the TP53 promoter is an early event that allows for a new normal state of genome-wide rearrangements in osteosarcoma. © 2023 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.


Subject(s)
Bone Neoplasms , Osteosarcoma , Child , Adolescent , Humans , Genes, p53 , Osteosarcoma/genetics , Osteosarcoma/pathology , Mutation , Bone Neoplasms/genetics , Bone Neoplasms/pathology , Promoter Regions, Genetic/genetics , Gene Fusion , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism
3.
Exp Cell Res ; 436(2): 113978, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38382805

ABSTRACT

Osteosarcoma (OS) is one of the most prevalent primary bone tumors with a high degree of metastasis and poor prognosis. Epithelial-to-mesenchymal transition (EMT) is a cellular mechanism that contributes to the invasion and metastasis of cancer cells, and OS cells have been reported to exhibit EMT-like characteristics. Our previous studies have shown that the interaction between tumor necrosis factor superfamily member 11 (TNFRSF11A; also known as RANK) and its ligand TNFSF11 (also known as RANKL) promotes the EMT process in breast cancer cells. However, whether the interaction between RANK and RANKL enhances aggressive behavior by inducing EMT in OS cells has not yet been elucidated. In this study, we showed that the interaction between RANK and RANKL increased the migration, invasion, and metastasis of OS cells by promoting EMT. Importantly, we clarified that the RANK/RANKL axis induces EMT by activating the nuclear factor-kappa B (NF-κB) pathway. Furthermore, the NF-κB inhibitor dimethyl fumarate (DMF) suppressed migration, invasion, and EMT in OS cells. Our results suggest that the RANK/RANKL axis may serve as a potential tumor marker and promising therapeutic target for OS metastasis. Furthermore, DMF may have clinical applications in the treatment of lung metastasis in patients with OS.


Subject(s)
Bone Neoplasms , Osteosarcoma , Humans , NF-kappa B/genetics , NF-kappa B/metabolism , Signal Transduction , Receptor Activator of Nuclear Factor-kappa B/genetics , Receptor Activator of Nuclear Factor-kappa B/metabolism , Cell Line, Tumor , Neoplasm Invasiveness , Osteosarcoma/pathology , Bone Neoplasms/pathology , Epithelial-Mesenchymal Transition/genetics , Cell Movement/genetics
4.
Cell Mol Life Sci ; 81(1): 236, 2024 May 25.
Article in English | MEDLINE | ID: mdl-38795203

ABSTRACT

Chemoresistance is the main obstacle in the clinical treatment of osteosarcoma (OS). In this study, we investigated the role of EF-hand domain-containing protein 1 (EFHD1) in OS chemotherapy resistance. We found that the expression of EFHD1 was highly correlated with the clinical outcome after chemotherapy. We overexpressed EFHD1 in 143B cells and found that it increased their resistance to cell death after drug treatment. Conversely, knockdown of EFHD1 in 143BR cells (a cisplatin-less-sensitive OS cell line derived from 143B cells) increased their sensitivity to treatment. Mechanistically, EFHD1 bound to adenine nucleotide translocase-3 (ANT3) and inhibited its conformational change, thereby inhibiting the opening of the mitochondrial membrane permeability transition pore (mPTP). This effect could maintain mitochondrial function, thereby favoring OS cell survival. The ANT3 conformational inhibitor carboxyatractyloside (CATR), which can promote mPTP opening, enhanced the chemosensitivity of EFHD1-overexpressing cells when combined with cisplatin. The ANT3 conformational inhibitor bongkrekic acid (BKA), which can inhibit mPTP opening, restored the resistance of EFHD1 knockdown cells. In conclusion, our results suggest that EFHD1-ANT3-mPTP might be a promising target for OS therapy in the future.


Subject(s)
Cell Proliferation , Cisplatin , Drug Resistance, Neoplasm , Mitochondrial Membrane Transport Proteins , Mitochondrial Permeability Transition Pore , Osteosarcoma , Humans , Osteosarcoma/metabolism , Osteosarcoma/pathology , Osteosarcoma/drug therapy , Osteosarcoma/genetics , Mitochondrial Permeability Transition Pore/metabolism , Drug Resistance, Neoplasm/drug effects , Cell Proliferation/drug effects , Mitochondrial Membrane Transport Proteins/metabolism , Mitochondrial Membrane Transport Proteins/genetics , Cell Line, Tumor , Cisplatin/pharmacology , Bone Neoplasms/pathology , Bone Neoplasms/metabolism , Bone Neoplasms/drug therapy , Bone Neoplasms/genetics , Adenine Nucleotide Translocator 3/metabolism , Adenine Nucleotide Translocator 3/genetics , Antineoplastic Agents/pharmacology , Mitochondria/metabolism , Mitochondria/drug effects , Animals , Mice , Protein Binding
5.
Proc Natl Acad Sci U S A ; 119(16): e2117857119, 2022 04 19.
Article in English | MEDLINE | ID: mdl-35412907

ABSTRACT

The RB1 gene is frequently mutated in human cancers but its role in tumorigenesis remains incompletely defined. Using an induced pluripotent stem cell (iPSC) model of hereditary retinoblastoma (RB), we report that the spliceosome is an up-regulated target responding to oncogenic stress in RB1-mutant cells. By investigating transcriptomes and genome occupancies in RB iPSC­derived osteoblasts (OBs), we discover that both E2F3a, which mediates spliceosomal gene expression, and pRB, which antagonizes E2F3a, coregulate more than one-third of spliceosomal genes by cobinding to their promoters or enhancers. Pharmacological inhibition of the spliceosome in RB1-mutant cells leads to global intron retention, decreased cell proliferation, and impaired tumorigenesis. Tumor specimen studies and genome-wide TCGA (The Cancer Genome Atlas) expression profile analyses support the clinical relevance of pRB and E2F3a in modulating spliceosomal gene expression in multiple cancer types including osteosarcoma (OS). High levels of pRB/E2F3a­regulated spliceosomal genes are associated with poor OS patient survival. Collectively, these findings reveal an undiscovered connection between pRB, E2F3a, the spliceosome, and tumorigenesis, pointing to the spliceosomal machinery as a potentially widespread therapeutic vulnerability of pRB-deficient cancers.


Subject(s)
Bone Neoplasms , Carcinogenesis , E2F3 Transcription Factor , Gene Expression Regulation, Neoplastic , Induced Pluripotent Stem Cells , Osteosarcoma , Retinoblastoma Binding Proteins , Spliceosomes , Ubiquitin-Protein Ligases , Bone Neoplasms/genetics , Bone Neoplasms/pathology , Carcinogenesis/genetics , E2F3 Transcription Factor/genetics , E2F3 Transcription Factor/metabolism , Genes, Retinoblastoma , Humans , Induced Pluripotent Stem Cells/metabolism , Mutation , Osteosarcoma/genetics , Osteosarcoma/pathology , Retinal Neoplasms/genetics , Retinoblastoma/genetics , Retinoblastoma Binding Proteins/genetics , Retinoblastoma Binding Proteins/metabolism , Spliceosomes/genetics , Spliceosomes/metabolism , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism
6.
Nano Lett ; 24(1): 295-304, 2024 Jan 10.
Article in English | MEDLINE | ID: mdl-38117248

ABSTRACT

Chemodynamic therapy based on the Fenton reaction has been developed as an extremely promising modality for cancer therapeutics. In this study, a core-shell structure nanoplatform was constructed by a Au nanorod externally encapsulating Ce/Zn-based composites (ACZO). The nanoparticles can catalyze the generation of reactive oxygen species (ROS) under acidic conditions and effectively consume existing glutathione (GSH) to destroy the redox balance within the tumor. Moreover, the decomposition of the nanocomplexes under acidic conditions releases large amounts of zinc ions, leading to zinc overload in cancer cells. The photothermal effect generated by the Au nanorods not only provides photothermal therapy (PTT) but also augments the catalytic reaction and ions action mentioned above. This facile strategy to improve the efficacy of chemodynamic therapy by the photothermal enhancement of catalytic activity and zinc ion release provides a promising perspective for potential tumor treatment.


Subject(s)
Nanoparticles , Nanotubes , Neoplasms , Humans , Catalysis , Glutathione , Zinc/pharmacology , Ions , Neoplasms/drug therapy , Cell Line, Tumor , Hydrogen Peroxide , Tumor Microenvironment
7.
Genes Dev ; 31(18): 1823-1824, 2017 09 15.
Article in English | MEDLINE | ID: mdl-29051386

ABSTRACT

Mutations in the tumor suppressor p53 occur in a majority of human cancers. Some gain-of-function (GOF) p53 mutations endow tumor cells with increased metastatic ability, although our understanding of the underlying mechanism remains incomplete. In this issue of Genes & Development, Pourebrahim and colleagues (pp. 1847-1857) develop a new mouse model of osteosarcoma in which a GOF mutant p53 allele is expressed specifically in osteoblasts, while the tumor microenvironment remains wild type for p53, allowing for the study of cell-autonomous functions. In this model, the role of GOF mutant p53 in promoting lung metastasis is shown to be critically dependent on the transcription factor Ets2 and is accompanied by the elevated expression of a cluster of small nucleolar RNAs (snoRNAs).


Subject(s)
Bone Neoplasms , Osteosarcoma , Animals , Cell Line, Tumor , Humans , Mice , Mutant Proteins , Mutation , Proto-Oncogene Protein c-ets-2/genetics , RNA, Small Nucleolar , Tumor Microenvironment , Tumor Suppressor Protein p53/genetics
8.
Genes Dev ; 31(18): 1847-1857, 2017 09 15.
Article in English | MEDLINE | ID: mdl-29021240

ABSTRACT

TP53 is the most frequently mutated gene in human cancer. Many mutant p53 proteins exert oncogenic gain-of-function (GOF) properties that contribute to metastasis, but the mechanisms mediating these functions remain poorly defined in vivo. To elucidate how mutant p53 GOF drives metastasis, we developed a traceable somatic osteosarcoma mouse model that is initiated with either a single p53 mutation (p53R172H) or p53 loss in osteoblasts. Our study confirmed that p53 mutant mice developed osteosarcomas with increased metastasis as compared with p53-null mice. Comprehensive transcriptome RNA sequencing (RNA-seq) analysis of 16 tumors identified a cluster of small nucleolar RNAs (snoRNAs) that are highly up-regulated in p53 mutant tumors. Regulatory element analysis of these deregulated snoRNA genes identified strong enrichment of a common Ets2 transcription factor-binding site. Homozygous deletion of Ets2 in p53 mutant mice resulted in strong down-regulation of snoRNAs and reversed the prometastatic phenotype of mutant p53 but had no effect on osteosarcoma development, which remained 100% penetrant. In summary, our studies identify Ets2 inhibition as a potential therapeutic vulnerability in p53 mutant osteosarcomas.


Subject(s)
Bone Neoplasms/genetics , Bone Neoplasms/pathology , Gene Expression Regulation, Neoplastic , Osteosarcoma/genetics , Osteosarcoma/secondary , Proto-Oncogene Protein c-ets-2/genetics , RNA, Small Nucleolar/genetics , Tumor Suppressor Protein p53/genetics , Animals , Down-Regulation , Gene Expression Profiling , Humans , Liver Neoplasms/genetics , Liver Neoplasms/secondary , Lung Neoplasms/genetics , Lung Neoplasms/secondary , Mice , Mice, Knockout , Mutation , Neoplasm Metastasis , Oligonucleotide Array Sequence Analysis , Osteoblasts/metabolism , Osteoblasts/pathology , Up-Regulation
9.
Genes Chromosomes Cancer ; 63(1): e23206, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37819540

ABSTRACT

We present two cases of malignant ossifying fibromyxoid tumor (OFMT) which eluded diagnosis due to compelling clinicopathologic mimicry, compounded by similarly elusive underlying molecular drivers. The first is of a clavicle mass in a 69 year-old female, which histologically showed an infiltrative nested and trabeculated proliferation of monomorphic cells giving rise to scattered spicules of immature woven bone. Excepting SATB2 positivity, the lesion showed an inconclusive immunoprofile which along with negative PHF1 FISH led to an initial diagnosis of high-grade osteosarcoma. Next generation sequencing (NGS) revealed a particularly rare CREBBP::BCORL1 fusion. The second illustrates the peculiar presentation of a dural-based mass in a 52 year-old female who presented with neurologic dyscrasias. Sections showed a sheeted monotonous proliferation of ovoid to spindle cells, but in contrast to Case #1, the tumor contained an exuberance of reticular osteoid and woven bone deposition mimicking malignant osteogenic differentiation. NGS showed a novel CREBZF::PHF1 fusion. Both tumors recurred locally less than 1 year post-operatively. As such we reiterate that careful morphologic examination is axiomatic to any diagnosis in our discipline, but this paradigm must shift to recognize that molecular diagnostics can provide closure where traditional tools have notable limitations.


Subject(s)
Bone Neoplasms , Fibroma, Ossifying , Fibroma , Osteosarcoma , Sarcoma , Soft Tissue Neoplasms , Female , Humans , Aged , Middle Aged , DNA-Binding Proteins , Fibroma, Ossifying/diagnosis , Fibroma, Ossifying/genetics , Fibroma, Ossifying/pathology , Osteogenesis , Polycomb-Group Proteins , Neoplasm Recurrence, Local , Fibroma/pathology , Osteosarcoma/diagnosis , Osteosarcoma/genetics , Bone Neoplasms/diagnosis , Bone Neoplasms/genetics , Bone Neoplasms/pathology , Soft Tissue Neoplasms/pathology , Basic-Leucine Zipper Transcription Factors
10.
J Struct Biol ; 216(3): 108106, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38871094

ABSTRACT

Osteosarcoma (OS) is the most common malignant primary bone tumor in humans and occurs in various subtypes. Tumor formation happens through malignant osteoblasts producing immature bone. In the present paper we studied two different subtypes of osteosarcoma, from one individual with conventional OS with massive sclerosis and one individual with parosteal OS, based on a multimodal approach including small angle x-ray scattering (SAXS), wide angle x-ray diffraction (WAXS), backscattered electron imaging (BEI) and Raman spectroscopy. It was found that both tumors showed reduced mineral particle sizes and degree of orientation of the collagen-mineral composite in the affected areas, alongside with a decreased crystallinity. Distinct differences between the tumor material from the two individuals were found in the degree of mineralization. Further differences were observed in the carbonate to phosphate ratio, which is related to the degree of carbonate substitution in bone mineral and indicative of the turnover rate. The contraction of the c-axis of the bone mineral crystals proved to be a further, very sensitive parameter, potentially indicative of malignancy.

11.
J Cell Mol Med ; 28(11): e18462, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38847478

ABSTRACT

Osteosarcoma (OS) is the most common primary malignant bone tumour in children and young adults. Account for 80% of all OS cases, conventional OS are characterized by the presence of osteoblastic, chondroblastic and fibroblastic cell types. Despite this heterogeneity, therapeutic treatment and prognosis of OS are essentially the same for all OS subtypes. Here, we report that DEC2, a transcriptional repressor, is expressed at higher levels in chondroblastic OS compared with osteoblastic OS. This difference suggests that DEC2 is disproportionately involved in the progression of chondroblastic OS, and thus, DEC2 may represent a possible molecular target for treating this type of OS. In the human chondroblastic-like OS cell line MNNG/HOS, we found that overexpression of DEC2 affects the proliferation of the cells by activating the VEGFC/VEGFR2 signalling pathway. Enhanced expression of DEC2 increased VEGFR2 expression, as well as increased the phosphorylation levels at sites Y951 and Y1175 of VEGFR2. On the one hand, activation of VEGFR2Y1175 enhanced cell proliferation through VEGFR2Y1175-PLCγ1-PKC-SPHK-MEK-ERK signalling. On the other hand, activation of VEGFR2Y951 decreased mitochondria-dependent apoptosis rate through VEGFR2Y951-VARP-PI3K-AKT signalling. Activation of these two signalling pathways resulted in enhanced progression of chondroblastic OS. In conclusion, DEC2 plays a pivotal role in cell proliferation and apoptosis-resistance in chondroblastic OS via the VEGFC/VEGFR2 signalling pathway. These findings lay the groundwork for developing focused treatments that target specific types of OS.


Subject(s)
Bone Neoplasms , Cell Proliferation , Gene Expression Regulation, Neoplastic , Osteosarcoma , Signal Transduction , Vascular Endothelial Growth Factor C , Vascular Endothelial Growth Factor Receptor-2 , Humans , Osteosarcoma/metabolism , Osteosarcoma/pathology , Osteosarcoma/genetics , Vascular Endothelial Growth Factor Receptor-2/metabolism , Vascular Endothelial Growth Factor Receptor-2/genetics , Cell Line, Tumor , Bone Neoplasms/metabolism , Bone Neoplasms/pathology , Bone Neoplasms/genetics , Vascular Endothelial Growth Factor C/metabolism , Vascular Endothelial Growth Factor C/genetics , Animals , Apoptosis/genetics , Phosphorylation
12.
J Cell Mol Med ; 28(9): e18286, 2024 May.
Article in English | MEDLINE | ID: mdl-38742843

ABSTRACT

Osteosarcoma, the primary bone cancer in adolescents and young adults, is notorious for its aggressive growth and metastatic potential. Our study delved into the prognostic impact of inflammasome-related gene signatures in osteosarcoma patients, employing comprehensive genetic profiling to uncover signatures linked with patient outcomes. We identified three patient subgroups through consensus clustering, with one showing worse survival rates correlated with high FGFR3 and RARB expressions. Immune profiling revealed significant immune cell infiltration differences among these subgroups, affecting survival. Utilising advanced machine learning, including StepCox and gradient boosting machine algorithms, we developed a prognostic model with a notable c-index of 0.706, highlighting CD36 and MYD88 as key genes. Higher inflammasome risk scores from our model were associated with poorer survival, corroborated across datasets. In vitro experiments validated CD36 and MYD88's roles in promoting osteosarcoma cell proliferation, invasion and migration, emphasising their therapeutic potential. This research offers new insights into inflammasomes' role in osteosarcoma, introducing novel biomarkers for risk assessment and potential therapeutic targets. Our findings suggest a pathway towards personalised treatment strategies, potentially improving patient outcomes in osteosarcoma.


Subject(s)
Biomarkers, Tumor , Bone Neoplasms , Gene Expression Regulation, Neoplastic , Inflammasomes , Osteosarcoma , Humans , Osteosarcoma/genetics , Osteosarcoma/pathology , Osteosarcoma/immunology , Osteosarcoma/mortality , Inflammasomes/metabolism , Inflammasomes/genetics , Biomarkers, Tumor/genetics , Prognosis , Bone Neoplasms/genetics , Bone Neoplasms/pathology , Bone Neoplasms/mortality , Bone Neoplasms/immunology , Bone Neoplasms/diagnosis , Gene Expression Profiling , Female , Male , Transcriptome/genetics , Cell Line, Tumor , Cell Proliferation/genetics , Adolescent , Myeloid Differentiation Factor 88/genetics , Myeloid Differentiation Factor 88/metabolism
13.
J Cell Mol Med ; 28(10): e18400, 2024 May.
Article in English | MEDLINE | ID: mdl-38780513

ABSTRACT

Osteosarcoma is the most common primary bone malignancy in children and adolescents. Overexpression of polo-like kinase 1 (PLK1) is frequent in osteosarcoma and drives disease progression and metastasis, making it a promising therapeutic target. In this study, we explored PLK1 knockdown in osteosarcoma cells using RNA interference mediated by high-fidelity Cas13d (hfCas13d). PLK1 was found to be significantly upregulated in osteosarcoma tumour tissues compared to normal bone. sgRNA-mediated PLK1 suppression via hfCas13d transfection inhibited osteosarcoma cell proliferation, induced G2/M cell cycle arrest, promoted apoptosis, reduced cell invasion and increased expression of the epithelial marker E-cadherin. Proximity labelling by TurboID coupled with co-immunoprecipitation identified novel PLK1 interactions with Smad3, a key intracellular transducer of TGF-ß signalling. PLK1 knockdown impaired Smad2/3 phosphorylation and modulated TGF-ß/Smad3 pathway inactivation. Finally, in vivo delivery of hfCas13d vectors targeting PLK1 substantially attenuated osteosarcoma xenograft growth in nude mice. Taken together, this study highlights PLK1 as a potential therapeutic target and driver of disease progression in osteosarcoma. It also demonstrates the utility of hfCas13d-mediated gene knockdown as a strategy for targeted therapy. Further optimization of PLK1 suppression approaches may ultimately improve clinical outcomes for osteosarcoma patients.


Subject(s)
Apoptosis , Cell Cycle Proteins , Cell Proliferation , Mice, Nude , Osteosarcoma , Polo-Like Kinase 1 , Protein Serine-Threonine Kinases , Proto-Oncogene Proteins , RNA Interference , Signal Transduction , Smad3 Protein , Transforming Growth Factor beta , Osteosarcoma/pathology , Osteosarcoma/genetics , Osteosarcoma/metabolism , Humans , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/genetics , Animals , Proto-Oncogene Proteins/metabolism , Proto-Oncogene Proteins/genetics , Smad3 Protein/metabolism , Smad3 Protein/genetics , Cell Cycle Proteins/metabolism , Cell Cycle Proteins/genetics , Cell Line, Tumor , Transforming Growth Factor beta/metabolism , Mice , Apoptosis/genetics , Bone Neoplasms/genetics , Bone Neoplasms/pathology , Bone Neoplasms/metabolism , Disease Progression , Gene Expression Regulation, Neoplastic , Xenograft Model Antitumor Assays , Female
14.
J Cell Mol Med ; 28(10): e18395, 2024 May.
Article in English | MEDLINE | ID: mdl-38774995

ABSTRACT

Tumour-associated macrophages (TAMs), encompassing M1 and M2 subtypes, exert significant effects on osteosarcoma (OS) progression and immunosuppression. However, the impacts of TAM-derived biomarkers on the progression of OS remains limited. The GSE162454 profile was subjected to single-cell RNA (scRNA) sequencing analysis to identify crucial mediators between TAMs and OS cells. The clinical features, effects and mechanisms of these mediators on OS cells and tumour microenvironment were evaluated via biological function experiments and molecular biology experiments. Phosphodiesterase 4C (PDE4C) was identified as a pivotal mediator in the communication between M2 macrophages and OS cells. Elevated levels of PDE4C were detected in OS tissues, concomitant with M2 macrophage level, unfavourable prognosis and metastasis. The expression of PDE4C was observed to increase during the conversion process of THP-1 cells to M2 macrophages, which transferred the PDE4C mRNA to OS cells through exosome approach. PDE4C increased OS cell proliferation and mobility via upregulating the expression of collagens. Furthermore, a positive correlation was observed between elevated levels of PDE4C and increased TIDE score, decreased response rate following immune checkpoint therapy, reduced TMB and diminished PDL1 expression. Collectively, PDE4C derived from M2 macrophages has the potential to enhance the proliferation and mobility of OS cells by augmenting collagen expression. PDE4C may serve as a valuable biomarker for prognosticating patient outcomes and response rates following immunotherapy.


Subject(s)
Bone Neoplasms , Cyclic Nucleotide Phosphodiesterases, Type 4 , Immunotherapy , Macrophages , Osteosarcoma , Tumor Microenvironment , Humans , Biomarkers, Tumor/metabolism , Biomarkers, Tumor/genetics , Bone Neoplasms/immunology , Bone Neoplasms/pathology , Bone Neoplasms/genetics , Bone Neoplasms/metabolism , Cell Line, Tumor , Cell Movement , Cell Proliferation , Cyclic Nucleotide Phosphodiesterases, Type 4/metabolism , Cyclic Nucleotide Phosphodiesterases, Type 4/genetics , Gene Expression Regulation, Neoplastic , Immunotherapy/methods , Macrophages/metabolism , Macrophages/immunology , Neoplasm Metastasis , Osteosarcoma/pathology , Osteosarcoma/immunology , Osteosarcoma/genetics , Osteosarcoma/metabolism , Osteosarcoma/therapy , Prognosis , Tumor Microenvironment/immunology , Tumor-Associated Macrophages/immunology , Tumor-Associated Macrophages/metabolism
15.
J Cell Mol Med ; 28(8): e18269, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38568056

ABSTRACT

Circular RNAs (circRNAs) play an important role in the progression of osteosarcoma. However, the precise function of circPVT1 in osteosarcoma remains elusive. This study aims to explore the molecular mechanism underlying the involvement of circPVT1 in osteosarcoma cells. We quantified circPVT1 expression using qRT-PCR in both control and osteosarcoma cell lines. To investigate the roles of circPVT1, miR-490-5p and HAVCR2 in vitro, we separately conducted overexpression and inhibition experiments for circPVT1, miR-490-5p and HAVCR2 in HOS and U2OS cells. Cell migration was assessed through wound healing and transwell migration assays, and invasion was measured via the Matrigel invasion assay. To elucidate the regulatory mechanism of circPVT1 in osteosarcoma, a comprehensive approach was employed, including fluorescence in situ hybridization, qRT-PCR, Western blot, bioinformatics, dual-luciferase reporter assay and rescue assay. CircPVT1 expression in osteosarcoma cell lines surpassed that in control cells. The depletion of circPVT1 resulted in a notable reduction in the in vitro migration and invasion of osteosarcoma cells. Mechanism experiments revealed that circPVT1 functioned as a miR-490-5p sequester, and directly targeted HAVCR2. Overexpression of miR-490-5p led to a significant attenuation of migration and invasion of osteosarcoma cells, whereas HAVCR2 overexpression had the opposite effect, promoting these abilities. Additionally, circPVT1 upregulated HAVCR2 expression via sequestering miR-490-5p, thereby orchestrating the migration and invasion in osteosarcoma cells. CircPVT1 orchestrates osteosarcoma migration and invasion by regulating the miR-490-5p/HAVCR2 axis, underscoring its potential as a promising therapeutic target for osteosarcoma.


Subject(s)
Bone Neoplasms , MicroRNAs , Osteosarcoma , Humans , In Situ Hybridization, Fluorescence , Cell Movement/genetics , Osteosarcoma/genetics , Bone Neoplasms/genetics , MicroRNAs/genetics , Hepatitis A Virus Cellular Receptor 2
16.
J Cell Mol Med ; 28(8): e18278, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38546623

ABSTRACT

Krüppel-like factors (KLFs) are crucial in the development of bone disease. They are a family of zinc finger transcription factors that are unusual in containing three highly conserved zinc finger structural domains interacting with DNA. It has been discovered that it engages in various cell functions, including proliferation, apoptosis, autophagy, stemness, invasion and migration, and is crucial for the development of human tissues. In recent years, the role of KLFs in bone physiology and pathology has received adequate attention. In addition to regulating the normal growth and development of the musculoskeletal system, KLFs participate in the pathological process of the bones and joints and are intimately linked to several skeletal illnesses, such as osteoarthritis (OA), rheumatoid arthritis (RA), osteoporosis (OP) and osteosarcoma (OS). Consequently, targeting KLFs has emerged as a promising therapeutic approach for an array of bone disorders. In this review, we summarize the current literature on the importance of KLFs in the emergence and regulation of bone illnesses, with a particular emphasis on the pertinent mechanisms by which KLFs regulate skeletal diseases. We also discuss the need for KLFs-based medication-targeted treatment. These endeavours offer new perspectives on the use of KLFs in bone disorders and provide prognostic biomarkers, therapeutic targets and possible drug candidates for bone diseases.


Subject(s)
Bone Neoplasms , Musculoskeletal Diseases , Osteoporosis , Humans , Transcription Factors , Kruppel-Like Transcription Factors/genetics
17.
J Cell Physiol ; 239(5): e31256, 2024 May.
Article in English | MEDLINE | ID: mdl-38591855

ABSTRACT

Osteosarcoma (OS) cancer treatments include systemic chemotherapy and surgical resection. In the last years, novel treatment approaches have been proposed, which employ a drug-delivery system to prevent offside effects and improves treatment efficacy. Locally delivering anticancer compounds improves on high local concentrations with more efficient tumour-killing effect, reduced drugs resistance and confined systemic effects. Here, the synthesis of injectable strontium-doped calcium phosphate (SrCPC) scaffold was proposed as drug delivery system to combine bone tissue regeneration and anticancer treatment by controlled release of methotrexate (MTX) and doxorubicin (DOX), coded as SrCPC-MTX and SrCPC-DOX, respectively. The drug-loaded cements were tested in an in vitro model of human OS cell line SAOS-2, engineered OS cell line (SAOS-2-eGFP) and U2-OS. The ability of doped scaffolds to induce OS cell death and apoptosis was assessed analysing cell proliferation and Caspase-3/7 activities, respectively. To determine if OS cells grown on doped-scaffolds change their migratory ability and invasiveness, a wound-healing assay was performed. In addition, the osteogenic potential of SrCPC material was evaluated using human adipose derived-mesenchymal stem cells. Osteogenic markers such as (i) the mineral matrix deposition was analysed by alizarin red staining; (ii) the osteocalcin (OCN) protein expression was investigated by enzyme-linked immunosorbent assay test, and (iii) the osteogenic process was studied by real-time polymerase chain reaction array. The delivery system induced cell-killing cytotoxic effects and apoptosis in OS cell lines up to Day 7. SrCPC demonstrates a good cytocompatibility and it induced upregulation of osteogenic genes involved in the skeletal development pathway, together with OCN protein expression and mineral matrix deposition. The proposed approach, based on the local, sustained release of anticancer drugs from nanostructured biomimetic drug-loaded cements is promising for future therapies aiming to combine bone regeneration and anticancer local therapy.


Subject(s)
Antineoplastic Agents , Apoptosis , Bone Neoplasms , Calcium Phosphates , Doxorubicin , Methotrexate , Osteogenesis , Osteosarcoma , Tissue Scaffolds , Humans , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Bone Neoplasms/drug therapy , Bone Neoplasms/pathology , Calcium Phosphates/administration & dosage , Calcium Phosphates/chemistry , Cell Line, Tumor , Cell Movement/drug effects , Cell Proliferation/drug effects , Doxorubicin/administration & dosage , Doxorubicin/pharmacology , Mesenchymal Stem Cells/drug effects , Osteogenesis/drug effects , Osteosarcoma/drug therapy , Osteosarcoma/pathology , Osteosarcoma/metabolism , Strontium/pharmacology , Strontium/chemistry , Tissue Scaffolds/chemistry , Drug Delivery Systems , Methotrexate/administration & dosage , Methotrexate/pharmacology
18.
J Cell Physiol ; 239(3): e31068, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37357526

ABSTRACT

N6-methyladenosine (m6 A) is one of the main epitranscriptomic modifications that accelerates the progression of malignant tumors by modifying RNA. Methyltransferase-like 16 (METTL16) is a newly identified methyltransferase that has been found to play an important oncogenic role in a few malignancies; however, its function in osteosarcoma (OS) remains unclear. In this study, METTL16 was found to be upregulated in OS tissues, and associated with poor prognosis in OS patients. Functionally, METTL16 substantially promoted OS cell proliferation, migration, and invasion in vitro and OS growth in vivo. Mechanistically, vacuolar protein sorting protein 33b (VPS33B) was identified as the downstream target of METTL16, which induced m6 A modification of VPS33B and impaired the stability of the VPS33B transcript, thereby degrading VPS33B. In addition, VPS33B was found to be downregulated in OS tissues, VPS33B knockdown markedly attenuated shMETTL16-mediated inhibition on OS progression. Finally, METTL16/VPS33B might facilitate OS progression through PI3K/AKT pathway. In summary, this study revealed an important role for the METTL16-mediated m6 A modification in OS progression, implying it as a promising target for OS treatment.


Subject(s)
Adenosine , Bone Neoplasms , Methyltransferases , Osteosarcoma , Phosphatidylinositol 3-Kinases , Vesicular Transport Proteins , Humans , Bone Neoplasms/genetics , Bone Neoplasms/pathology , Methyltransferases/genetics , Methyltransferases/metabolism , Osteosarcoma/genetics , Osteosarcoma/pathology , Phosphatidylinositol 3-Kinases/metabolism , Protein Transport , Vesicular Transport Proteins/genetics , Vesicular Transport Proteins/metabolism , Adenosine/analogs & derivatives , Adenosine/metabolism , Cell Line, Tumor
19.
BMC Genomics ; 25(1): 379, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38632516

ABSTRACT

BACKGROUND: Tumor cells exhibit a heightened susceptibility to lysosomal-dependent cell death (LCD) compared to normal cells. However, the role of LCD-related genes (LCD-RGs) in Osteosarcoma (OS) remains unelucidated. This study aimed to elucidate the role of LCD-RGs and their mechanisms in OS using several existing OS related datasets, including TCGA-OS, GSE16088, GSE14359, GSE21257 and GSE162454. RESULTS: Analysis identified a total of 8,629 DEGs1, 2,777 DEGs2 and 21 intersection genes. Importantly, two biomarkers (ATP6V0D1 and HDAC6) linked to OS prognosis were identified to establish the prognostic model. Significant differences in risk scores for OS survival were observed between high and low-risk cohorts. Additionally, scores of dendritic cells (DC), immature DCs and γδT cells differed significantly between the two risk cohorts. Cell annotations from GSE162454 encompassed eight types (myeloid cells, osteoblastic OS cells and plasma cells). ATP6V0D1 was found to be significantly over-expressed in myeloid cells and osteoclasts, while HDAC6 was under-expressed across all cell types. Moreover, single-cell trajectory mapping revealed that myeloid cells and osteoclasts differentiated first, underscoring their pivotal role in patients with OS. Furthermore, ATP6V0D1 expression progressively decreased with time. CONCLUSIONS: A new prognostic model for OS, associated with LCD-RGs, was developed and validated, offering a fresh perspective for exploring the association between LCD and OS.


Subject(s)
Bone Neoplasms , Osteosarcoma , Humans , Prognosis , Sequence Analysis, RNA , Cell Death , Lysosomes , RNA
20.
Lab Invest ; 104(1): 100283, 2024 01.
Article in English | MEDLINE | ID: mdl-37931683

ABSTRACT

Osteosarcoma is the most common primary bone malignancy, often detected in children and adolescents and commonly associated with TP53 alterations along with a high number of chromosomal rearrangements. However, osteosarcoma can affect patients of any age, and some tumors display less genetic complexity. Besides TP53 variants, data on key driving mutations are lacking for many osteosarcomas, particularly those affecting adults. To detect osteosarcoma-specific alterations, we screened transcriptomic and genomic sequencing and copy number data from 150 bone tumors originally diagnosed as osteosarcomas. To increase the precision in gene fusion detection, we developed a bioinformatic tool denoted as NAFuse, which extracts gene fusions that are verified at both the genomic and transcriptomic levels. Apart from the already reported genetic subgroups of osteosarcoma with TP53 structural variants, or MDM2 and/or CDK4 amplification, we did not identify any recurrent genetic driver that signifies the remaining cases. Among the plethora of mutations identified, we found genetic alterations characteristic of, or similar to, those of other bone and soft tissue tumors in 8 cases. These mutations were found in tumors with relatively few other genetic alterations or in adults. Due to the lack of clinical context and available tissue, we can question the diagnosis only on a genetic basis. However, our findings support the notion that osteosarcomas with few chromosomal alterations or adult onset seem genetically distinct from conventional osteosarcomas of children and adolescents.


Subject(s)
Bone Neoplasms , Osteosarcoma , Adult , Adolescent , Child , Humans , Proto-Oncogene Proteins c-mdm2/genetics , Osteosarcoma/genetics , Osteosarcoma/pathology , Mutation , Bone Neoplasms/genetics , Base Sequence
SELECTION OF CITATIONS
SEARCH DETAIL