Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Int J Mol Sci ; 24(3)2023 Feb 02.
Article in English | MEDLINE | ID: mdl-36769254

ABSTRACT

The covalent functionalization of synthetic peptides allows the modification of different biomaterials (metallic, polymeric, and ceramic), which are enriched with biologically active sequences to guide cell behavior. Recently, this strategy has also been applied to decellularized biological matrices. In this study, the covalent anchorage of a synthetic peptide (REDV) to a pericardial matrix decellularized via Schiff base is realized starting from concentrated peptide solutions (10-4 M and 10-3 M). The use of a labeled peptide demonstrated that as the concentration of the working solution increased, the surface density of the anchored peptide increased as well. These data are essential to pinpointing the concentration window in which the peptide promotes the desired cellular activity. The matrices were extensively characterized by Water Contact Angle (WCA) analysis, Differential Scanning Calorimetry (DSC) analysis, geometric feature evaluation, biomechanical tests, and preliminary in vitro bioassays.


Subject(s)
Peptides , Pericardium , Biocompatible Materials
2.
Molecules ; 28(5)2023 Mar 05.
Article in English | MEDLINE | ID: mdl-36903628

ABSTRACT

The study of peptides (synthetic or corresponding to discrete regions of proteins) has facilitated the understanding of protein structure-activity relationships. Short peptides can also be used as powerful therapeutic agents. However, the functional activity of many short peptides is usually substantially lower than that of their parental proteins. This is (as a rule) due to their diminished structural organization, stability, and solubility often leading to an enhanced propensity for aggregation. Several approaches have emerged to overcome these limitations, which are aimed at imposing structural constraints into the backbone and/or sidechains of the therapeutic peptides (such as molecular stapling, peptide backbone circularization and molecular grafting), therefore enforcing their biologically active conformation and thus improving their solubility, stability, and functional activity. This review provides a short summary of approaches aimed at enhancing the biological activity of short functional peptides with a particular focus on the peptide grafting approach, whereby a functional peptide is inserted into a scaffold molecule. Intra-backbone insertions of short therapeutic peptides into scaffold proteins have been shown to enhance their activity and render them a more stable and biologically active conformation.


Subject(s)
Peptides , Peptides/chemistry , Molecular Conformation , Protein Conformation
3.
Biochem Biophys Res Commun ; 503(4): 3162-3166, 2018 09 18.
Article in English | MEDLINE | ID: mdl-30146256

ABSTRACT

The grafting of active peptides onto structurally stable scaffold proteins is effective for the generation of functional proteins. In this study, we aimed to develop a grafting method using ubiquitin as a scaffold protein. Ubiquitin is a small protein consisting of 76 amino acid residues that is highly stable against heat and pH stress, which are desirable characteristics for a scaffold protein. Moreover, its structure is maintained even if it is split or additional residues are inserted. Therefore, we assumed that grafting of an active peptide into ubiquitin would result in a functional protein. As a proof of concept, we developed the ubiquitin-based binder (UbB), into which the p53 (17-28) peptide was inserted between Ile36 and Pro37. The p53 (17-28) peptide, utilized as a model active peptide in this work, is known to bind to mouse double minute 2 homolog (Mdm2). Size exclusion chromatography and circular dichroism indicated that UbB maintained a similar structure to that of ubiquitin. The affinity for Mdm2 measured by surface plasmon resonance was 292 times greater than that of the p53 (17-28) peptide. These observations indicate that ubiquitin is a robust scaffold for peptide grafting. We hope that this study will aid further development of ubiquitin-based protein engineering.


Subject(s)
Peptides/genetics , Protein Engineering/methods , Proto-Oncogene Proteins c-mdm2/metabolism , Tumor Suppressor Protein p53/genetics , Ubiquitin/genetics , Amino Acid Sequence , Escherichia coli/genetics , Gene Expression , Genetic Vectors/genetics , Humans , Models, Molecular , Peptides/chemistry , Peptides/metabolism , Protein Binding , Protein Stability , Tumor Suppressor Protein p53/chemistry , Tumor Suppressor Protein p53/metabolism , Ubiquitin/chemistry , Ubiquitin/metabolism
4.
Protein Eng Des Sel ; 342021 02 15.
Article in English | MEDLINE | ID: mdl-34882773

ABSTRACT

The process of displaying functional peptides by 'grafting' them onto loops of a stable protein scaffold can be used to impart binding affinity for a target, but it can be difficult to predict the affinity of the grafted peptide and the effect of grafting on scaffold stability. In this study, we show that a series of peptides that bind to the E3 ubiquitin ligase Keap1 can be grafted into the inter-repeat loop of a consensus-designed tetratricopeptide repeat (CTPR) protein resulting in proteins with high stability. We found that these CTPR-grafted peptides had similar affinities to their free peptide counterparts and achieved a low nanomolar range. This result is likely due to a good structural match between the inter-repeat loop of the CTPR and the Keap1-binding peptide. The grafting process led to the discovery of a new Keap1-binding peptide, Ac-LDPETGELL-NH2, with low nanomolar affinity for Keap1, highlighting the potential of the repeat-protein class for application in peptide display.


Subject(s)
NF-E2-Related Factor 2 , Ubiquitin-Protein Ligases , Kelch-Like ECH-Associated Protein 1/genetics , Kelch-Like ECH-Associated Protein 1/metabolism , NF-E2-Related Factor 2/metabolism , Peptides/genetics , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism
5.
Curr Res Struct Biol ; 3: 30-40, 2021.
Article in English | MEDLINE | ID: mdl-34235484

ABSTRACT

Alpha-helical repeat proteins such as consensus-designed tetratricopeptide repeats (CTPRs) are exceptionally stable molecules that are able to tolerate destabilizing sequence alterations and are therefore becoming increasingly valued as a modular platform for biotechnology and biotherapeutic applications. A simple approach to functionalize the CTPR scaffold that we are pioneering is the insertion of short linear motifs (SLiMs) into the loops between adjacent repeats. Here, we test the limits of the scaffold by inserting 17 highly diverse amino acid sequences of up to 58 amino acids in length into a two-repeat protein and examine the impact on protein folding, stability and solubility. The sequences include three SLiMs that bind oncoproteins and eleven naturally occurring linker sequences all predicted to be intrinsically disordered but with conformational preferences ranging from compact globules to expanded coils. We show that the loop-grafted proteins retain the native CTPR structure and are thermally stable with melting temperatures above 60 â€‹°C, despite the longest loop sequence being almost the same size as the CTPR scaffold itself (68 amino acids). Although the main determinant of the effect of stability was found to be loop length and was relatively insensitive to amino acid composition, the relationship between protein solubility and the loop sequences was more complex, with the presence of negatively charged amino acids enhancing the solubility. Our findings will help us to fully realize the potential of the repeat-protein scaffold, allowing a rational design approach to create artificial modular proteins with customized functional capabilities.

6.
Pharmaceutics ; 10(3)2018 Aug 27.
Article in English | MEDLINE | ID: mdl-30150531

ABSTRACT

Tetraspan proteins are significantly enriched in the membranes of exosomal vesicles (EVs) and their extracellular domains are attractive targets for engineering towards specific antigen recognition units. To enhance the tolerance of a tetraspanin fold to modification, we achieved significant thermal stabilization of the human CD81 large extracellular loop (hCD81 LEL) via de novo disulfide bonds. The best mutants were shown to exhibit a positive shift in the melting temperature (Tm) of up to 25 °C. The combination of two most potent disulfide bonds connecting different strands of the protein resulted in a mutant with a Tm of 109 °C, 43 °C over the Tm of the wild-type hCD81 LEL. A peptide sequence binding to the human transferrin receptor (hTfr) was engrafted into the D-segment of the hCD81 LEL, resulting in a mutant that still exhibited a compact fold. Grafting of the same peptide sequence between helices A and B resulted in a molecule with an aberrant profile in size exclusion chromatography (SEC), which could be improved by a de novo cysteine bond connecting both helices. Both peptide-grafted proteins showed an enhanced internalization into the cell line SK-BR3, which strongly overexpresses hTfr. In summary, the tetraspan LEL fold could be stabilized to enhance its amenability for engineering into a more versatile protein scaffold.

7.
Biotechniques ; 64(6): 245-253, 2018 06.
Article in English | MEDLINE | ID: mdl-29939094

ABSTRACT

The goal in the presented study was to develop a simple, fast and accurate method for measuring the surface density of a short peptide sequence bound to a polymeric substrate. We analyzed polyurethane samples chemically modified with acrylic acid and polyurethane-grafted peptide (GSGREDVGSG) and investigated the possibility of using the bicinchoninic acid (BCA) assay to determine surface density of the solid-supported peptide. We set the conditions (temperature, time) under which the test should be conducted. We also studied the interaction of the BCA reagent with polyurethane substrate and the effect of drying conditions as well as material type and form on the test response. We have proposed potential factors that might interfere with the BCA assay and chosen the proper control materials.


Subject(s)
Colorimetry/methods , Oligopeptides/analysis , Polyurethanes/analysis , Quinolines/chemistry , Indicators and Reagents , Linear Models
8.
J Biochem ; 154(4): 325-32, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23902829

ABSTRACT

A requirement for advancing antibody-based medicine is the development of proteins that can bind with high affinity to a specific epitope related to a critical protein activity site. As a part of generating such proteins, we have succeeded in creating a binding protein without changing epitope by complementarity-determining region 3 (CDR3) grafting (Inoue et al., Affinity transfer to a human protein by CDR3 grafting of camelid VHH. Protein Sci. 20, 1971-1981). However, the affinity of the target-binding protein was low. In this manuscript, the affinity maturation of a target-binding protein was examined using CDR3-grafted camelid single domain antibody (VHH) as a model protein. Several amino acids in the CDR1 and CDR2 regions of VHH were mutated to tyrosines and/or serines and screened for affinity-matured proteins by using in silico analysis. The mutation of two amino acids in the CDR2 region to arginine and/or aspartic acid increased the affinity by decreasing the dissociation rate. The affinity of designed mutant increased by ∼20-fold over that of the original protein. In the present study, candidate mutants were narrowed down using in silico screening and computational modelling, thus avoiding much in vitro analytical effort. Therefore, the method used in this study is expected to be one of the useful for promoting affinity maturation of antibodies.


Subject(s)
Single-Domain Antibodies/chemistry , Amino Acid Sequence , Animals , Camelids, New World , Computer Simulation , Humans , Models, Molecular , Molecular Sequence Data , Mutation , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Single-Domain Antibodies/genetics , Surface Plasmon Resonance
SELECTION OF CITATIONS
SEARCH DETAIL