Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 271
Filter
1.
Infect Immun ; 92(9): e0050023, 2024 Sep 10.
Article in English | MEDLINE | ID: mdl-39166846

ABSTRACT

Type VI secretion systems (T6SSs) are complex molecular machines that allow bacteria to deliver toxic effector proteins to neighboring bacterial and eukaryotic cells. Although initial work focused on the T6SS as a virulence mechanism of human pathogens, the field shifted to examine the use of T6SSs for interbacterial competition in various environments, including in the plant rhizosphere. Genes encoding the T6SS are estimated to be found in a quarter of all Gram-negative bacteria and are especially highly represented in Proteobacteria, a group which includes the most important bacterial phytopathogens. Many of these pathogens encode multiple distinct T6SS gene clusters which can include the core components of the apparatus as well as effector proteins. The T6SS is deployed by pathogens at multiple points as they colonize their hosts and establish an infection. In this review, we describe what is known about the use of T6SS by phytopathogens against plant hosts and non-plant organisms, keeping in mind that the structure of plants requires unique mechanisms of attack that are distinct from the mechanisms used for interbacterial interactions and against animal hosts. While the interactions of specific effectors (such as phospholipases, endonucleases, peptidases, and amidases) with targets have been well described in the context of interbacterial competition and in some eukaryotic interactions, this review highlights the need for future studies to assess the activity of phytobacterial T6SS effectors against plant cells.


Subject(s)
Plant Diseases , Plants , Type VI Secretion Systems , Type VI Secretion Systems/genetics , Type VI Secretion Systems/metabolism , Plants/microbiology , Plant Diseases/microbiology , Host-Pathogen Interactions , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Virulence , Virulence Factors/genetics , Virulence Factors/metabolism
2.
Mol Plant Microbe Interact ; 37(3): 347-353, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38114082

ABSTRACT

Xanthomonads, including Xanthomonas and Xylella species, constitute a large and significant group of economically and ecologically important plant pathogens. Up-to-date knowledge of these pathogens and their hosts is essential for the development of suitable control measures. Traditional review articles or book chapters have inherent limitations, including static content and rapid obsolescence. To address these challenges, we have developed a Web-based knowledge platform dedicated to xanthomonads, inspired by the concept of living systematic reviews. This platform offers a dynamic resource that encompasses bacterial virulence factors, plant resistance genes, and tools for diagnostics and genetic diversity studies. Our goal is to facilitate access for newcomers to the field, provide continuing education opportunities for students, assist plant protection services with diagnostics, provide valuable information to breeders on sources of resistance and breeding targets, and offer comprehensive expert knowledge to other stakeholders interested in plant-pathogenic xanthomonads. This resource is available for queries and updates at https://euroxanth.ipn.pt. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Subject(s)
Plant Breeding , Xanthomonas , Humans , Virulence/genetics , Xanthomonas/genetics , Virulence Factors/genetics , Plants/microbiology , Plant Diseases/microbiology
3.
Plant Biotechnol J ; 22(9): 2461-2471, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38735054

ABSTRACT

The reduction in crop yield caused by pathogens and pests presents a significant challenge to global food security. Genetic engineering, which aims to bolster plant defence mechanisms, emerges as a cost-effective solution for disease control. However, this approach often incurs a growth penalty, known as the growth-defence trade-off. The precise molecular mechanisms governing this phenomenon are still not completely understood, but they generally fall under two main hypotheses: a "passive" redistribution of metabolic resources, or an "active" regulatory choice to optimize plant fitness. Despite the knowledge gaps, considerable practical endeavours are in the process of disentangling growth from defence. The plant microbiome, encompassing both above- and below-ground components, plays a pivotal role in fostering plant growth and resilience to stresses. There is increasing evidence which indicates that plants maintain intimate associations with diverse, specifically selected microbial communities. Meta-analyses have unveiled well-coordinated, two-way communications between plant shoots and roots, showcasing the capacity of plants to actively manage their microbiota for balancing growth with immunity, especially in response to pathogen incursions. This review centers on successes in making use of specific root-associated microbes to mitigate the growth-defence trade-off, emphasizing pivotal advancements in unravelling the mechanisms behind plant growth and defence. These findings illuminate promising avenues for future research and practical applications.


Subject(s)
Microbiota , Plant Development , Plant Immunity , Plant Roots/microbiology , Plant Roots/growth & development , Plant Roots/immunology , Plants/microbiology , Plants/immunology , Plants/metabolism , Crops, Agricultural/microbiology , Crops, Agricultural/growth & development , Crops, Agricultural/immunology , Crops, Agricultural/genetics
4.
Article in English | MEDLINE | ID: mdl-39190596

ABSTRACT

Gene- and genome-based approaches were used to determine whether Vigna little leaf (ViLL) phytoplasma, which occurs in northern Australia, is a distinct 'Candidatus Phytoplasma' species. The ViLL 16S rRNA gene sequences exhibited the highest known similarity to species in the 16SrXXIX-A and 16SrIX-D subgroups, namely 'Candidatus Phytoplasma omanense' (98.03-98.10%) and 'Candidatus Phytoplasma phoenicium' (96.87-97.20%), respectively. A total of 48 single-copy orthologue genes were identified to be shared among the two draft ViLL phytoplasma genomes, 30 publicly available phytoplasma genomes, and one Acholeplasma laidlawii genome as the outgroup taxon. Phylogenomic assessments using the 48 shared single-copy orthologue genes supported that ViLL and 'Ca. Phytoplasma phoenicium' were closely related yet distinct species. The 16S rRNA gene sequence analysis and phylogenomic assessment indicate that ViLL phytoplasmas are a distinct taxon. As such, a novel species, 'Candidatus Phytoplasma vignae', is proposed. Strain BAWM-336 (genome accession number JAUZLI000000000) detected in Momordica charantia (bitter melon) serves as the reference strain of this species, with infected plant material deposited in the Victorian Plant Pathology Herbarium (VPRI) as VPRI 44369.


Subject(s)
DNA, Bacterial , Phylogeny , Phytoplasma , RNA, Ribosomal, 16S , Sequence Analysis, DNA , Phytoplasma/genetics , Phytoplasma/classification , Phytoplasma/isolation & purification , RNA, Ribosomal, 16S/genetics , DNA, Bacterial/genetics , Australia , Genome, Bacterial , Fabaceae/microbiology , Bacterial Typing Techniques , Plant Leaves/microbiology
5.
Microb Ecol ; 87(1): 76, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38801423

ABSTRACT

Modern crop production relies on the application of chemical pesticides and fertilizers causing environmental and economic challenges. In response, less environmentally impactful alternatives have emerged such as the use of beneficial microorganisms. These microorganisms, particularly plant growth-promoting bacteria (PGPB), have demonstrated their ability to enhance plant growth, protect against various stresses, and reduce the need for chemical inputs. Among the PGPB, Bacillus species have garnered attention due to their adaptability and commercial potential. Recent reports have highlighted Bacillus strains as biocontrol agents against phytopathogenic bacteria while concurrently promoting plant growth. We also examined Bacillus plant growth-promoting abilities in Arabidopsis thaliana seedlings. In this study, we assessed the potential of various Bacillus strains to control diverse phytopathogenic bacteria and inhibit quorum sensing using Chromobacterium violaceum as a model system. In conclusion, our results suggest that bacteria of the genus Bacillus hold significant potential for biotechnological applications. This includes developments aimed at reducing agrochemical use, promoting sustainable agriculture, and enhancing crop yield and protection.


Subject(s)
Arabidopsis , Bacillus , Plant Diseases , Bacillus/physiology , Arabidopsis/microbiology , Arabidopsis/growth & development , Plant Diseases/prevention & control , Plant Diseases/microbiology , Quorum Sensing , Chromobacterium/physiology , Chromobacterium/growth & development , Biological Control Agents/pharmacology , Plant Development , Seedlings/microbiology , Seedlings/growth & development , Soil Microbiology
6.
Mol Biol Rep ; 51(1): 682, 2024 May 25.
Article in English | MEDLINE | ID: mdl-38796647

ABSTRACT

BACKGROUND: Control of blackleg disease of canola caused by the fungus Leptosphaeria maculans relies on strategies such as the inhibition of growth with fungicides. However, other chemicals are used during canola cultivation, including fertilizers and herbicides. There is widespread use of herbicides that target the acetolactate synthase (ALS) enzyme involved in branched chain amino acid synthesis and low levels of these amino acids within leaves of Brassica species. In L. maculans the ilv2 gene encodes ALS and thus ALS-inhibiting herbicides may inadvertently impact the fungus. METHODS AND RESULTS: Here, the impact of a commercial herbicide targeting ALS and mutation of the homologous ilv2 gene in L. maculans was explored. Exposure to herbicide had limited impact on growth in vitro but reduced lesion sizes in plant disease experiments. Furthermore, the mutation of the ilv2 gene via CRISPR-Cas9 gene editing rendered the fungus non-pathogenic. CONCLUSION: Herbicide applications can influence disease outcome, but likely to a minor extent.


Subject(s)
Acetolactate Synthase , Amino Acids, Branched-Chain , Herbicides , Leptosphaeria , Plant Diseases , Acetolactate Synthase/genetics , Acetolactate Synthase/metabolism , Plant Diseases/microbiology , Herbicides/pharmacology , Amino Acids, Branched-Chain/biosynthesis , Amino Acids, Branched-Chain/metabolism , Leptosphaeria/genetics , Leptosphaeria/pathogenicity , Mutation/genetics , Fungal Proteins/genetics , Fungal Proteins/metabolism , Gene Editing/methods , Plant Leaves/microbiology , CRISPR-Cas Systems/genetics , Brassica/microbiology , Ascomycota/pathogenicity , Ascomycota/genetics
7.
Mar Drugs ; 22(2)2024 Jan 27.
Article in English | MEDLINE | ID: mdl-38393037

ABSTRACT

Co-cultivation, coupled with the OSMAC approach, is considered an efficient method for expanding microbial chemical diversity through the activation of cryptic biosynthetic gene clusters (BGCs). As part of our project aiming to discover new fungal metabolites for crop protection, we previously reported five polyketides, the macrolides dendrodolides E (1) and N (2), the azaphilones spiciferinone (3) and 8α-hydroxy-spiciferinone (4), and the bis-naphtho-γ-pyrone cephalochromin (5) from the solid Potato Dextrose Agar (PDA) co-culture of two marine sediment-derived fungi, Plenodomus influorescens and Pyrenochaeta nobilis. However, some of the purified metabolites could not be tested due to their minute quantities. Here we cultivated these fungi (both axenic and co-cultures) in liquid regime using three different media, Potato Dextrose Broth (PDB), Sabouraud Dextrose Broth (SDB), and Czapek-Dox Broth (CDB), with or without shaking. The aim was to determine the most ideal co-cultivation conditions to enhance the titers of the previously isolated compounds and to produce extracts with stronger anti-phytopathogenic activity as a basis for future upscaled fermentation. Comparative metabolomics by UPLC-MS/MS-based molecular networking and manual dereplication was employed for chemical profiling and compound annotations. Liquid co-cultivation in PDB under shaking led to the strongest activity against the phytopathogen Phytophthora infestans. Except for compound 1, all target compounds were detected in the co-culture in PDB. Compounds 2 and 5 were produced in lower titers, whereas the azaphilones (3 and 4) were overexpressed in PDB compared to PDA. Notably, liquid PDB co-cultures contained meroterpenoids and depside clusters that were absent in the solid PDA co-cultures. This study demonstrates the importance of culture regime in BGC regulation and chemical diversity of fungal strains in co-culture studies.


Subject(s)
Metabolome , Tandem Mass Spectrometry , Coculture Techniques , Chromatography, Liquid , Culture Media , Glucose
8.
Chem Biodivers ; : e202401972, 2024 Aug 18.
Article in English | MEDLINE | ID: mdl-39155528

ABSTRACT

Growing concerns over the human health and environmental impacts of conventional fungicides, coupled with the escalating challenge of microbial resistance, have fueled the search for sustainable biocontrol strategies against plant pathogens. This study reports, for the first time, the green synthesis and characterization of a novel, eco-friendly nanomaterial, designated Pleurotus eryngii-Lecithin-Chitosan Nanomaterial (PEELCN), derived from P. eryngii extract (PEE), lecithin (L), and chitosan (C). The structural attributes of PEELCN were elucidated using Fourier Transform Infrared Spectroscopy (FTIR), Scanning Electron Microscopy (SEM), Thermogravimetric Analysis (TGA), X-ray Diffraction (XRD), and zeta potential measurements, confirming the successful formation of a stable and uniform nanostructure. The antifungal activity of PEELCN, and PEE, was assessed against five economically important phytopathogenic fungi: Neoscytalidium dimidiatum, Alternaria alternata, Verticillium dahliae, Bipolaris sorokiniana, and Fusarium oxysporum. Both PEE and PEELCN exhibited significant inhibitory effects on the mycelial growth of V. dahliae, B. sorokiniana, and N. dimidiatum, with varying degrees of efficacy. The differential antifungal activity suggests a species-specific mode of action. The findings highlight the promising potential of PEELCN as a sustainable, biocompatible, and cost-effective nanofungicide for the management of plant diseases, with the potential for development into a commercially viable biofungicide for sustainable agriculture.

9.
Plant Dis ; 2024 Sep 10.
Article in English | MEDLINE | ID: mdl-39254844

ABSTRACT

Cucurbit yellow vine disease (CYVD), which is caused by the gram-negative bacterium Serratia marcescens and transmitted by squash bugs (Anasa tristis DeGeer), is a devastating disease of cucurbit crops that is emerging rapidly in the eastern half of the U.S. The lack of a robust pathogenicity assay for CYVD in the laboratory has hampered functional tests using genomic sequences to investigate the biology of this phytopathogen. In this study we developed and validated a bioassay that yielded consistent and quantifiable CYVD symptoms on squash in the lab. We compared inoculation by wounding with a multipronged floral pin frog to inoculation by injection in which a needle was moved in and out of the stem multiple times in each of multiple piercings to mimic the feeding behavior of squash bugs. We found that inoculation by needle injection of ≥108 CFU/ml of S. marcescens into the stem of squash (Cucurbita pepo) plants at the cotyledon growth stage reproducibly induced CYVD symptoms, whereas injecting 106 or 107 CFU/ml did not. Additionally, we found that S. marcescens induced symptoms on all of the squash cultivars tested, and induced symptoms that have not been previously reported, including stem elongation and leaf cupping. In short, through our injection approach of mimicking the natural process of S. marcescens transmission by squash bug feeding, we obtained robust and quantifiable CYVD symptoms. This laboratory bioassay provides a crucial tool for investigating the biology and pathology of this emerging pathogen and for plant breeding screens aimed at combatting CYVD.

10.
Molecules ; 29(2)2024 Jan 16.
Article in English | MEDLINE | ID: mdl-38257350

ABSTRACT

In the search for new alternative biocontrol strategies, phytopathogenic fungi could represent a new frontier for weed management. In this respect, as part of our ongoing work aiming at using fungal pathogens as an alternative to common herbicides, the foliar pathogen Nigrospora sphaerica has been evaluated to control buffelgrass (Cenchrus ciliaris). In particular, in this work, the isolation and structural elucidation of two new biosynthetically related metabolites, named nigrosphaeritriol (3-(hydroxymethyl)-2-methylpentane-1,4-diol) and nigrosphaerilactol (3-(1-hydroxyethyl)-4-methyltetrahydrofuran-2-ol), from the phytotoxic culture filtrate extract were described, along with the identification of several known metabolites. Moreover, the absolute stereochemistry of (3R,4S,5S)-nigrosphaerilactone, previously reported as (3S,4R,5R)-4-hydroxymethyl-3,5-dimethyldihydro-2-furanone, was determined for the first time by X-ray diffraction analysis. Considering their structural relationship, the determination of the absolute stereochemistry of nigrosphaerilactone allowed us to hypothesize the absolute stereochemistry of nigrosphaeritriol and nigrosphaerilactol.


Subject(s)
Ascomycota , Cenchrus , Plant Weeds , Crystallography, X-Ray
11.
Molecules ; 29(10)2024 May 12.
Article in English | MEDLINE | ID: mdl-38792143

ABSTRACT

Strigolactones (SLs) have potential to be used in sustainable agriculture to mitigate various stresses that plants have to deal with. The natural SLs, as well as the synthetic analogs, are difficult to obtain in sufficient amounts for practical applications. At the same time, fluorescent SLs would be useful for the mechanistic understanding of their effects based on bio-imaging or spectroscopic techniques. In this study, new fluorescent SL mimics containing a substituted 1,8-naphthalimide ring system connected through an ether link to a bioactive furan-2-one moiety were prepared. The structural, spectroscopic, and biological activity of the new SL mimics on phytopathogens were investigated and compared with previously synthetized fluorescent SL mimics. The chemical group at the C-6 position of the naphthalimide ring influences the fluorescence parameters. All SL mimics showed effects similar to GR24 on phytopathogens, indicating their suitability for practical applications. The pattern of the biological activity depended on the fungal species, SL mimic and concentration, and hyphal order. This dependence is probably related to the specificity of each fungal receptor-SL mimic interaction, which will have to be analyzed in-depth. Based on the biological properties and spectroscopic particularities, one SL mimic could be a good candidate for microscopic and spectroscopic investigations.


Subject(s)
Lactones , Naphthalimides , Naphthalimides/chemistry , Naphthalimides/chemical synthesis , Naphthalimides/pharmacology , Lactones/chemistry , Lactones/pharmacology , Lactones/chemical synthesis , Molecular Structure , Ascomycota , Fluorescent Dyes/chemistry , Fluorescent Dyes/chemical synthesis , Rhizoctonia/drug effects , Heterocyclic Compounds, 3-Ring
12.
World J Microbiol Biotechnol ; 40(5): 153, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38564115

ABSTRACT

Ralstonia solanacearum, the bacterium that causes bacterial wilt, is a destructive phytopathogen that can infect over 450 different plant species. Several agriculturally significant crop plants, including eggplant, tomato, pepper, potato, and ginger, are highly susceptible to this plant disease, which has a global impact on crop quality and yield. There is currently no known preventive method that works well for bacterial wilt. Bacteria use two-component systems (TCSs) to sense their environment constantly and react appropriately. This is achieved by an extracellular sensor kinase (SK) capable of sensing a suitable signal and a cytoplasmic response regulator (RR) which gives a downstream response. Moreover, our investigation revealed that R. solanacearum GMI1000 possesses a substantial count of TCSs, specifically comprising 36 RRs and 27 SKs. While TCSs are known targets for various human pathogenic bacteria, such as Salmonella, the role of TCSs in R. solanacearum remains largely unexplored in this context. Notably, numerous inhibitors targeting TCSs have been identified, including GHL (Gyrase, Hsp, and MutL) compounds, Walk inhibitors, and anti-TCS medications like Radicicol. Consequently, the investigation into the involvement of TCSs in virulence and pathogenesis has gained traction; however, further research is imperative to ascertain whether TCSs could potentially supplant conventional anti-wilt therapies. This review delves into the prospective utilization of TCSs as an alternative anti-wilt therapy, focusing on the lethal phytopathogen R. solanacearum.


Subject(s)
Ralstonia solanacearum , Humans , Prospective Studies , Bacteria , Cytoplasm , Cytosol
13.
BMC Bioinformatics ; 24(1): 470, 2023 Dec 13.
Article in English | MEDLINE | ID: mdl-38093207

ABSTRACT

BACKGROUND: Detection of exotic plant pathogens and preventing their entry and establishment are critical for the protection of agricultural systems while securing the global trading of agricultural commodities. High-throughput sequencing (HTS) has been applied successfully for plant pathogen discovery, leading to its current application in routine pathogen detection. However, the analysis of massive amounts of HTS data has become one of the major challenges for the use of HTS more broadly as a rapid diagnostics tool. Several bioinformatics pipelines have been developed to handle HTS data with a focus on plant virus and viroid detection. However, there is a need for an integrative tool that can simultaneously detect a wider range of other plant pathogens in HTS data, such as bacteria (including phytoplasmas), fungi, and oomycetes, and this tool should also be capable of generating a comprehensive report on the phytosanitary status of the diagnosed specimen. RESULTS: We have developed an open-source bioinformatics pipeline called PhytoPipe (Phytosanitary Pipeline) to provide the plant pathology diagnostician community with a user-friendly tool that integrates analysis and visualization of HTS RNA-seq data. PhytoPipe includes quality control of reads, read classification, assembly-based annotation, and reference-based mapping. The final product of the analysis is a comprehensive report for easy interpretation of not only viruses and viroids but also bacteria (including phytoplasma), fungi, and oomycetes. PhytoPipe is implemented in Snakemake workflow with Python 3 and bash scripts in a Linux environment. The source code for PhytoPipe is freely available and distributed under a BSD-3 license. CONCLUSIONS: PhytoPipe provides an integrative bioinformatics pipeline that can be used for the analysis of HTS RNA-seq data. PhytoPipe is easily installed on a Linux or Mac system and can be conveniently used with a Docker image, which includes all dependent packages and software related to analyses. It is publicly available on GitHub at https://github.com/healthyPlant/PhytoPipe and on Docker Hub at https://hub.docker.com/r/healthyplant/phytopipe .


Subject(s)
Computational Biology , High-Throughput Nucleotide Sequencing , RNA-Seq , High-Throughput Nucleotide Sequencing/methods , Software , Workflow
14.
Metabolomics ; 19(8): 75, 2023 08 14.
Article in English | MEDLINE | ID: mdl-37580624

ABSTRACT

INTRODUCTION: The present work identified and compared intracellular metabolites and metabolic networks in mycelial cultures of Lasiodiplodia theobromae grown under 12 natural light and 24 hours' dark using a 1 H NMR-based metabolomics approach. MATERIALS AND METHODS: Fungal cultures were grown in potato dextrose media, and metabolites were extracted by sonication with sodium phosphate-buffered saline (pH = 6.0, 10% D2O, 0.1 mM TSP) from mycelium samples collected every week over four weeks. RESULTS: Multivariate analyses revealed that the light exposure group showed a positive correlation within beta-hydroxybutyrate, acetoacetate, acetone, betaine, choline, glycerol, and phosphocholine. On the other hand, phenyl acetate, leucine, isoleucine, valine, and tyrosine were positively correlated with dark conditions. Light favored the oxidative degradation of valine, leucine, and isoleucine, leading to the accumulation of choline, phosphocholine, betaine, and ketone bodies (ketogenesis). Ketogenesis, gluconeogenesis, and the biosynthesis of choline, phosphocholine, and betaine, were considered discriminatory routes for light conditions. The light-sensing pathways were interlinked with fungal development, as verified by the increased production of mycelia biomass without fruiting bodies and stress signaling, as demonstrated by the increased production of pigments.


Subject(s)
Betaine , Metabolomics , Phosphorylcholine , Leucine , Isoleucine , Metabolome , Choline , Valine
15.
Article in English | MEDLINE | ID: mdl-37486824

ABSTRACT

Within the 16SrII phytoplasma group, subgroups A-X have been classified based on restriction fragment length polymorphism of their 16S rRNA gene, and two species have been described, namely 'Candidatus Phytoplasma aurantifolia' and 'Ca. Phytoplasma australasia'. Strains of 16SrII phytoplasmas are detected across a broad geographic range within Africa, Asia, Australia, Europe and North and South America. Historically, all members of the 16SrII group share ≥97.5 % nucleotide sequence identity of their 16S rRNA gene. In this study, we used whole genome sequences to identify the species boundaries within the 16SrII group. Whole genome analyses were done using 42 phytoplasma strains classified into seven 16SrII subgroups, five 16SrII taxa without official 16Sr subgroup classifications, and one 16SrXXV-A phytoplasma strain used as an outgroup taxon. Based on phylogenomic analyses as well as whole genome average nucleotide and average amino acid identity (ANI and AAI), eight distinct 16SrII taxa equivalent to species were identified, six of which are novel descriptions. Strains within the same species had ANI and AAI values of >97 %, and shared ≥80 % of their genomic segments based on the ANI analysis. Species also had distinct biological and/or ecological features. A 16SrII subgroup often represented a distinct species, e.g., the 16SrII-B subgroup members. Members classified within the 16SrII-A, 16SrII-D, and 16SrII-V subgroups as well as strains classified as sweet potato little leaf phytoplasmas fulfilled criteria to be included as members of a single species, but with subspecies-level relationships with each other. The 16SrXXV-A taxon was also described as a novel phytoplasma species and, based on criteria used for other bacterial families, provided evidence that it could be classified as a distinct genus from the 16SrII phytoplasmas. As more phytoplasma genome sequences become available, the classification system of these bacteria can be further refined at the genus, species, and subspecies taxonomic ranks.


Subject(s)
Phytoplasma , Humans , Phytoplasma/genetics , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Phylogeny , DNA, Bacterial/genetics , Base Composition , Bacterial Typing Techniques , Fatty Acids/chemistry
16.
Biol Lett ; 19(3): 20220453, 2023 03.
Article in English | MEDLINE | ID: mdl-36883313

ABSTRACT

Agricultural crops infected with vector-borne pathogens can suffer severe negative consequences, but the extent to which phytopathogens affect the fitness of their vector hosts remains unclear. Evolutionary theory predicts that selection on vector-borne pathogens will favour low virulence or mutualistic phenotypes in the vector, traits facilitating effective transmission between plant hosts. Here, we use a multivariate meta-analytic approach on 115 effect sizes across 34 unique plant-vector-pathogen systems to quantify the overall effect of phytopathogens on vector host fitness. In support of theoretical models, we report that phytopathogens overall have a neutral fitness effect on vector hosts. However, the range of fitness outcomes is diverse and span the parasitism-mutualism continuum. We found no evidence that various transmission strategies, or direct effects and indirect (plant-mediated) effects, of phytopathogens have divergent fitness outcomes for the vector. Our finding emphasizes diversity in tripartite interactions and the necessity for pathosystem-specific approaches to vector control.


Subject(s)
Insect Vectors , Symbiosis , Animals , Biological Evolution , Phenotype , Virulence
17.
J Appl Microbiol ; 134(2)2023 Feb 16.
Article in English | MEDLINE | ID: mdl-36724277

ABSTRACT

Synthetic fertilizers and pesticides are being extensively used in agriculture in order to increase food production to feed the rapidly growing world population. This has negatively affected the soil microbes thereby reducing the agricultural produce. As a safer alternative, microbial fertilizers are now being used as plant growth promoters to improve agricultural yields. A large number of studies are focused on the role of bacteria and multicellular fungi, but plant growth-promoting traits of yeasts, the unicellular fungi are little known. Hence, the present article reviewed the diverse groups of yeasts with the potential to act as plant growth promoters. Plant growth-promoting yeasts (PGPY) have been mainly isolated from the rhizosphere and phyllosphere of major crop plants such as wheat, maize, and rice. Twenty-three genera of yeasts have been reported to have the potential for plant growth promotion (PGP), most of which belong to the phylum Ascomycetes. Dominant PGPY genera include Candida spp., Rhodotorula spp., Cryptococcus spp., and Saccharomyces sp. PGPY are known to exhibit phyto-beneficial attributes viz phytohormone production, phosphate solubilization, siderophore production, improved soil fertility, aid plants to tolerate abiotic stress and also compete effectively against plant pathogens. Over and above these traits, PGPY is Generally Recognized as Safe, making it an ideal candidate to be effectively employed as part of sustainable agricultural practices to ensure food security. The review warrants a need for an in-depth study on the different sources of PGPY other than rhizosphere/phyllosphere and the genes controlling PGP traits.


Subject(s)
Fertilizers , Plant Development , Fertilizers/microbiology , Agriculture , Plant Growth Regulators , Plants/microbiology , Yeasts/genetics , Soil , Soil Microbiology , Rhizosphere
18.
J Appl Microbiol ; 134(12)2023 Dec 01.
Article in English | MEDLINE | ID: mdl-38049375

ABSTRACT

AIMS: The antifungal effect of the yeast species Kluyveromyces marxianus, Meyerozyma caribbica, and Wickerhamomyces anomalus was evaluated against two Fusarium graminearum strains (FRS 26 and FSP 27) in vitro and on corn seeds. METHODS AND RESULTS: The antifungal effect of the yeasts against F. graminearum was evaluated using scanning electron microscopy and extracellular chitinase and glucanase production to further elucidate the biocontrol mode of action. In addition, the germination percentage and vigor test were investigated after applying yeast on corn seeds. All the yeast strains inhibited fungal growth in vitro (57.4%-100.0%) and on corn seeds (18.9%-87.2%). In co-culture with antagonistic yeasts, F. graminearum showed collapsed hyphae and turgidity loss, which could be related to the ability of yeasts to produce chitinases and glucanases. The three yeasts did not affect the seed corn germination, and W. anomalus and M. caribbica increased corn seed growth parameters (germination percentage, shoot and root length, and shoot dry weight). CONCLUSION: Meyerozyma caribbica and W. anomalus showed satisfactory F. graminearum growth inhibition rates and did not affect seed growth parameters. Further studies are required to evaluate the application of these yeasts to the crop in the field.


Subject(s)
Antifungal Agents , Fusarium , Antifungal Agents/pharmacology , Zea mays , Yeasts , Plant Diseases/prevention & control , Plant Diseases/microbiology
19.
J Chem Ecol ; 49(1-2): 87-102, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36631524

ABSTRACT

Anthracnose caused by Colletotrichum gloeosporioides affects the leaves, inflorescences, nuts, and peduncles of cashew trees (Anacardium occidentale). The use of genetically improved plants and the insertion of dwarf cashew clones that are more resistant to phytopathogens are strategies to minimize the impact of anthracnose on cashew production. However, resistance mechanisms related to the biosynthesis of secondary metabolites remain unknown. Thus, this study promoted the investigation of the profile of volatile organic compounds of resistant cashew clone leaves ('CCP 76', 'BRS 226' and 'BRS 189') and susceptible ('BRS 265') to C. gloeosporioides, in the periods of non-infection and infection of the pathogen in the field (July-December 2019 - Brazil). Seventy-eight compounds were provisionally identified. Chemometric analyses, such as Principal Component Analysis (PCA), Discriminating Partial Least Squares Analysis (PLS-DA), Discriminating Analysis of Orthogonal Partial Least Squares (OPLS-DA), and Hierarchical Cluster Analysis (HCA), separated the samples into different groups, highlighting hexanal, (E)-hex-2-enal, (Z)-hex-2-en-1-ol, (E)-hex-3-en-1-ol, in addition to α-pinene, α-terpinene, γ-terpinene, ß-pinene, and δ-3-carene, in the samples of the resistant clones in comparison to the susceptible clone. According to the literature, these metabolites have antimicrobial activity and are therefore chemical marker candidates for resistance to C. gloeosporioides in cashew trees.


Subject(s)
Anacardium , Volatile Organic Compounds , Gas Chromatography-Mass Spectrometry , Anacardium/chemistry , Volatile Organic Compounds/analysis , Solid Phase Microextraction , Cluster Analysis
20.
Environ Res ; 216(Pt 3): 114752, 2023 01 01.
Article in English | MEDLINE | ID: mdl-36351471

ABSTRACT

INTRODUCTION: Owing to loads of industrial development and advancements, there is an unmet need for green-ecosystem support as well as safe technologies. For cost-cutting and eco-friendly applications, biosynthetic pathways for nanoparticle synthesis from microbes like bacteria, and fungi have attracted the global attention of researchers. METHODS: In the present research work, silver nanoparticles (AgNPs) from fungus (mycogenic) were extracellularly synthesized with cell-free filtrates of fungal phytopathogen Sclerotinia sclerotiorum MTCC 8785 harvested from broth culture in Potato dextrose broth (CFF-PDB) and Amylase production media (CFF-AMP). The synthesis was carried out at pH 7, 28 °C under dark conditions. The synthesized AgNPs were characterized using UV spectrophotometer and transmission electron microscopy (TEM). Furthermore, the antifungal efficacy of AgNPs was evaluated against the Trichoderma harzianum MTCC 801 strain by radial inhibition assay. RESULTS: Primarily, the process of biosynthesis was inferred by the characteristic change of color and spectral peak at 420 nm recorded with UV spectrophotometer further approved the nano silver production in CFF-AMP which approves the role of amylases in reduction mediated capping process. TEM analysis revealed that the AgNPs synthesized using S. sclerotiorum MTCC 8785 grown in PDB were spherical with variable size ranges from 10 to 50 nm in diameter whereas, the AgNPs synthesized using S. sclerotiorum MTCC 8785 grown in APM were in the size ranges from 40 to 50 nm. CONCLUSIONS: This is the first investigatory concern where nano-silver from fungal phytopathogen S. sclerotiorum MTCC 8785 has been prospected as new age antifungal alternatives against evolving threats from T. harzianum strain.


Subject(s)
Antifungal Agents , Metal Nanoparticles , Antifungal Agents/pharmacology , Biological Factors , Ecosystem , Metal Nanoparticles/chemistry , Silver/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL