Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Publication year range
1.
Pulm Circ ; 10(3): 2045894020948470, 2020.
Article in English | MEDLINE | ID: mdl-33294172

ABSTRACT

Platelet-derived growth factor is one of the major growth factors found in human and mammalian serum and tissues. Abnormal activation of platelet-derived growth factor signaling pathway through platelet-derived growth factor receptors may contribute to the development and progression of pulmonary vascular remodeling and obliterative vascular lesions in patients with pulmonary arterial hypertension. In this study, we examined the expression of platelet-derived growth factor receptor isoforms in pulmonary arterial smooth muscle and pulmonary arterial endothelial cells and investigated whether platelet-derived growth factor secreted from pulmonary arterial smooth muscle cell or pulmonary arterial endothelial cell promotes pulmonary arterial smooth muscle cell proliferation. Our results showed that the protein expression of platelet-derived growth factor receptor α and platelet-derived growth factor receptor ß in pulmonary arterial smooth muscle cell was upregulated in patients with idiopathic pulmonary arterial hypertension compared to normal subjects. Platelet-derived growth factor activated platelet-derived growth factor receptor α and platelet-derived growth factor receptor ß in pulmonary arterial smooth muscle cell, as determined by phosphorylation of platelet-derived growth factor receptor α and platelet-derived growth factor receptor ß. The platelet-derived growth factor-mediated activation of platelet-derived growth factor receptor α/platelet-derived growth factor receptor ß was enhanced in idiopathic pulmonary arterial hypertension-pulmonary arterial smooth muscle cell compared to normal cells. Expression level of platelet-derived growth factor-AA and platelet-derived growth factor-BB was greater in the conditioned media collected from idiopathic pulmonary arterial hypertension-pulmonary arterial endothelial cell than from normal pulmonary arterial endothelial cell. Furthermore, incubation of idiopathic pulmonary arterial hypertension-pulmonary arterial smooth muscle cell with conditioned culture media from normal pulmonary arterial endothelial cell induced more platelet-derived growth factor receptor α activation than in normal pulmonary arterial smooth muscle cell. Accordingly, the conditioned media from idiopathic pulmonary arterial hypertension-pulmonary arterial endothelial cell resulted in more pulmonary arterial smooth muscle cell proliferation than the media from normal pulmonary arterial endothelial cell. These data indicate that (a) the expression and activity of platelet-derived growth factor receptor are increased in idiopathic pulmonary arterial hypertension-pulmonary arterial smooth muscle cell compared to normal pulmonary arterial smooth muscle cell, and (b) pulmonary arterial endothelial cell from idiopathic pulmonary arterial hypertension patients secretes higher level of platelet-derived growth factor than pulmonary arterial endothelial cell from normal subjects. The enhanced secretion (and production) of platelet-derived growth factor from idiopathic pulmonary arterial hypertension-pulmonary arterial endothelial cell and upregulated platelet-derived growth factor receptor expression (and function) in idiopathic pulmonary arterial hypertension-pulmonary arterial smooth muscle cell may contribute to enhancing platelet-derived growth factor/platelet-derived growth factor receptor-associated pulmonary vascular remodeling in pulmonary arterial hypertension.

2.
Eur J Pharmacol ; 733: 81-9, 2014 Jun 15.
Article in English | MEDLINE | ID: mdl-24695376

ABSTRACT

This study was designed to investigate the antiproliferative effect of a novel naphthoquinone derivative, 2-undecylsulfonyl-5,8-dimethoxy-1,4-naphthoquinone (2-undecylsulfonyl-DMNQ), on platelet-derived growth factor (PDGF)-stimulated vascular smooth muscle cells (VSMCs) and examine the possible molecular mechanism of its antiproliferative action. 2-Undecylsulfonyl-DMNQ significantly inhibited PDGF-stimulated cell number and DNA synthesis, and arrested the PDGF-stimulated progression through G0/G1 to S phase of cell cycle supported by the suppression of pRb phosphorylation and cyclin D1/E, CDK2/4 and PCNA expressions. 2-Undecylsulfonyl-DMNQ dose-dependently inhibited the PDGF-stimulated phosphorylation of phospholipase Cγ (PLCγ), protein kinase B (Akt/PKB), signal transducers and activators of transcription 3 (STAT3) and extracellular signal-regulated kinase 1/2 (ERK 1/2). In addition, 2-undecylsulfonyl-DMNQ inhibited PDGF-induced PDGF receptor ß (PDGF-Rß) dimerization and the phosphorylation of Tyr(579/581), Tyr(716), Tyr(751) and Tyr(1021) in PDGF-Rß. However, 2-undecylsulfonyl-DMNQ has no antiproliferative effect on epidermal growth factor (EGF)- or fetal bovine serum (FBS)-stimulated VSMCs. In conclusion, these findings suggest that the antiproliferative effects of 2-undecylsulfonyl-DMNQ on PDGF-stimulated VSMCs are due to the blockade of receptor dimerization and autophosphorylation on specific tyrosine residues of PDGF-Rß, which resulted in the subsequent suppression of signaling cascades and a cell cycle arrest. Our observation may explain an important mechanism to block the integration of multiple signals generated by growth factor receptor activation for prevention of VSMC proliferation in cardiovascular diseases.


Subject(s)
Cell Proliferation/drug effects , Myocytes, Smooth Muscle/drug effects , Naphthoquinones/pharmacology , Receptor, Platelet-Derived Growth Factor beta/antagonists & inhibitors , Sulfones/pharmacology , Animals , Aorta/drug effects , Aorta/enzymology , Aorta/pathology , Cell Cycle Checkpoints/drug effects , Cell Survival/drug effects , Cells, Cultured , DNA/biosynthesis , Immunoblotting , Muscle, Smooth, Vascular/drug effects , Muscle, Smooth, Vascular/enzymology , Muscle, Smooth, Vascular/pathology , Myocytes, Smooth Muscle/enzymology , Myocytes, Smooth Muscle/pathology , Naphthoquinones/chemistry , Phosphorylation , Protein Multimerization , Rats , Signal Transduction/drug effects , Sulfones/chemistry
3.
Oral Oncol ; 50(1): 19-26, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24269532

ABSTRACT

Tumor angiogenesis is a hallmark of advanced cancers and promotes invasion and metastasis. Over 90% of head and neck squamous cell carcinomas (HNSCC) express angiogenic factors such as vascular endothelial growth factor (VEGF). Several preclinical studies support the prognostic implications of angiogenic markers for HNSCC and currently this is an attractive treatment target in solid tumors. Since radiotherapy is one of the most commonly used treatments for HNSCC, it is imperative to identify the interactions between antiangiogenic therapy and radiotherapy, and to develop combination therapy to improve clinical outcome. The mechanisms between antiangiogenic agents and ionizing radiation are complicated and involve many interactions between the vasculature, tumor stroma and tumor cells. The proliferation and metastasis of tumor cells rely on angiogenesis/blood vessel formation. Rapid growing tumors will cause hypoxia, which up-regulates tumor cell survival factors, such as hypoxia-inducing factor-1α (HIF-1α) and vascular endothelial growth factor (VEGF), giving rise to more tumor proliferation, angiogenesis and increased radioresistance. Thus, agents that target tumor vasculature and new tumor vessel formation can modulate the tumor microenvironment to improve tumor blood flow and oxygenation, leading to enhanced radiosensitivity. In this review, we discuss the mechanisms of how antiangiogenic therapies improve tumor response to radiation and data that support this combination strategy as a promising method for the treatment of HNSCC in the future.


Subject(s)
Angiogenesis Inhibitors/therapeutic use , Carcinoma, Squamous Cell/therapy , Head and Neck Neoplasms/therapy , Carcinoma, Squamous Cell/drug therapy , Carcinoma, Squamous Cell/radiotherapy , Combined Modality Therapy , Head and Neck Neoplasms/drug therapy , Head and Neck Neoplasms/radiotherapy , Humans
SELECTION OF CITATIONS
SEARCH DETAIL