Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Country/Region as subject
Language
Publication year range
1.
J Exp Bot ; 64(12): 3711-21, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23861547

ABSTRACT

Root hairs are a key trait for improving the acquisition of phosphorus (P) by plants. However, it is not known whether root hairs provide significant advantage for plant growth under combined soil stresses, particularly under conditions that are known to restrict root hair initiation or elongation (e.g. compacted or high-strength soils). To investigate this, the root growth and P uptake of root hair genotypes of barley, Hordeum vulgare L. (i.e. genotypes with and without root hairs), were assessed under combinations of P deficiency and high soil strength. Genotypes with root hairs were found to have an advantage for root penetration into high-strength layers relative to root hairless genotypes. In P-deficient soils, despite a 20% reduction in root hair length under high-strength conditions, genotypes with root hairs were also found to have an advantage for P uptake. However, in fertilized soils, root hairs conferred an advantage for P uptake in low-strength soil but not in high-strength soil. Improved root-soil contact, coupled with an increased supply of P to the root, may decrease the value of root hairs for P acquisition in high-strength, high-P soils. Nevertheless, this work demonstrates that root hairs are a valuable trait for plant growth and nutrient acquisition under combined soil stresses. Selecting plants with superior root hair traits is important for improving P uptake efficiency and hence the sustainability of agricultural systems.


Subject(s)
Genotype , Hordeum/genetics , Phosphorus/metabolism , Soil/chemistry , Agriculture , Hordeum/metabolism , Plant Roots/genetics , Plant Roots/metabolism
2.
Environ Pollut ; 285: 117382, 2021 Sep 15.
Article in English | MEDLINE | ID: mdl-34049130

ABSTRACT

Clarifying the properties/features of nutrient loss from farmland surface runoff is essential for the mitigation of nutrient losses. Plough pan formation underneath topsoil is a common feature of long-term paddy soils that significantly affects water movement and nutrient runoff loss, especially during the upland season of paddy-upland rotation. To characterize the nutrients that are lost from wheat fields of paddy-wheat rotation with runoff, a field experiment was conducted in a wheat field using a simulated rainfall system from November 2019 to May 2020 in Nanjing, China. The aim of this study was to investigate the temporal characteristics of nitrogen (N) and phosphorus (P) loss under different rainfall intensities (low, 30 mm h-1; middle, 60 mm h-1; high, 90 mm h-1). The results showed that the time interval from the beginning of rain to the occurrence of runoff (time to runoff, Tr) was negatively correlated with "rainfall intensity" (Ri) (P<0.01) but unaffected by soil moisture. Different rainfall intensities had no effect on the runoff coefficient (the ratio of the runoff volume over the precipitation, 0.14-0.17). The N and P loss concentrations in the nutrient discharge followed a power-function relationship that decreased over time (P<0.01), and the peak nutrient concentration appeared during the initial runoff period (0-5 min). The N and P loss rates were the highest during the middle-to-late discharge period (15-30 min) for all intensities. In terms of cumulative nutrient losses, the amounts of TN lost were similar for all rainfall intensities, while TP significantly increased with intensity. The results revealed that nitrate-nitrogen (NOX--N) and particulate phosphorus (PP) were the predominant forms of N and P losses. Overall, during the initial runoff period, nutrient concentration peaks, whereas the nutrient loss rate is the highest during the middle-late phase of the phenomenon.


Subject(s)
Oryza , Triticum , China , Nitrogen/analysis , Nutrients , Phosphorus/analysis , Rain , Rotation , Seasons , Soil , Water Movements
SELECTION OF CITATIONS
SEARCH DETAIL