Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 441
Filter
1.
Cell ; 187(5): 1191-1205.e15, 2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38366592

ABSTRACT

Carbohydrate intolerance, commonly linked to the consumption of lactose, fructose, or sorbitol, affects up to 30% of the population in high-income countries. Although sorbitol intolerance is attributed to malabsorption, the underlying mechanism remains unresolved. Here, we show that a history of antibiotic exposure combined with high fat intake triggered long-lasting sorbitol intolerance in mice by reducing Clostridia abundance, which impaired microbial sorbitol catabolism. The restoration of sorbitol catabolism by inoculation with probiotic Escherichia coli protected mice against sorbitol intolerance but did not restore Clostridia abundance. Inoculation with the butyrate producer Anaerostipes caccae restored a normal Clostridia abundance, which protected mice against sorbitol-induced diarrhea even when the probiotic was cleared. Butyrate restored Clostridia abundance by stimulating epithelial peroxisome proliferator-activated receptor-gamma (PPAR-γ) signaling to restore epithelial hypoxia in the colon. Collectively, these mechanistic insights identify microbial sorbitol catabolism as a potential target for approaches for the diagnosis, treatment, and prevention of sorbitol intolerance.


Subject(s)
Carbohydrate Metabolism, Inborn Errors , Gastrointestinal Microbiome , Sorbitol , Animals , Mice , Anti-Bacterial Agents/pharmacology , Butyrates , Clostridium , Escherichia coli , Sorbitol/metabolism
2.
J Biol Chem ; 300(7): 107479, 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38879006

ABSTRACT

Glucoselysine (GL) is an unique advanced glycation end-product derived from fructose. The main source of fructose in vivo is the polyol pathway, and an increase in its activity leads to diabetic complications. Here, we aimed to demonstrate that GL can serve as an indicator of the polyol pathway activity. Additionally, we propose a novel approach for detecting GL in peripheral blood samples using liquid chromatography-tandem mass spectrometry and evaluate its clinical usefulness. We successfully circumvent interference from fructoselysine, which shares the same molecular weight as GL, by performing ultrafiltration and hydrolysis without reduction, successfully generating adequate peaks for quantification in serum. Furthermore, using immortalized aldose reductase KO mouse Schwann cells, we demonstrate that GL reflects the downstream activity of the polyol pathway and that GL produced intracellularly is released into the extracellular space. Clinical studies reveal that GL levels in patients with type 2 diabetes are significantly higher than those in healthy participants, while Nδ-(5-hydro-5-methyl-4-imidazolon-2-yl)ornithine (MG-H1) levels are significantly lower. Both GL and MG-H1 show higher values among patients with vascular complications; however, GL varies more markedly than MG-H1 as well as hemoglobin A1c, fasting plasma glucose, and estimated glomerular filtration rate. Furthermore, GL remains consistently stable under various existing drug treatments for type 2 diabetes, whereas MG-H1 is impacted. To the best of our knowledge, we provide important insights in predicting diabetic complications caused by enhanced polyol pathway activity via assessment of GL levels in peripheral blood samples from patients.

3.
Eur Heart J ; 45(27): 2439-2452, 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-38842092

ABSTRACT

BACKGROUND AND AIMS: The pathways and metabolites that contribute to residual cardiovascular disease risks are unclear. Low-calorie sweeteners are widely used sugar substitutes in processed foods with presumed health benefits. Many low-calorie sweeteners are sugar alcohols that also are produced endogenously, albeit at levels over 1000-fold lower than observed following consumption as a sugar substitute. METHODS: Untargeted metabolomics studies were performed on overnight fasting plasma samples in a discovery cohort (n = 1157) of sequential stable subjects undergoing elective diagnostic cardiac evaluations; subsequent stable isotope dilution liquid chromatography tandem mass spectrometry (LC-MS/MS) analyses were performed on an independent, non-overlapping validation cohort (n = 2149). Complementary isolated human platelet, platelet-rich plasma, whole blood, and animal model studies examined the effect of xylitol on platelet responsiveness and thrombus formation in vivo. Finally, an intervention study was performed to assess the effects of xylitol consumption on platelet function in healthy volunteers (n = 10). RESULTS: In initial untargeted metabolomics studies (discovery cohort), circulating levels of a polyol tentatively assigned as xylitol were associated with incident (3-year) major adverse cardiovascular event (MACE) risk. Subsequent stable isotope dilution LC-MS/MS analyses (validation cohort) specific for xylitol (and not its structural isomers) confirmed its association with incident MACE risk [third vs. first tertile adjusted hazard ratio (95% confidence interval), 1.57 (1.12-2.21), P < .01]. Complementary mechanistic studies showed xylitol-enhanced multiple indices of platelet reactivity and in vivo thrombosis formation at levels observed in fasting plasma. In interventional studies, consumption of a xylitol-sweetened drink markedly raised plasma levels and enhanced multiple functional measures of platelet responsiveness in all subjects. CONCLUSIONS: Xylitol is associated with incident MACE risk. Moreover, xylitol both enhanced platelet reactivity and thrombosis potential in vivo. Further studies examining the cardiovascular safety of xylitol are warranted.


Subject(s)
Cardiovascular Diseases , Xylitol , Humans , Xylitol/pharmacology , Xylitol/adverse effects , Male , Female , Middle Aged , Cardiovascular Diseases/epidemiology , Thrombosis , Sweetening Agents/adverse effects , Sweetening Agents/pharmacology , Aged , Animals , Metabolomics , Tandem Mass Spectrometry , Adult , Blood Platelets/drug effects , Blood Platelets/metabolism , Heart Disease Risk Factors
4.
Microbiology (Reading) ; 169(7)2023 07.
Article in English | MEDLINE | ID: mdl-37505890

ABSTRACT

The smo locus (sorbitol mannitol oxidation) is found on the chromosome of S. meliloti's tripartite genome. Mutations at the smo locus reduce or abolish the ability of the bacterium to grow on several carbon sources, including sorbitol, mannitol, galactitol, d-arabitol and maltitol. The contribution of the smo locus to the metabolism of these compounds has not been previously investigated. Genetic complementation of mutant strains revealed that smoS is responsible for growth on sorbitol and galactitol, while mtlK restores growth on mannitol and d-arabitol. Dehydrogenase assays demonstrate that SmoS and MtlK are NAD+-dependent dehydrogenases catalysing the oxidation of their specific substrates. Transport experiments using a radiolabeled substrate indicate that sorbitol, mannitol and d-arabitol are primarily transported into the cell by the ABC transporter encoded by smoEFGK. Additionally, it was found that a mutation in either frcK, which is found in an operon that encodes the fructose ABC transporter, or a mutation in frk, which encodes fructose kinase, leads to the induction of mannitol transport.


Subject(s)
Mannitol , Sinorhizobium meliloti , Mannitol/metabolism , Fructose/metabolism , Sinorhizobium meliloti/genetics , Sorbitol/metabolism , Galactitol/metabolism , Membrane Transport Proteins/genetics , Membrane Transport Proteins/metabolism , ATP-Binding Cassette Transporters/genetics
5.
Am J Kidney Dis ; 82(1): 105-112, 2023 07.
Article in English | MEDLINE | ID: mdl-36940740

ABSTRACT

Fructose has recently been proposed to stimulate vasopressin secretion in humans. Fructose-induced vasopressin secretion is not only postulated to result from ingestion of fructose-containing drinks but may also occur from endogenous fructose production via activation of the polyol pathway. This raises the question of whether fructose might be involved in some cases of vasopressin-induced hyponatremia, especially in situations where the cause is not fully known such as in the syndrome of inappropriate secretion of diuretic hormone (SIADH) and exercise-associated hyponatremia, which has been observed in marathon runners. Here we discuss the new science of fructose and vasopressin, and how it may play a role in some of these conditions, as well as in the complications associated with rapid treatment (such as the osmotic demyelination syndrome). Studies to test the role of fructose could provide new pathophysiologic insights as well as novel potential treatment strategies for these common conditions.


Subject(s)
Hyponatremia , Inappropriate ADH Syndrome , Running , Humans , Hyponatremia/therapy , Hyponatremia/complications , Diuretics , Inappropriate ADH Syndrome/complications , Vasopressins
6.
New Phytol ; 238(4): 1362-1378, 2023 05.
Article in English | MEDLINE | ID: mdl-36710517

ABSTRACT

Exposing their vegetative bodies to the light, lichens are outstanding amongst other fungal symbioses. Not requiring a pre-established host, 'lichenized fungi' build an entirely new structure together with microbial photosynthetic partners that neither can form alone. The signals involved in the transition of a fungus and a compatible photosynthetic partner from a free-living to a symbiotic state culminating in thallus formation, termed 'lichenization', and in the maintenance of the symbiosis, are poorly understood. Here, we synthesise the puzzle pieces of the scarce knowledge available into an updated concept of signalling involved in lichenization, comprising five main stages: (1) the 'pre-contact stage', (2) the 'contact stage', (3) 'envelopment' of algal cells by the fungus, (4) their 'incorporation' into a pre-thallus and (5) 'differentiation' into a complex thallus. Considering the involvement of extracellularly released metabolites in each phase, we propose that compounds such as fungal lectins and algal cyclic peptides elicit early contact between the symbionts-to-be, whereas phytohormone signalling, antioxidant protection and carbon exchange through sugars and sugar alcohols are of continued importance throughout all stages. In the fully formed lichen thallus, secondary lichen metabolites and mineral nutrition are suggested to stabilize the functionalities of the thallus, including the associated microbiota.


Subject(s)
Lichens , Lichens/microbiology , Symbiosis , Photosynthesis
7.
J Biomed Sci ; 30(1): 6, 2023 Jan 24.
Article in English | MEDLINE | ID: mdl-36694206

ABSTRACT

BACKGROUND: This work elucidates the first cellular and molecular causes of cataractogenesis. Current paradigm presupposes elevated blood glucose as a prerequisite in diabetic cataractogenesis. Novel evidence in our model of diabetic cataract challenges this notion and introduces immune cell migration to the lens and epithelial-mesenchymal transformation (EMT) of lens epithelial cells (LECs) as underlying causes. METHODS: Paucity of suitable animal models has hampered mechanistic studies of diabetic cataract, as most studies were traditionally carried out in acutely induced hyperglycemic animals. We introduced diabetic cataract in the Nile grass rat (NGR) that spontaneously develops type 2 diabetes (T2D) and showed its closeness to the human condition. Specialized stereo microscopy with dual bright-field illumination revealed novel hyperreflective dot-like microlesions in the inner cortical regions of the lens. To study immune cell migration to the lens, we developed a unique in situ microscopy technique of the inner eye globe in combination with immunohistochemistry. RESULTS: Contrary to the existing paradigm, in about half of the animals, the newly introduced hyper reflective dot-like microlesions preceded hyperglycemia. Even though the animals were normoglycemic, we found significant changes in their oral glucose tolerance test (OGTT), indicative of the prediabetic stage. The microlesions were accompanied with significant immune cell migration from the ciliary bodies to the lens, as revealed in our novel in situ microscopy technique. Immune cells adhered to the lens surface, some traversed the lens capsule, and colocalized with apoptotic nuclei of the lens epithelial cells (LECs). Extracellular degradations, amorphous material accumulations, and changes in E-cadherin expressions showed epithelial-mesenchymal transformation (EMT) in LECs. Subsequently, lens fiber disintegration and cataract progression extended into cortical, posterior, and anterior subcapsular cataracts. CONCLUSIONS: Our results establish a novel role for immune cells in LEC transformation and death. The fact that cataract formation precedes hyperglycemia challenges the prevailing paradigm that glucose initiates or is necessary for initiation of the pathogenesis. Novel evidence shows that molecular and cellular complications of diabetes start during the prediabetic state. These results have foreseeable ramifications for early diagnosis, prevention and development of new treatment strategies in patients with diabetes.


Subject(s)
Cataract , Diabetes Mellitus, Type 2 , Hyperglycemia , Lens, Crystalline , Humans , Animals , Diabetes Mellitus, Type 2/complications , Murinae , Lens, Crystalline/metabolism , Lens, Crystalline/pathology , Cataract/etiology , Cataract/metabolism , Cataract/pathology , Hyperglycemia/complications , Hyperglycemia/metabolism , Hyperglycemia/pathology , Epithelial Cells/metabolism
8.
Nanotechnology ; 35(5)2023 Nov 16.
Article in English | MEDLINE | ID: mdl-37890475

ABSTRACT

Transparent conducting films (TCFs) made by the assembly/deposition of silver nanowires (Ag NWs) are widely used to manufacture flexible electronics such as touch screens, heaters, displays, and organic light-emitting diodes. Controlling the dimensions (length and diameter) of the nanowires is key in obtaining TCFs with the desired optoelectronic properties, namely sheet resistance and optical transparency. This work describes a combined experimental and theoretical investigation on the optimization of the NW dimensions to fabricate high-quality TCFs. Ag NWs of different dimensions are synthesized by the modified polyol method and the average diameter and length of the wires are tailored over a wide range, 35-150 nm and 12-130µm respectively, by controlling the synthesis parameters such as reaction conditions, stabilizing agents, and growth promoters. The synthesized NWs are spin coated on glass substrates to form TCFs. Comparing the films with different lengths, but identical diameters, enabled the quantification of the effect of length on the optoelectronic properties of the TCFs. Similarly, the effect of NW diameter is also studied. A non-uniformity factor is defined to evaluate the uniformity of the TCF and the transmittance of the NW network is shown to be inversely proportional to its area coverage. The sheet conductance versus the normalized number density is plotted for the different concentrations of NWs to extract a conductivity exponent that agrees well with the theoretical predictions. For thin film networks, the relation between the transmittance and sheet resistance provides the percolative figure of merit (FoM) as a fitting parameter. A large FoM is desirable for a good-performing TCF and the synthesis conditions to achieve this are optimized.

9.
Macromol Rapid Commun ; 44(5): e2200796, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36377489

ABSTRACT

Radical polymerization of a tailored diphenylsilane-bridged bi-functional monomer consisting of methacrylate and vinyl ether moieties is conducted in diluted monomer concentration, in which both two moieties are consumed at almost the same rate despite their huge difference in monomer reactivity ratio. The vinyl ether content in the backbone is quantified as 45% by 1 H NMR after removal of the silane bridge. Since vinyl ether alone cannot be polymerized in such radical polymerization, it should be incorporated in an alternating fashion with methacrylate into the copolymer main chain. The cleavage of silane bridge also yields a series of polyol materials composed of ethylene glycol monovinyl ether (EGVE) and hydroxyethyl methacrylate (HEMA), and the EGVE content in the backbone can be regulated from 45% to 18% by increasing the bi-functional monomer concentration. Interestingly, although containing more than 50% HEMA units, the alternating copolymer exhibits new properties totally different from poly(HEMA), but more similar to poly(EGVE), e.g., good water solubility and a markedly low glass transition temperature (Tg ) of -31 °C, which is attributed to the major HEMA-EGVE repeating unit that replaced HEMA-HEMA consecutive segments so that the properties of poly(HEMA) such as 95 °C Tg are completely altered.


Subject(s)
Methacrylates , Silanes , Methacrylates/chemistry , Polyhydroxyethyl Methacrylate/chemistry
10.
Appl Microbiol Biotechnol ; 107(22): 6799-6809, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37725141

ABSTRACT

To realize biomass refinery without complex downstream processes, we extensively screened for microbial strains that efficiently produce extracellular oil from sugars. Rhodotorula paludigena (formerly Rhodosporidium paludigenum) BS15 was found to efficiently produce polyol esters of fatty acids (PEFAs), which mainly comprised of 3-acetoxypalmitic acid and partially acetylated mannitol/arabinitol. To evaluate the performance of this strain, fed-batch fermentation was demonstrated on a flask scale, and 110 g/L PEFA and 103 g/L dry cells were produced in 12 days. To the best of our knowledge, the strain BS15 exhibited the highest PEFA titer (g/L) ever to be reported so far. Because the PEFA precipitated at the bottom of the culture broth, it could be easily recovered by simply discarding the upper phase. Various carbon sources can be utilized for cell growth and/or PEFA production, which signifies the potential for converting diverse biomass sources. Two different types of next-generation sequencers, Illumina HiSeq and Oxford Nanopore PromethION, were used to analyze the whole-genome sequence of the strain BS15. The integrative data analysis generated a high-quality and reliable reference genome for PEFA-producing R. paludigena. The 22.5-M base genome sequence and the estimated genes were registered in Genbank (accession numbers BQKY01000001-BQKY01000019). KEY POINTS: • R. paludigena BS15 was isolated after an extensive screening of extracellular oil producers from natural sources. • Fed-batch fermentation of R. paludigena BS15 yielded 110 g/L of PEFA, which is the highest titer ever reported to date. • Combined analysis using Illumina and Oxford Nanopore sequencers produced the near-complete genome sequence.

11.
Arch Pharm (Weinheim) ; 356(4): e2200570, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36603162

ABSTRACT

In the search for small-molecule aldose reductase (AR) inhibitors, new tetrazole-hydrazone hybrids (1-15) were designed. An efficient procedure was employed for the synthesis of compounds 1-15. All hydrazones were subjected to an in vitro assay to assess their AR inhibitory profiles. Compounds 1-15 caused AR inhibition with Ki values ranging between 0.177 and 6.322 µM and IC50 values ranging between 0.210 and 0.676 µM. 2-[(1-(4-Hydroxyphenyl)-1H-tetrazol-5-yl)thio]-N'-(4-fluorobenzylidene)acetohydrazide (4) was the most potent inhibitor of AR in this series. Compound 4 markedly inhibited AR (IC50 = 0.297 µM) in a competitive manner (Ki = 0.177 µM) compared to epalrestat (Ki = 0.857 µM, IC50 = 0.267 µM). Based on the in vitro data obtained by applying the MTT test, compound 4 showed no cytotoxic activity toward normal (NIH/3T3) cells at the tested concentrations, indicating its safety as an AR inhibitor. Compound 4 exhibited proper interactions with crucial amino acid residues within the active site of AR. In silico QikProp data of all hydrazones (1-15) were also determined to assess their pharmacokinetic profiles. Taken together, compound 4 stands out as a promising inhibitor of AR for further in vivo studies.


Subject(s)
Aldehyde Reductase , Hydrazones , Hydrazones/pharmacology , Structure-Activity Relationship , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemistry , Amino Acids , Molecular Docking Simulation
12.
Sensors (Basel) ; 23(20)2023 Oct 19.
Article in English | MEDLINE | ID: mdl-37896676

ABSTRACT

Nitric oxide (NO) is a very well-known indoor pollutant, and high concentrations of it in the atmosphere lead to acid rain. Thus, there is great demand for NO sensors that have the ability to work at room temperature. In this work, NiO/SnO2 heterostructures have been prepared via the polyol process and were tested against different concentrations of NO gas at room temperature. The structural and morphological characteristics of the heterostructures were examined using X-ray diffraction and scanning electron microscopy, respectively, while the ratio of NiO to SnO2 was determined through the use of energy-dispersive spectrometry. The effects of both pH and thermal annealing on the morphological, structural and gas-sensing properties of the heterostructure were investigated. It was found that the morphology of the heterostructures consisted of rod-like particles with different sizes, depending on the temperature of thermal annealing. Moreover, NiO/SnO2 heterostructures synthesized with pH = 8 and annealed at 900 °C showed a response of 1.8% towards 2.5 ppm NO at room temperature. The effects of humidity as well as of stability on the gas sensing performance were also investigated.

13.
Int J Mol Sci ; 24(6)2023 Mar 08.
Article in English | MEDLINE | ID: mdl-36982224

ABSTRACT

Intracellular polyols are used as osmoprotectants by many plants under environmental stress. However, few studies have shown the role of polyol transporters in the tolerance of plants to abiotic stresses. Here, we describe the expression characteristics and potential functions of Lotus japonicus polyol transporter LjPLT3 under salt stress. Using LjPLT3 promoter-reporter gene plants showed that LjPLT3 was expressed in the vascular tissue of L. japonicus leaf, stem, root, and nodule. The expression was also induced by NaCl treatment. Overexpression of LjPLT3 in L. japonicus modified the growth rate and saline tolerance of the transgenic plants. The OELjPLT3 seedlings displayed reduced plant height under both nitrogen-sufficient and symbiotic nitrogen fixation conditions when 4 weeks old. The nodule number of OELjPLT3 plants was reduced by 6.7-27.4% when 4 weeks old. After exposure to a NaCl treatment in Petri dishes for 10 days, OELjPLT3 seedlings had a higher chlorophyll concentration, fresh weight, and survival rate than those in the wild type. For symbiotic nitrogen fixation conditions, the decrease in nitrogenase activity of OELjPLT3 plants was slower than that of the wild type after salt treatment. Compared to the wild type, both the accumulation of small organic molecules and the activity of antioxidant enzymes were higher under salt stress. Considering the concentration of lower reactive oxygen species (ROS) in transgenic lines, we speculate that overexpression of LjPLT3 in L. japonicus might improve the ROS scavenging system to alleviate the oxidative damage caused by salt stress, thereby increasing plant salinity tolerance. Our results will direct the breeding of forage legumes in saline land and also provide an opportunity for the improvement of poor and saline soils.


Subject(s)
Lotus , Salt Tolerance , Salt Tolerance/genetics , Lotus/metabolism , Reactive Oxygen Species/metabolism , Sodium Chloride/pharmacology , Sodium Chloride/metabolism , Plant Breeding , Stress, Physiological/genetics , Plants, Genetically Modified/metabolism , Seedlings/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Gene Expression Regulation, Plant
14.
Int J Mol Sci ; 24(17)2023 Aug 22.
Article in English | MEDLINE | ID: mdl-37685845

ABSTRACT

Diabetic kidney disease (DKD) is one of the leading causes of death among patients diagnosed with diabetes mellitus. Despite the growing knowledge about the pathogenesis of DKD, we still do not have effective direct pharmacotherapy. Accurate blood sugar control is essential in slowing down DKD. It seems that metformin has a positive impact on kidneys and this effect is not only mediated by its hypoglycemic action, but also by direct molecular regulation of pathways involved in DKD. The molecular mechanism of DKD is complex and we can distinguish polyol, hexosamine, PKC, and AGE pathways which play key roles in the development and progression of this disease. Each of these pathways is overactivated in a hyperglycemic environment and it seems that most of them may be regulated by metformin. In this article, we summarize the knowledge about DKD pathogenesis and the potential mechanism of the nephroprotective effect of metformin. Additionally, we describe the impact of metformin on glomerular endothelial cells and podocytes, which are harmed in DKD.


Subject(s)
Diabetes Mellitus , Diabetic Nephropathies , Metformin , Humans , Diabetic Nephropathies/drug therapy , Diabetic Nephropathies/etiology , Metformin/pharmacology , Metformin/therapeutic use , Endothelial Cells , Kidney , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/therapeutic use , Diabetes Mellitus/drug therapy
15.
Int J Mol Sci ; 24(3)2023 Feb 02.
Article in English | MEDLINE | ID: mdl-36769249

ABSTRACT

Diabetic retinopathy is a tissue-specific neurovascular impairment of the retina in patients with both type 1 and type 2 diabetes. Several pathological factors are involved in the progressive impairment of the interdependence between cells that consist of the neurovascular units (NVUs). The advanced glycation end-products (AGEs) are one of the major pathological factors that cause the impairments of neurovascular coupling in diabetic retinopathy. Although the exact mechanisms for the toxicities of the AGEs in diabetic retinopathy have not been definitively determined, the AGE-receptor of the AGE (RAGE) axis, production of reactive oxygen species, inflammatory reactions, and the activation of the cell death pathways are associated with the impairment of the NVUs in diabetic retinopathy. More specifically, neuronal cell death is an irreversible change that is directly associated with vision reduction in diabetic patients. Thus, neuroprotective therapies must be established for diabetic retinopathy. The AGEs are one of the therapeutic targets to examine to ameliorate the pathological changes in the NVUs in diabetic retinopathy. This review focuses on the basic and pathological findings of AGE-induced neurovascular abnormalities and the potential therapeutic approaches, including the use of anti-glycated drugs to protect the AGE-induced impairments of the NVUs in diabetic retinopathy.


Subject(s)
Diabetes Mellitus, Type 2 , Diabetic Neuropathies , Diabetic Retinopathy , Humans , Diabetic Retinopathy/pathology , Glycation End Products, Advanced/metabolism , Diabetic Neuropathies/metabolism , Diabetes Mellitus, Type 2/metabolism , Maillard Reaction , Retina/metabolism , Receptor for Advanced Glycation End Products/metabolism
16.
Angew Chem Int Ed Engl ; 62(9): e202216220, 2023 02 20.
Article in English | MEDLINE | ID: mdl-36591907

ABSTRACT

Enzymatic degradation and recycling can reduce the environmental impact of plastics. Despite decades of research, no enzymes for the efficient hydrolysis of polyurethanes have been reported. Whereas the hydrolysis of the ester bonds in polyester-polyurethanes by cutinases is known, the urethane bonds in polyether-polyurethanes have remained inaccessible to biocatalytic hydrolysis. Here we report the discovery of urethanases from a metagenome library constructed from soil that had been exposed to polyurethane waste for many years. We then demonstrate the use of a urethanase in a chemoenzymatic process for polyurethane foam recycling. The urethanase hydrolyses low molecular weight dicarbamates resulting from chemical glycolysis of polyether-polyurethane foam, making this strategy broadly applicable to diverse polyether-polyurethane wastes.


Subject(s)
Carbamates , Polyurethanes , Polyurethanes/chemistry , Hydrolysis , Molecular Weight , Recycling , Biodegradation, Environmental
17.
Diabetologia ; 65(7): 1098-1107, 2022 07.
Article in English | MEDLINE | ID: mdl-35380232

ABSTRACT

AIMS/HYPOTHESIS: During hyperglycaemia, some glucose bypasses glycolysis and is metabolised via the potentially neurotoxic polyol pathway, in which glucose is metabolised to sorbitol and fructose. Increased polyol concentrations have been demonstrated in the cerebrospinal fluid (CSF) of neurological patients with and without diabetes mellitus. However, polyol levels in patients without evident neurological abnormalities have not been investigated so far. The aim of this study was to determine CSF polyol concentrations in patients without major neurological disease with normal or elevated CSF glucose concentrations. METHODS: This observational cohort study used CSF and plasma analyses, as well as clinical data, from 30 participants of the Anaesthetic Biobank of Cerebrospinal Fluid study. Biomaterial was collected from adult patients scheduled for elective surgery under spinal anaesthesia. CSF polyol concentrations were measured by GC/flame ionisation detector in ten patients with normal CSF glucose levels (group 1), ten patients with elevated CSF glucose levels (group 2) and ten patients with elevated CSF glucose levels and type 2 diabetes (group 3). We compared the concentrations of plasma glucose, CSF glucose, sorbitol and fructose, and CSF polyol/glucose ratios between the three groups, and determined the correlation between plasma glucose levels and CSF glucose, sorbitol and fructose levels. RESULTS: Groups 2 and 3 had significantly higher CSF fructose levels compared with group 1 (p=0.036 and p<0.001, respectively). Group 3 showed significant differences compared with groups 1 and 2 for CSF sorbitol (p<0.001 and 0.036, respectively). Moreover, patients with diabetes had a significantly higher CSF sorbitol/glucose ratio compared with patients without diabetes. There was a strong positive correlation between plasma glucose and CSF glucose, sorbitol and fructose. Finally, age, sex, CSF/plasma albumin ratio and preoperative cognitive function scores were significantly correlated with plasma glucose and CSF glucose, sorbitol and fructose levels. CONCLUSIONS/INTERPRETATION: Hyperglycaemia causes a proportional increase in polyol concentrations in CSF of patients without major neurological disease. Furthermore, this study provides the first indication of upregulation of the cerebral polyol pathway in patients with diabetes without evident neurological abnormalities.


Subject(s)
Diabetes Mellitus, Type 2 , Hyperglycemia , Adult , Blood Glucose/metabolism , Fructose/metabolism , Glucose/metabolism , Humans , Polymers , Sorbitol
18.
J Mol Recognit ; 35(12): e2991, 2022 12.
Article in English | MEDLINE | ID: mdl-36073557

ABSTRACT

Aldose reductase (AR, AKR1B1; EC 1.1.1.21) is an aldo-keto reductase that has been widely investigated as an enzyme crucially involved in the pathogenesis of several chronic complications, including nephropathy, neuropathy, retinopathy, and cataracts associated with diabetes mellitus. Although sulfonamides have been reported to possess many other biological activities, in continuation of our interest in designing and discovering potent inhibitors of AR, herein, we have evaluated the AR inhibitory potential of N-substituted phthalazine sulfonamide derivatives 5a-l. The biological studies revealed that all the derivatives show excellent activity against AR, with KI constants ranging from 67.73 to 495.20 nM. Among these agents, 4-(6-nitro-1,4-dioxo-1,2,3,4-tetrahydrophthalazine-2-carbonyl)benzenesulfonamide (5e) and 1,4-dioxo-3-(4-sulfamoylbenzoyl)-1,2,3,4-tetrahydrophthalazine-6-carboxylic acid (5f) showed prominent inhibitory activity with KI values of 67.73 and 148.20 nM, respectively, vs AR and were found to be more potent than epalrestat (KI  = 852.50 nM), the only AR inhibitor currently used in the therapy. Moreover, molecular docking studies were also performed to rationalize binding site interactions of these sulfonamides (5a-l) with the target enzyme AR. According to ADME-Tox, predicts were also determined that these derivatives be ARIs displaying suitable drug-like properties. The sulfonamides identified in this study may be used to develop lead therapeutic agents inhibiting diabetic complications.


Subject(s)
Aldehyde Reductase , Enzyme Inhibitors , Aldehyde Reductase/chemistry , Aldehyde Reductase/metabolism , Molecular Docking Simulation , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemistry , Phthalazines/pharmacology , Sulfonamides/pharmacology
19.
J Exp Bot ; 73(1): 351-365, 2022 01 05.
Article in English | MEDLINE | ID: mdl-34460912

ABSTRACT

Polyol transporters have been functionally characterized in yeast and Xenopus laevis oocytes as H+-symporters with broad substrate specificity, but little is known about their physiological roles in planta. To extend this knowledge, we investigated the role of LjPLT11 in Lotus japonicus-Mesorhizobium symbiosis. Functional analyses of LjPLT11 in yeast characterized it as an energy-independent transporter of xylitol, two O-methyl inositols, xylose, and galactose. We showed that LjPLT11 is located on peribacteroid membranes and functions as a facilitative transporter of d-pinitol within infected cells of L. japonicus nodules. Knock-down of LjPLT11 (LjPLT11i) in L. japonicus accelerated plant growth under nitrogen sufficiency, but resulted in abnormal bacteroids with corresponding reductions in nitrogenase activity in nodules and plant growth in the nitrogen-fixing symbiosis. LjPLT11i nodules had higher osmotic pressure in cytosol, and lower osmotic pressure in bacteroids, than wild-type nodules both 3 and 4 weeks after inoculation of Mesorhizobium loti. Levels and distributions of reactive oxygen species were also perturbed in infected cells of 4-week-old nodules in LjPLT11i plants. The results indicate that LjPLT11 plays a key role in adjustment of the levels of its substrate pinitol, and thus maintenance of osmotic balance in infected cells and peribacteroid membrane stability during nodule development.


Subject(s)
Lotus , Gene Expression Regulation, Plant , Inositol/analogs & derivatives , Lotus/genetics , Lotus/metabolism , Nitrogen Fixation , Plant Development , Plant Proteins/genetics , Plant Proteins/metabolism , Plant Roots/metabolism , Root Nodules, Plant/metabolism , Symbiosis
20.
Pharmacol Res ; 182: 106326, 2022 08.
Article in English | MEDLINE | ID: mdl-35752357

ABSTRACT

Diabetes is a major public health disease that is globally approaching epidemic proportions. One of the major causes of type 2 diabetes is either a defect in insulin secretion or insulin action which is usually caused by a combination of genetic and environmental factors. Not only these factors but others such as deregulation of various pathways, and oxidative stress are also known to trigger the redox imbalance in diabetics. Increasing evidences suggest that there are tight interactions between the development of diabetes and redox imbalance. An alternate pathway of glucose metabolism, the polyol pathway, becomes active in patients with diabetes that disturbs the balance between NADH and NAD+ . The occurrence of such redox imbalance supports other pathways that lead to oxidative damage to DNA, lipids, and proteins and consequently to oxidative stress which further ascend diabetes and its complications. However, the precise mechanism through which oxidative stress regulates diabetes progression remains to be elucidated. The understanding of how antioxidants and oxidants are controlled and impact the generation of oxidative stress and progression of diabetes is essential. The main focus of this review is to provide an overview of redox imbalance caused by oxidative stress through the polyol pathway. Understanding the pathological role of oxidative stress in diabetes will help to design potential therapeutic strategies against diabetes.


Subject(s)
Diabetes Mellitus, Type 2 , Antioxidants/metabolism , Antioxidants/therapeutic use , Humans , Oxidation-Reduction , Oxidative Stress/physiology , Polymers
SELECTION OF CITATIONS
SEARCH DETAIL