Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 566
Filter
1.
Hum Mol Genet ; 32(21): 3090-3104, 2023 10 17.
Article in English | MEDLINE | ID: mdl-37555648

ABSTRACT

Ciliopathies are inherited disorders caused by defective cilia. Mutations affecting motile cilia usually cause the chronic muco-obstructive sinopulmonary disease primary ciliary dyskinesia (PCD) and are associated with laterality defects, while a broad spectrum of early developmental as well as degenerative syndromes arise from mutations affecting signalling of primary (non-motile) cilia. Cilia assembly and functioning requires intraflagellar transport (IFT) of cargos assisted by IFT-B and IFT-A adaptor complexes. Within IFT-B, the N-termini of partner proteins IFT74 and IFT81 govern tubulin transport to build the ciliary microtubular cytoskeleton. We detected a homozygous 3-kb intragenic IFT74 deletion removing the exon 2 initiation codon and 40 N-terminal amino acids in two affected siblings. Both had clinical features of PCD with bronchiectasis, but no laterality defects. They also had retinal dysplasia and abnormal bone growth, with a narrowed thorax and short ribs, shortened long bones and digits, and abnormal skull shape. This resembles short-rib thoracic dysplasia, a skeletal ciliopathy previously linked to IFT defects in primary cilia, not motile cilia. Ciliated nasal epithelial cells collected from affected individuals had reduced numbers of shortened motile cilia with disarranged microtubules, some misorientation of the basal feet, and disrupted cilia structural and IFT protein distributions. No full-length IFT74 was expressed, only truncated forms that were consistent with N-terminal deletion and inframe translation from downstream initiation codons. In affinity purification mass spectrometry, exon 2-deleted IFT74 initiated from the nearest inframe downstream methionine 41 still interacts as part of the IFT-B complex, but only with reduced interaction levels and not with all its usual IFT-B partners. We propose that this is a hypomorphic mutation with some residual protein function retained, which gives rise to a primary skeletal ciliopathy combined with defective motile cilia and PCD.


Subject(s)
Cilia , Ciliopathies , Humans , Biological Transport , Cilia/genetics , Cilia/metabolism , Ciliopathies/genetics , Ciliopathies/metabolism , Proteins/genetics , Syndrome , Mutation , Thorax/metabolism , Flagella/genetics , Cytoskeletal Proteins/genetics , Cytoskeletal Proteins/metabolism
2.
Development ; 149(12)2022 06 15.
Article in English | MEDLINE | ID: mdl-35708608

ABSTRACT

Motile cilia generate cell propulsion and extracellular fluid flows that are crucial for airway clearance, fertility and left-right patterning. Motility is powered by dynein arm complexes that are assembled in the cytoplasm then imported into the cilium. Studies in Chlamydomonas reinhardtii showed that ODA16 is a cofactor which promotes dynein arm import. Here, we demonstrate that the zebrafish homolog of ODA16, Daw1, facilitates the onset of robust cilia motility during development. Without Daw1, cilia showed markedly reduced motility during early development; however, motility subsequently increased to attain close to wild-type levels. Delayed motility onset led to differential effects on early and late cilia-dependent processes. Remarkably, abnormal body axis curves, which formed during the first day of development due to reduced cilia motility, self-corrected when motility later reached wild-type levels. Zebrafish larva therefore possess the ability to survey and correct body shape abnormalities. This work defines Daw1 as a factor which promotes the onset of timely cilia motility and can explain why human patients harboring DAW1 mutations exhibit significant laterality perturbations but mild airway and fertility complications.


Subject(s)
Cilia , Dyneins , Animals , Cell Movement , Cilia/metabolism , Dyneins/metabolism , Humans , Mutation/genetics , Zebrafish/genetics , Zebrafish/metabolism , Zebrafish Proteins/genetics , Zebrafish Proteins/metabolism
3.
Am J Physiol Lung Cell Mol Physiol ; 326(4): L468-L476, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38318660

ABSTRACT

Nasal nitric oxide (nNO) is low in most patients with primary ciliary dyskinesia (PCD). Decreased ciliary motion could lead to antigen stasis, increasing oxidant production and NO oxidation in the airways. This could both decrease gas phase NO and increase nitrosative stress. We studied primary airway epithelial cells from healthy controls (HCs) and patients with PCD with several different genotypes. We measured antigen clearance in fenestrated membranes exposed apically to the fluorescently labeled antigen Dermatophagoides pteronyssinus (Derp1-f). We immunoblotted for 3-nitrotyrosine (3-NT) and for oxidative response enzymes. We measured headspace NO above primary airway cells without and with a PCD-causing genotype. We measured nNO and exhaled breath condensate (EBC) H2O2 in vivo. Apical Derp1-f was cleared from HC better than from PCD cells. DUOX1 expression was lower in HC than in PCD cells at baseline and after 24-h Derp1-f exposure. HC cells had less 3-NT and NO3- than PCD cells. However, NO consumption by HC cells was less than that by PCD cells; NO loss was prevented by superoxide dismutase (SOD) and by apocynin. nNO was higher in HCs than in patients with PCD. EBC H2O2 was lower in HC than in patients with PCD. The PCD airway epithelium does not optimally clear antigens and is subject to oxidative and nitrosative stress. Oxidation associated with antigen stasis could represent a therapeutic target in PCD, one with convenient monitoring biomarkers.NEW & NOTEWORTHY The PCD airway epithelium does not optimally clear antigens, and antigen exposure can lead to NO oxidation and nitrosative stress. Oxidation caused by antigen stasis could represent a therapeutic target in PCD, and there are convenient monitoring biomarkers.


Subject(s)
Ciliary Motility Disorders , Kartagener Syndrome , Humans , Hydrogen Peroxide , Nitrosative Stress , Breath Tests , Nitric Oxide/metabolism , Biomarkers/metabolism , Kartagener Syndrome/metabolism
4.
Am J Hum Genet ; 108(7): 1318-1329, 2021 07 01.
Article in English | MEDLINE | ID: mdl-34077761

ABSTRACT

TP73 belongs to the TP53 family of transcription factors and has therefore been well studied in cancer research. Studies in mice, however, have revealed non-oncogenic activities related to multiciliogenesis. Utilizing whole-exome sequencing analysis in a cohort of individuals with a mucociliary clearance disorder and cortical malformation, we identified homozygous loss-of-function variants in TP73 in seven individuals from five unrelated families. All affected individuals exhibit a chronic airway disease as well as a brain malformation consistent with lissencephaly. We performed high-speed video microscopy, immunofluorescence analyses, and transmission electron microscopy in respiratory epithelial cells after spheroid or air liquid interface culture to analyze ciliary function, ciliary length, and number of multiciliated cells (MCCs). The respiratory epithelial cells studied display reduced ciliary length and basal bodies mislocalized within the cytoplasm. The number of MCCs is severely reduced, consistent with a reduced number of cells expressing the transcription factors crucial for multiciliogenesis (FOXJ1, RFX2). Our data demonstrate that autosomal-recessive deleterious variants in the TP53 family member TP73 cause a mucociliary clearance disorder due to a defect in MCC differentiation.


Subject(s)
Lissencephaly/genetics , Mucociliary Clearance/genetics , Respiratory Mucosa/metabolism , Tumor Protein p73/genetics , Cell Differentiation/genetics , Cells, Cultured , Ciliopathies/genetics , Genes, Recessive , Homozygote , Humans , Loss of Function Mutation , Microscopy, Video , Respiratory Mucosa/cytology , Respiratory Mucosa/ultrastructure , Exome Sequencing
5.
J Cell Sci ; 135(6)2022 03 15.
Article in English | MEDLINE | ID: mdl-35178554

ABSTRACT

Mutations in SPAG1, a dynein axonemal assembly factor (DNAAF) that facilitates the assembly of dynein arms in the cytoplasm before their transport into the cilium, result in primary ciliary dyskinesia (PCD), a genetically heterogenous disorder characterized by chronic oto-sino-pulmonary disease, infertility and laterality defects. To further elucidate the role of SPAG1 in dynein assembly, we examined its expression, interactions and ciliary defects in control and PCD human airway epithelia. Immunoprecipitations showed that SPAG1 interacts with multiple DNAAFs, dynein chains and canonical components of the R2TP complex. Protein levels of dynein heavy chains (DHCs) and interactions between DHCs and dynein intermediate chains (DICs) were reduced in SPAG1 mutants. We also identified a previously uncharacterized 60 kDa SPAG1 isoform, through examination of PCD subjects with an atypical ultrastructural defect for SPAG1 variants, that can partially compensate for the absence of full-length SPAG1 to assemble a reduced number of outer dynein arms. In summary, our data show that SPAG1 is necessary for axonemal dynein arm assembly by scaffolding R2TP-like complexes composed of several DNAAFs that facilitate the folding and/or binding of the DHCs to the DIC complex.


Subject(s)
Axonemal Dyneins , Axoneme , Antigens, Surface/metabolism , Axonemal Dyneins/genetics , Axonemal Dyneins/metabolism , Axoneme/metabolism , Cilia/metabolism , Dyneins/genetics , Dyneins/metabolism , GTP-Binding Proteins/metabolism , Humans , Mutation/genetics , Respiratory System/metabolism
6.
Thorax ; 2024 Aug 24.
Article in English | MEDLINE | ID: mdl-39181709

ABSTRACT

OBJECTIVE: Primary ciliary dyskinesia (PCD) severity has been related to genotype and levels of nasal nitric oxide (nNO). The most common TAS2R38 haplotypes (PAV/PAV, PAV/AVI, AVI/AVI) encoding the bitter taste receptor can affect nNO levels and thus could play a role in the susceptibility to respiratory infections. We assessed the impact of these polymorphisms on nNO production and Pseudomonas aeruginosa (P.a.) infections in different PCD genotypes. METHODS: Prospective, longitudinal, single-centre study in patients with PCD with known genotype and one of three TAS2R38 haplotypes evaluated for up to 10 years. We related nNO values to TAS2R38 haplotypes in all patients, and in the three most frequent genotypes (CCDC39/CCDC40, DNAH5, DNAH11). In the genetic group(s) with different mean trends of nNO in relation to the polymorphism, we evaluated longitudinal lung function as a clinical outcome measure. We also studied any associations between the prevalence of chronic P.a. infection and PAV alleles. Linear mixed-effects models were used to evaluate longitudinal associations. RESULTS: 119 patients with PCD underwent 1116 study visits. Only in the DNAH11 mutations group was there a mean trend of nNO production which was significantly higher in PAV/PAV than AVI/AVI haplotype (p=0.033), with a better trend in spirometric and plethysmographic parameters. In patients with DNAH11 mutations the PAV allele was also associated with a significantly reduced prevalence of chronic P.a. CONCLUSION: TAS2R38 may be a modifier gene for PCD severity, but only in mild phenotype disease. Further study of TAS2R38 polymorphisms might enable new management strategies to prevent chronic P.a.

7.
Thorax ; 79(7): 607-614, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38378235

ABSTRACT

BACKGROUND: Mucociliary clearance (MCC) is critical to lung health and is impaired in many diseases. The path of MCC may have an important impact on clearance but has never been rigorously studied. The objective of this study is to assess the three-dimensional path of human tracheal MCC in disease and health. METHODS: Tracheal MCC was imaged in 12 ex-smokers, 3 non-smokers (1 opportunistically imaged during acute influenza and repeated after recovery) and 5 individuals with primary ciliary dyskinesia (PCD). Radiolabelled macroaggregated albumin droplets were injected into the trachea via the cricothyroid membrane. Droplet movement was tracked via scintigraphy, the path of movement mapped and helical and axial models of tracheal MCC were compared. MEASUREMENTS AND MAIN RESULTS: In 5/5 participants with PCD and 1 healthy participant with acute influenza, radiolabelled albumin coated the trachea and did not move. In all others (15/15), mucus coalesced into globules. Globule movement was negligible in 3 ex-smokers, but in all others (12/15) ascended the trachea in a helical path. Median cephalad tracheal MCC was 2.7 mm/min ex-smokers vs 8.4 mm/min non-smokers (p=0.02) and correlated strongly to helical angle (r=0.92 (p=0.00002); median 18o ex-smokers, 47o non-smokers (p=0.036)), but not to actual speed on helical path (r=0.26 (p=0.46); median 13.6 mm/min ex-smokers vs 13.9 mm/min non-smokers (p=1.0)). CONCLUSION: For the first time, we show that human tracheal MCC is helical, and impairment in ex-smokers is often caused by flattened helical transit, not slower movement. Our methodology provides a simple method to map tracheal MCC and speed in vivo.


Subject(s)
Mucociliary Clearance , Trachea , Humans , Mucociliary Clearance/physiology , Trachea/diagnostic imaging , Male , Female , Adult , Middle Aged , Mucus/metabolism , Ciliary Motility Disorders/diagnostic imaging , Smoking/adverse effects , Aged , Young Adult
8.
Biochem Biophys Res Commun ; 735: 150428, 2024 Jul 20.
Article in English | MEDLINE | ID: mdl-39094231

ABSTRACT

Primary ciliary dyskinesia (PCD) is a group of genetically heterogeneous disorders characterized by clinical manifestations resulting from abnormal ciliary motility. Mutations in critical genes, such as Cyclin O (CCNO), have been associated with severe respiratory disease, though limited data are currently available. Here we show that CCNO deficient ciliated cells can only form a reduced number of fully functional centrioles that can mature into ciliated basal bodies, and their transport and anchoring to the top of the plasma membrane are abnormal. Furthermore, we observed that CCNO localizes not only in the cytoplasm but also in the nucleus during the early stages of ciliogenesis, and this dual localization persists into adulthood. Transcriptome analysis revealed downregulation of genes involved in cilia assembly and movement, along with altered transcription factors associated with ciliation upon CCNO depletion. These findings indicate that CCNO may serve as a key regulator in the transcriptional regulation of multiciliogenesis.

9.
Eur Respir J ; 2024 Jul 26.
Article in English | MEDLINE | ID: mdl-38991708

ABSTRACT

BACKGROUND: Primary ciliary dyskinesia (PCD) is a genetic disorder caused by aberrant motile cilia function that results in defective ciliary airway clearance and subsequently to recurrent airway infections and bronchiectasis. QUESTION: How many functional multiciliated airway cells are sufficient to maintain ciliary airway clearance? METHODS: To answer this question we exploited the molecular defects of the X-linked recessive PCD variant caused by pathogenic variants in DNAAF6 (PIH1D3), characterized by immotile cilia in the affected males. We carefully analyzed the clinical phenotype, molecular defect (immunofluorescence and transmission-electron microscopy) and performed in vitro (particle tracking in air-liquid interface cultures) and in vivo (radiolabeled tracer studies) studies to assess ciliary clearance of respiratory cells from females with heterozygous and males with hemizygous pathogenic DNAAF6 variants. RESULTS: PCD males with hemizygous pathogenic DNAAF6 variants displayed exclusively immotile cilia, absence of ciliary clearance and severe PCD symptoms. Due to random or skewed X-chromosome inactivation in six females with heterozygous pathogenic DNAAF6 variants, 54.3%±10 (range 38%-70%) of multiciliated cells were defective. Nevertheless, in vitro and in vivo assessment of the ciliary airway clearance was normal or slightly abnormal. Consistently, heterozygous female individuals showed no or only mild respiratory symptoms. CONCLUSIONS: Our findings indicate that 30%-62% of functioning multiciliated respiratory cells are able to generate either normal or slightly reduced ciliary clearance. Because heterozygous females displayed either no or subtle respiratory symptoms, complete correction of 30% of cells by precision medicine might be able to improve ciliary airway clearance in PCD individuals as well as clinical symptoms.

10.
Clin Genet ; 2024 Jul 14.
Article in English | MEDLINE | ID: mdl-39004944

ABSTRACT

Data are limited on the genetic profile of primary ciliary dyskinesia (PCD) from developing countries. Here, we report one of the first study on genetic profile of patients with suspected PCD from India. In this prospective cross-sectional study, we enrolled 162 children with suspected PCD. We recorded clinical features, relevant laboratory tests for PCD and performed whole exome sequencing (WES). We are reporting 67 patients here who had positive variant/s on WES. We had 117 variants in 40 genes among 67 patients. Among the 108 unique variants, 33 were categorized as pathogenic or likely pathogenic (P/LP). We had nine novel variants in out cohort. The 29 definite PCD cases, diagnosed by composite reference standards, had variants in 16 genes namely LRRC6/DNAAF11 (5), DNAH5 (3), CCDC39 (3), HYDIN (3), DNAH11 (2), CCDC40 (2), CCDC65 (2) and one each DNAAF3, DNAAF2, CFAP300, RPGR, CCDC103, CCDC114, SPAG1, DNAI1, and DNAH14. To conclude, we identified 108 unique variants in 40 genes among 67 patients. The common genes involved in definite cases of PCD in Indian patients were LRRC6, DNAH5, CCDC39, and HYDIN. Our findings suggest a need to develop a separate genetic panel for PCD in the Indian population.

11.
Eur J Pediatr ; 183(8): 3193-3197, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38679661

ABSTRACT

Though PCD usually presents after birth in term neonates, diagnosing PCD during the neonatal and infancy stages is uncommon, particularly in children who do not exhibit laterality defects. We report our recent experience with the diagnosis of PCD in the neonatal and early infantile period in a highly consanguine population. This was achieved by implementing a novel genetic-based diagnostic approach based on direct testing for recognized regional genetic variants. We conducted a retrospective analysis of children diagnosed with PCD at Soroka University Medical Center during the neonatal or early infantile period between 2020 and 2023. We included children under 3 months of age who had a genetic confirmation of PCD, as evidenced by the presence of two pathogenic variants in recognized genes. Genetic testing targeted regional genetic variants in previously identified PCD genes. Eight patients were included. The median age at diagnosis was 12.5 days. Three (38%) were born prematurely < 34 weeks gestational age. All patients were presented with respiratory distress and hypoxemia after birth. The median duration of oxygen support was 23 days, and upper lobe atelectasis was present in five patients (63%). Congenital cardiac malformation was present in four patients. Organ laterality defects were present in four patients. Genetic mutations identified were in the DNAAF5, DNAL1, DNAAF3, and DNAH1 genes.     Conclusion: Neonatal diagnosis of PCD is uncommon, especially in atypical presentations such as children without laterality defects or preterms. Focusing on a genetic diagnosis of the local tribal pathogenic variants promotes a potential cost-efficient test leading to earlier diagnosis. There is a need for a standardized protocol for earlier diagnosis of PCD in high-consanguinity areas. What is Known: • Primary ciliary dyskinesia (PCD) typically presents after birth in term neonates. • Diagnosing PCD during neonatal and infancy stages is challenging, particularly in children without laterality defects. What is New: • A novel genetic-based diagnostic approach was implemented on the neonatal population in a highly consanguine community, focusing on direct testing for regional genetic variants, leading to early and rapid diagnosis of PCD.


Subject(s)
Consanguinity , Genetic Testing , Humans , Infant, Newborn , Retrospective Studies , Male , Female , Genetic Testing/methods , Infant , Kartagener Syndrome/diagnosis , Kartagener Syndrome/genetics , Tertiary Care Centers , Mutation
12.
Lung ; 202(3): 291-298, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38602513

ABSTRACT

PURPOSE: We aimed to examine the correlation between clinical characteristics and the pathogenic gene variants in patients with Primary Ciliary Dyskinesia (PCD). METHODS: We conducted a retrospective single-center study in patients with PCD followed at the University Hospitals Leuven. We included patients with genetically confirmed PCD and described their genotype, data from ultrastructural ciliary evaluation and clinical characteristics. Genotype/phenotype correlations were studied in patients with the most frequently involved genes. RESULTS: We enrolled 74 patients with a median age of 25.58 years. The most frequently involved genes were DNAH11 (n = 23) and DNAH5 (n = 19). The most frequent types of pathogenic variants were missense (n = 42) and frameshift variants (n = 36) and most patients had compound heterozygous variants (n = 44). Ciliary ultrastructure (p < 0.001), situs (p = 0.015) and age at diagnosis (median 9.50 vs 4.71 years, p = 0.037) differed between DNAH11 and DNAH5. When correcting for situs this difference in age at diagnosis was no longer significant (p = 0.973). Patients with situs inversus were diagnosed earlier (p = 0.031). Respiratory tract microbiology (p = 0.161), lung function (cross-sectional, p = 0.829 and longitudinal, p = 0.329) and chest CT abnormalities (p = 0.202) were not significantly different between DNAH11 and DNAH5 variants. CONCLUSION: This study suggests a genotype-phenotype correlation for some of the evaluated clinical characteristics of the two most frequently involved genes in this study, namely DNAH11 and DNAH5.


Subject(s)
Axonemal Dyneins , Humans , Male , Female , Adult , Retrospective Studies , Belgium/epidemiology , Child , Adolescent , Child, Preschool , Young Adult , Axonemal Dyneins/genetics , Dyneins/genetics , Middle Aged , Kartagener Syndrome/genetics , Kartagener Syndrome/diagnosis , Kartagener Syndrome/physiopathology , Genetic Association Studies , Phenotype , Infant , Situs Inversus/genetics , Situs Inversus/diagnostic imaging , Cilia/pathology , Cilia/ultrastructure , Mutation, Missense , Frameshift Mutation
13.
BMC Pulm Med ; 24(1): 343, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39014333

ABSTRACT

BACKGROUND: Primary ciliary dyskinesia (PCD) is an autosomal recessive hereditary disease characterized by recurrent respiratory infections. In clinical manifestations, DNAH5 (NM_001361.3) is one of the recessive pathogenic genes. Primary familial brain calcification (PFBC) is a neurodegenerative disease characterized by bilateral calcification in the basal ganglia and other brain regions. PFBC can be inherited in an autosomal dominant or recessive manner. A family with PCD caused by a DNAH5 compound heterozygous variant and PFBC caused by a MYORG homozygous variant was analyzed. METHODS: In this study, we recruited three generations of Han families with primary ciliary dyskinesia combined with primary familial brain calcification. Their clinical phenotype data were collected, next-generation sequencing was performed to screen suspected pathogenic mutations in the proband and segregation analysis of families was carried out by Sanger sequencing. The mutant and wild-type plasmids were constructed and transfected into HEK293T cells instantaneously, and splicing patterns were detected by Minigene splicing assay. The structure and function of mutations were analyzed by bioinformatics analysis. RESULTS: The clinical phenotypes of the proband (II10) and his sister (II8) were bronchiectasis, recurrent pulmonary infection, multiple symmetric calcifications of bilateral globus pallidus and cerebellar dentate nucleus, paranasal sinusitis in the whole group, and electron microscopy of bronchial mucosa showed that the ciliary axoneme was defective. There was also total visceral inversion in II10 but not in II8. A novel splice variant C.13,338 + 5G > C and a frameshift variant C.4314delT (p. Asn1438lysfs *10) were found in the DNAH5 gene in proband (II10) and II8. c.347_348dupCTGGCCTTCCGC homozygous insertion variation was found in the MYORG of the proband. The two pathogenic genes were co-segregated in the family. Minigene showed that DNAH5 c.13,338 + 5G > C has two abnormal splicing modes: One is that part of the intron bases where the mutation site located is translated, resulting in early translation termination of DNAH5; The other is the mutation resulting in the deletion of exon76. CONCLUSIONS: The newly identified DNAH5 splicing mutation c.13,338 + 5G > C is involved in the pathogenesis of PCD in the family, and forms a compound heterozygote with the pathogenic variant DNAH5 c.4314delT lead to the pathogenesis of PCD.


Subject(s)
Calcinosis , Mutation , Pedigree , Humans , Male , Calcinosis/genetics , Calcinosis/pathology , Female , Axonemal Dyneins/genetics , Adult , Ciliary Motility Disorders/genetics , Brain Diseases/genetics , Phenotype , HEK293 Cells , China , RNA Splicing/genetics , Middle Aged , Glycoside Hydrolases
14.
Adv Exp Med Biol ; 1441: 719-738, 2024.
Article in English | MEDLINE | ID: mdl-38884745

ABSTRACT

Left-right patterning is among the least well understood of the three axes defining the body plan, and yet it is no less important, with left-right patterning defects causing structural birth defects with high morbidity and mortality, such as complex congenital heart disease, biliary atresia, or intestinal malrotation. The cell signaling pathways governing left-right asymmetry are highly conserved and involve multiple components of the TGF-ß superfamily of cell signaling molecules. Central to left-right patterning is the differential activation of Nodal on the left, and BMP signaling on the right. In addition, a plethora of other cell signaling pathways including Shh, FGF, and Notch also contribute to the regulation of left-right patterning. In vertebrate embryos such as the mouse, frog, or zebrafish, the specification of left-right identity requires the left-right organizer (LRO) containing cells with motile and primary cilia that mediate the left-sided propagation of Nodal signaling, followed by left-sided activation of Lefty and then Pitx2, a transcription factor that specifies visceral organ asymmetry. While this overall scheme is well conserved, there are striking species differences, including the finding that motile cilia do not play a role in left-right patterning in some vertebrates. Surprisingly, the direction of heart looping, one of the first signs of organ left-right asymmetry, was recently shown to be specified by intrinsic cell chirality, not Nodal signaling, possibly a reflection of the early origin of Nodal signaling in radially symmetric organisms. How this intrinsic chirality interacts with downstream molecular pathways regulating visceral organ asymmetry will need to be further investigated to elucidate how disturbance in left-right patterning may contribute to complex CHD.


Subject(s)
Body Patterning , Signal Transduction , Animals , Humans , Mice , Body Patterning/genetics , Disease Models, Animal , Gene Expression Regulation, Developmental , Left-Right Determination Factors/genetics , Left-Right Determination Factors/metabolism
15.
Adv Exp Med Biol ; 1441: 167-183, 2024.
Article in English | MEDLINE | ID: mdl-38884711

ABSTRACT

Formation of the vertebrate heart with its complex arterial and venous connections is critically dependent on patterning of the left-right axis during early embryonic development. Abnormalities in left-right patterning can lead to a variety of complex life-threatening congenital heart defects. A highly conserved pathway responsible for left-right axis specification has been uncovered. This pathway involves initial asymmetric activation of a nodal signaling cascade at the embryonic node, followed by its propagation to the left lateral plate mesoderm and activation of left-sided expression of the Pitx2 transcription factor specifying visceral organ asymmetry. Intriguingly, recent work suggests that cardiac laterality is encoded by intrinsic cell and tissue chirality independent of Nodal signaling. Thus, Nodal signaling may be superimposed on this intrinsic chirality, providing additional instructive cues to pattern cardiac situs. The impact of intrinsic chirality and the perturbation of left-right patterning on myofiber organization and cardiac function warrants further investigation. We summarize recent insights gained from studies in animal models and also some human clinical studies in a brief overview of the complex processes regulating cardiac asymmetry and their impact on cardiac function and the pathogenesis of congenital heart defects.


Subject(s)
Body Patterning , Heart Defects, Congenital , Heart , Humans , Animals , Heart/embryology , Heart/physiology , Body Patterning/genetics , Heart Defects, Congenital/genetics , Heart Defects, Congenital/physiopathology , Heart Defects, Congenital/metabolism , Heart Defects, Congenital/pathology , Signal Transduction , Gene Expression Regulation, Developmental , Nodal Protein/metabolism , Nodal Protein/genetics
16.
Adv Exp Med Biol ; 1441: 705-717, 2024.
Article in English | MEDLINE | ID: mdl-38884744

ABSTRACT

Defects of situs are associated with complex sets of congenital heart defects in which the normal concordance of asymmetric thoracic and abdominal organs is disturbed. The cellular and molecular mechanisms underlying the formation of the embryonic left-right axis have been investigated extensively in the past decade. This has led to the identification of mutations in at least 33 different genes in humans with heterotaxy and situs defects. Those mutations affect a broad range of molecular components, from transcription factors, signaling molecules, and chromatin modifiers to ciliary proteins. A substantial overlap of these genes is observed with genes associated with other congenital heart diseases such as tetralogy of Fallot and double-outlet right ventricle, d-transposition of the great arteries, and atrioventricular septal defects. In this chapter, we present the broad genetic heterogeneity of situs defects including recent human genomics efforts.


Subject(s)
Mutation , Humans , Heterotaxy Syndrome/genetics , Heart Defects, Congenital/genetics , Situs Inversus/genetics
17.
Proc Natl Acad Sci U S A ; 118(4)2021 01 26.
Article in English | MEDLINE | ID: mdl-34871179

ABSTRACT

The radial spoke (RS) heads of motile cilia and flagella contact projections of the central pair (CP) apparatus to coordinate motility, but the morphology is distinct for protozoa and metazoa. Here we show the murine RS head is compositionally distinct from that of Chlamydomonas Our reconstituted murine RS head core complex consists of Rsph1, Rsph3b, Rsph4a, and Rsph9, lacking Rsph6a and Rsph10b, whose orthologs exist in the protozoan RS head. We resolve its cryo-electron microscopy (cryo-EM) structure at 3.2-Å resolution. Our atomic model further reveals a twofold symmetric brake pad-shaped structure, in which Rsph4a and Rsph9 form a compact body extended laterally with two long arms of twisted Rsph1 ß-sheets and potentially connected dorsally via Rsph3b to the RS stalk. Furthermore, our modeling suggests that the core complex contacts the periodic CP projections either rigidly through its tooth-shaped Rsph4a regions or elastically through both arms for optimized RS-CP interactions and mechanosignal transduction.


Subject(s)
Axoneme/chemistry , Axoneme/metabolism , Cryoelectron Microscopy/methods , Animals , Antigens, Surface , Chlamydomonas , Cilia , Cytoskeletal Proteins/chemistry , DNA-Binding Proteins/chemistry , Epitopes , Flagella , HEK293 Cells , Humans , Mice , Models, Molecular , Mutation , Protein Conformation , Recombinant Proteins
18.
J Assist Reprod Genet ; 41(6): 1485-1498, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38568462

ABSTRACT

PURPOSE: This study aimed to identify the genetic causes of male infertility and primary ciliary dyskinesia (PCD)/PCD-like phenotypes in three unrelated Han Chinese families. METHODS: We conducted whole-exome sequencing of three patients with male infertility and PCD/PCD-like phenotypes from three unrelated Chinese families. Ultrastructural and immunostaining analyses of patient spermatozoa and respiratory cilia and in vitro analyses were performed to analyze the effects of SPEF2 variants. Intracytoplasmic sperm injection (ICSI) was administered to three affected patients. RESULTS: We identified four novel SPEF2 variants, including one novel homozygous splicing site variant [NC_000005.10(NM_024867.4): c.4447 + 1G > A] of the SPEF2 gene in family 1, novel compound heterozygous nonsense variants [NC_000005.10(NM_024867.4): c.1339C > T (p.R447*) and NC_000005.10(NM_024867.4): c.1645G > T (p.E549*)] in family 2, and one novel homozygous missense variant [NC_000005.10(NM_024867.4): c.2524G > A (p.D842N)] in family 3. All the patients presented with male infertility and PCD/likely PCD. All variants were present at very low levels in public databases, predicted to be deleterious in silico prediction tools, and were further confirmed deleterious by in vitro analyses. Ultrastructural analyses of the spermatozoa of the patients revealed the absence of the central pair complex in the sperm flagella. Immunostaining of the spermatozoa and respiratory cilia of the patients validated the pathogenicity of the SPEF2 variants. All patients carrying SPEF2 variants underwent one ICSI cycle and delivered healthy infants. CONCLUSION: Our study reported four novel pathogenic variants of SPEF2 in three male patients with infertility and PCD/PCD-like phenotypes, which not only extend the spectrum of SPEF2 mutations but also provide information for genetic counseling and treatment of such conditions.


Subject(s)
Infertility, Male , Pedigree , Sperm Injections, Intracytoplasmic , Spermatozoa , Adult , Humans , Male , China , Cilia/genetics , Cilia/pathology , Cilia/ultrastructure , Ciliary Motility Disorders/genetics , Ciliary Motility Disorders/pathology , Exome Sequencing , Homozygote , Infertility, Male/genetics , Infertility, Male/pathology , Mutation/genetics , Phenotype , Spermatozoa/pathology , Spermatozoa/ultrastructure , Spermatozoa/metabolism
19.
J Allergy Clin Immunol ; 151(4): 848-868, 2023 04.
Article in English | MEDLINE | ID: mdl-36797169

ABSTRACT

Discerning the genetics and epigenetics of chronic rhinosinusitis (CRS) may optimize outcomes through early diagnostics, personalized and novel therapeutics, and early prognostication. CRS associated with cystic fibrosis and primary ciliary dyskinesia has well-characterized genetic mutations. Most CRS subjects, however, do not exhibit identifiable monogenic alterations. Clustering in related individuals is seen in CRS with nasal polyps. Spouses of subjects with CRS without nasal polyps also may be at increased risk of the same disease. These observations generate questions on genetic and environmental influences in CRS. Genome-wide association studies have identified variations and polymorphisms between CRS and control subjects in genes related to innate and adaptive immunity. Candidate gene and transcriptomics studies have investigated and identified genetic variations related to immunity, inflammation, epithelial barrier function, stress-response, antigen processing, T-cell regulation, and cytokines in CRS. Epigenetic studies have identified mechanisms through which environmental factors may affect these gene functions. However, causality is not determined for most variations. Inferences drawn from these data must be measured because most investigations report unreplicated results from small study populations. Large, replicated studies in tight cohorts across diverse populations remain a pressing need in studying CRS genetics.


Subject(s)
Nasal Polyps , Rhinitis , Sinusitis , Humans , Genome-Wide Association Study , Sinusitis/therapy , Chronic Disease , Epigenesis, Genetic
20.
Int J Mol Sci ; 25(16)2024 Aug 08.
Article in English | MEDLINE | ID: mdl-39201321

ABSTRACT

Several chronic respiratory diseases could be risk factors for acquiring SARS-CoV-2 infection: among them, Primary Ciliary Dyskinesia (PCD) is a rare (about 1:10.000) inherited ciliopathy (MIM 242650) characterized by recurrent upper and lower respiratory tract infections due to a dysfunction of the respiratory cilia. In this study, we aimed to investigate whether PCD subjects are more susceptible to infection by SARS-CoV-2 and whether some polymorphisms of the TAS2R38 bitter taste receptor correlate with an increased prevalence of SARS-CoV-2 infection and severity of symptoms. Patients answered several questions about possible SARS-CoV-2 infection, experienced symptoms, and vaccinations; in the case of infection, they also filled out a SNOT-22 questionnaire and ARTIQ. Forty PCD adult patients (mean age, 36.6 ± 16.7 years; 23 females, 17 males) participated in this study, out of which 30% had tested positive for COVID-19 during the last four years; most of them reported a mildly symptomatic disease. We found no differences in age or sex, but a statistically significant difference (p = 0.03) was observed in body mass index (BMI), which was higher in the COVID-acquired group (23.2 ± 3.3 vs. 20.1 ± 4.1 kg/m2). Genotyping for TAS2R38 polymorphisms showed a prevalence of 28.6% PAV/PAV, 48.6% PAV/AVI, and 22.8% AVI/AVI individuals in our cohort. In contrast to our hypothesis, we did not observe a protective role of the PAV allele towards SARS-CoV-2 infection. Conclusions: Our findings suggest that subjects with PCD may not be at increased risk of severe outcomes from COVID-19 and the TAS2R38 bitter taste receptor genotype does not affect SARS-CoV-2 infection.


Subject(s)
COVID-19 , Genotype , Receptors, G-Protein-Coupled , SARS-CoV-2 , Humans , Male , Female , COVID-19/genetics , COVID-19/virology , COVID-19/epidemiology , Adult , Receptors, G-Protein-Coupled/genetics , Middle Aged , SARS-CoV-2/genetics , Polymorphism, Single Nucleotide , Ciliary Motility Disorders/genetics , Genetic Predisposition to Disease , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL