Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.806
Filter
1.
Cell ; 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38959891

ABSTRACT

The ability of mitochondria to coordinate stress responses across tissues is critical for health. In C. elegans, neurons experiencing mitochondrial stress elicit an inter-tissue signaling pathway through the release of mitokine signals, such as serotonin or the Wnt ligand EGL-20, which activate the mitochondrial unfolded protein response (UPRMT) in the periphery to promote organismal health and lifespan. We find that germline mitochondria play a surprising role in neuron-to-periphery UPRMT signaling. Specifically, we find that germline mitochondria signal downstream of neuronal mitokines, Wnt and serotonin, and upstream of lipid metabolic pathways in the periphery to regulate UPRMT activation. We also find that the germline tissue itself is essential for UPRMT signaling. We propose that the germline has a central signaling role in coordinating mitochondrial stress responses across tissues, and germline mitochondria play a defining role in this coordination because of their inherent roles in germline integrity and inter-tissue signaling.

2.
Cell ; 187(5): 1109-1126.e21, 2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38382525

ABSTRACT

Oocytes are among the longest-lived cells in the body and need to preserve their cytoplasm to support proper embryonic development. Protein aggregation is a major threat for intracellular homeostasis in long-lived cells. How oocytes cope with protein aggregation during their extended life is unknown. Here, we find that mouse oocytes accumulate protein aggregates in specialized compartments that we named endolysosomal vesicular assemblies (ELVAs). Combining live-cell imaging, electron microscopy, and proteomics, we found that ELVAs are non-membrane-bound compartments composed of endolysosomes, autophagosomes, and proteasomes held together by a protein matrix formed by RUFY1. Functional assays revealed that in immature oocytes, ELVAs sequester aggregated proteins, including TDP-43, and degrade them upon oocyte maturation. Inhibiting degradative activity in ELVAs leads to the accumulation of protein aggregates in the embryo and is detrimental for embryo survival. Thus, ELVAs represent a strategy to safeguard protein homeostasis in long-lived cells.


Subject(s)
Cytoplasmic Vesicles , Oocytes , Protein Aggregates , Animals , Female , Mice , Autophagosomes , Cytoplasmic Vesicles/metabolism , Lysosomes/metabolism , Oocytes/cytology , Oocytes/metabolism , Proteasome Endopeptidase Complex , Proteolysis
3.
Cell ; 187(9): 2250-2268.e31, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38554706

ABSTRACT

Ubiquitin-dependent unfolding of the CMG helicase by VCP/p97 is required to terminate DNA replication. Other replisome components are not processed in the same fashion, suggesting that additional mechanisms underlie replication protein turnover. Here, we identify replisome factor interactions with a protein complex composed of AAA+ ATPases SPATA5-SPATA5L1 together with heterodimeric partners C1orf109-CINP (55LCC). An integrative structural biology approach revealed a molecular architecture of SPATA5-SPATA5L1 N-terminal domains interacting with C1orf109-CINP to form a funnel-like structure above a cylindrically shaped ATPase motor. Deficiency in the 55LCC complex elicited ubiquitin-independent proteotoxicity, replication stress, and severe chromosome instability. 55LCC showed ATPase activity that was specifically enhanced by replication fork DNA and was coupled to cysteine protease-dependent cleavage of replisome substrates in response to replication fork damage. These findings define 55LCC-mediated proteostasis as critical for replication fork progression and genome stability and provide a rationale for pathogenic variants seen in associated human neurodevelopmental disorders.


Subject(s)
Adenosine Triphosphatases , DNA Replication , Genomic Instability , Proteostasis , Humans , Adenosine Triphosphatases/metabolism , Valosin Containing Protein/metabolism , Valosin Containing Protein/genetics , HEK293 Cells , Cell Cycle Proteins/metabolism , ATPases Associated with Diverse Cellular Activities/metabolism , ATPases Associated with Diverse Cellular Activities/genetics
4.
Cell ; 186(5): 1039-1049.e17, 2023 03 02.
Article in English | MEDLINE | ID: mdl-36764293

ABSTRACT

Hsp60 chaperonins and their Hsp10 cofactors assist protein folding in all living cells, constituting the paradigmatic example of molecular chaperones. Despite extensive investigations of their structure and mechanism, crucial questions regarding how these chaperonins promote folding remain unsolved. Here, we report that the bacterial Hsp60 chaperonin GroEL forms a stable, functionally relevant complex with the chaperedoxin CnoX, a protein combining a chaperone and a redox function. Binding of GroES (Hsp10 cofactor) to GroEL induces CnoX release. Cryoelectron microscopy provided crucial structural information on the GroEL-CnoX complex, showing that CnoX binds GroEL outside the substrate-binding site via a highly conserved C-terminal α-helix. Furthermore, we identified complexes in which CnoX, bound to GroEL, forms mixed disulfides with GroEL substrates, indicating that CnoX likely functions as a redox quality-control plugin for GroEL. Proteins sharing structural features with CnoX exist in eukaryotes, suggesting that Hsp60 molecular plugins have been conserved through evolution.


Subject(s)
Molecular Chaperones , Protein Folding , Cryoelectron Microscopy , Molecular Chaperones/metabolism , Oxidation-Reduction , Chaperonins/chemistry , Chaperonins/metabolism , Chaperonin 60/chemistry , Chaperonin 10/metabolism
5.
Cell ; 186(25): 5517-5535.e24, 2023 12 07.
Article in English | MEDLINE | ID: mdl-37992713

ABSTRACT

Transfer RNA (tRNA) modifications are critical for protein synthesis. Queuosine (Q), a 7-deaza-guanosine derivative, is present in tRNA anticodons. In vertebrate tRNAs for Tyr and Asp, Q is further glycosylated with galactose and mannose to generate galQ and manQ, respectively. However, biogenesis and physiological relevance of Q-glycosylation remain poorly understood. Here, we biochemically identified two RNA glycosylases, QTGAL and QTMAN, and successfully reconstituted Q-glycosylation of tRNAs using nucleotide diphosphate sugars. Ribosome profiling of knockout cells revealed that Q-glycosylation slowed down elongation at cognate codons, UAC and GAC (GAU), respectively. We also found that galactosylation of Q suppresses stop codon readthrough. Moreover, protein aggregates increased in cells lacking Q-glycosylation, indicating that Q-glycosylation contributes to proteostasis. Cryo-EM of human ribosome-tRNA complex revealed the molecular basis of codon recognition regulated by Q-glycosylations. Furthermore, zebrafish qtgal and qtman knockout lines displayed shortened body length, implying that Q-glycosylation is required for post-embryonic growth in vertebrates.


Subject(s)
RNA, Transfer , Animals , Humans , Rats , Anticodon , Cell Line , Codon , Glycosylation , Nucleoside Q/chemistry , Nucleoside Q/genetics , Nucleoside Q/metabolism , RNA, Transfer/chemistry , RNA, Transfer/metabolism , Swine , Zebrafish/metabolism , Nucleic Acid Conformation
6.
Cell ; 186(4): 693-714, 2023 02 16.
Article in English | MEDLINE | ID: mdl-36803602

ABSTRACT

Decades of research have identified genetic factors and biochemical pathways involved in neurodegenerative diseases (NDDs). We present evidence for the following eight hallmarks of NDD: pathological protein aggregation, synaptic and neuronal network dysfunction, aberrant proteostasis, cytoskeletal abnormalities, altered energy homeostasis, DNA and RNA defects, inflammation, and neuronal cell death. We describe the hallmarks, their biomarkers, and their interactions as a framework to study NDDs using a holistic approach. The framework can serve as a basis for defining pathogenic mechanisms, categorizing different NDDs based on their primary hallmarks, stratifying patients within a specific NDD, and designing multi-targeted, personalized therapies to effectively halt NDDs.


Subject(s)
Neurodegenerative Diseases , Humans , Neurodegenerative Diseases/pathology , Proteostasis , Protein Aggregation, Pathological/metabolism , Cell Death , Cytoskeleton/metabolism
7.
Annu Rev Immunol ; 33: 107-38, 2015.
Article in English | MEDLINE | ID: mdl-25493331

ABSTRACT

Immune responses occur in the midst of a variety of cellular stresses that can severely perturb endoplasmic reticulum (ER) function. The unfolded protein response is a three-pronged signaling axis dedicated to preserving ER homeostasis. In this review, we highlight many important and emerging functional roles for ER stress in immunity, focusing on how the bidirectional cross talk between immunological processes and basic cell biology leads to pleiotropic signaling outcomes and enhanced sensitivity to inflammatory stimuli. We also discuss how dysregulated ER stress responses can provoke many diseases, including autoimmunity, firmly positioning the unfolded protein response as a major therapeutic target in human disease.


Subject(s)
Endoplasmic Reticulum Stress/immunology , Immunity , Animals , Autoimmune Diseases/immunology , Autoimmune Diseases/metabolism , Autoimmunity , Cell Differentiation/immunology , Endoplasmic Reticulum/metabolism , Humans , Immune System Phenomena , Infections/etiology , Infections/metabolism , Inflammation/immunology , Inflammation/metabolism , Protein Binding , Signal Transduction , Transcription Factors/metabolism , Unfolded Protein Response
8.
Cell ; 184(8): 1990-2019, 2021 04 15.
Article in English | MEDLINE | ID: mdl-33811810

ABSTRACT

The population is aging at a rate never seen before in human history. As the number of elderly adults grows, it is imperative we expand our understanding of the underpinnings of aging biology. Human lungs are composed of a unique panoply of cell types that face ongoing chemical, mechanical, biological, immunological, and xenobiotic stress over a lifetime. Yet, we do not fully appreciate the mechanistic drivers of lung aging and why age increases the risk of parenchymal lung disease, fatal respiratory infection, and primary lung cancer. Here, we review the molecular and cellular aspects of lung aging, local stress response pathways, and how the aging process predisposes to the pathogenesis of pulmonary disease. We place these insights into context of the COVID-19 pandemic and discuss how innate and adaptive immunity within the lung is altered with age.


Subject(s)
Aging , Cellular Senescence , Lung Diseases , Lung , Adaptive Immunity , Aged , Aging/immunology , Aging/pathology , COVID-19/immunology , COVID-19/pathology , Humans , Lung/immunology , Lung/pathology , Lung Diseases/immunology , Lung Diseases/pathology , Oxidative Stress
9.
Annu Rev Cell Dev Biol ; 38: 179-218, 2022 10 06.
Article in English | MEDLINE | ID: mdl-35804477

ABSTRACT

Mitochondria are traditionally known as the powerhouse of the cell, but their functions extend far beyond energy production. They are vital in cellular and organismal pathways that direct metabolism, stress responses, immunity, and cellular fate. To accomplish these tasks, mitochondria have established networks of both intra- and extracellular communication. Intracellularly, these communication routes comprise direct contacts between mitochondria and other subcellular components as well as indirect vesicle transport of ions, metabolites, and other intracellular messengers. Extracellularly, mitochondria can induce stress responses or other cellular changes that secrete mitochondrial cytokine (mitokine) factors that can travel between tissues as well as respond to immune challenges from extracellular sources. Here we provide a current perspective on the major routes of communication for mitochondrial signaling, including their mechanisms and physiological impact. We also review the major diseases and age-related disorders associated with defects in these signaling pathways. An understanding of how mitochondrial signaling controls cellular homeostasis will bring greater insight into how dysfunctional mitochondria affect health in disease and aging.


Subject(s)
Mitochondria , Signal Transduction , Cytokines/metabolism , Homeostasis , Mitochondria/metabolism
10.
Annu Rev Biochem ; 89: 501-528, 2020 06 20.
Article in English | MEDLINE | ID: mdl-32075415

ABSTRACT

Mitochondria are essential metabolic hubs that dynamically adapt to physiological demands. More than 40 proteases residing in different compartments of mitochondria, termed mitoproteases, preserve mitochondrial proteostasis and are emerging as central regulators of mitochondrial plasticity. These multifaceted enzymes limit the accumulation of short-lived, regulatory proteins within mitochondria, modulate the activity of mitochondrial proteins by protein processing, and mediate the degradation of damaged proteins. Various signaling cascades coordinate the activity of mitoproteases to preserve mitochondrial homeostasis and ensure cell survival. Loss of mitoproteases severely impairs the functional integrity of mitochondria, is associated with aging, and causes pleiotropic diseases. Understanding the dual function of mitoproteases as regulatory and quality control enzymes will help unravel the role of mitochondrial plasticity in aging and disease.


Subject(s)
Aging/genetics , Mitochondria/genetics , Mitochondrial Proteins/chemistry , Neoplasms/genetics , Neurodegenerative Diseases/genetics , Peptide Hydrolases/chemistry , Aging/metabolism , Animals , Apoptosis/genetics , Gene Expression Regulation , Homeostasis/genetics , Humans , Lipid Metabolism/genetics , Mitochondria/enzymology , Mitochondrial Dynamics/genetics , Mitochondrial Proteins/genetics , Mitochondrial Proteins/metabolism , Mitophagy/genetics , Neoplasms/enzymology , Neoplasms/pathology , Neurodegenerative Diseases/enzymology , Neurodegenerative Diseases/pathology , Peptide Hydrolases/genetics , Peptide Hydrolases/metabolism , Phospholipids/metabolism , Proteolysis , Proteostasis/genetics
11.
Cell ; 183(1): 94-109.e23, 2020 10 01.
Article in English | MEDLINE | ID: mdl-32937105

ABSTRACT

Cardiomyocytes are subjected to the intense mechanical stress and metabolic demands of the beating heart. It is unclear whether these cells, which are long-lived and rarely renew, manage to preserve homeostasis on their own. While analyzing macrophages lodged within the healthy myocardium, we discovered that they actively took up material, including mitochondria, derived from cardiomyocytes. Cardiomyocytes ejected dysfunctional mitochondria and other cargo in dedicated membranous particles reminiscent of neural exophers, through a process driven by the cardiomyocyte's autophagy machinery that was enhanced during cardiac stress. Depletion of cardiac macrophages or deficiency in the phagocytic receptor Mertk resulted in defective elimination of mitochondria from the myocardial tissue, activation of the inflammasome, impaired autophagy, accumulation of anomalous mitochondria in cardiomyocytes, metabolic alterations, and ventricular dysfunction. Thus, we identify an immune-parenchymal pair in the murine heart that enables transfer of unfit material to preserve metabolic stability and organ function. VIDEO ABSTRACT.


Subject(s)
Macrophages/metabolism , Mitochondria/metabolism , Myocytes, Cardiac/metabolism , Aged , Animals , Apoptosis , Autophagy , Female , Heart/physiology , Homeostasis , Humans , Macrophages/physiology , Male , Mice , Mice, Inbred C57BL , Middle Aged , Mitochondria/physiology , Myocardial Infarction/metabolism , Myocardium/metabolism , Myocytes, Cardiac/physiology , Phagocytosis/physiology , Reactive Oxygen Species/metabolism , Receptor Protein-Tyrosine Kinases/metabolism , c-Mer Tyrosine Kinase/metabolism
12.
Cell ; 177(3): 751-765.e15, 2019 04 18.
Article in English | MEDLINE | ID: mdl-30955883

ABSTRACT

Maintaining proteostasis in eukaryotic protein folding involves cooperation of distinct chaperone systems. To understand how the essential ring-shaped chaperonin TRiC/CCT cooperates with the chaperone prefoldin/GIMc (PFD), we integrate cryoelectron microscopy (cryo-EM), crosslinking-mass-spectrometry and biochemical and cellular approaches to elucidate the structural and functional interplay between TRiC/CCT and PFD. We find these hetero-oligomeric chaperones associate in a defined architecture, through a conserved interface of electrostatic contacts that serves as a pivot point for a TRiC-PFD conformational cycle. PFD alternates between an open "latched" conformation and a closed "engaged" conformation that aligns the PFD-TRiC substrate binding chambers. PFD can act after TRiC bound its substrates to enhance the rate and yield of the folding reaction, suppressing non-productive reaction cycles. Disrupting the TRiC-PFD interaction in vivo is strongly deleterious, leading to accumulation of amyloid aggregates. The supra-chaperone assembly formed by PFD and TRiC is essential to prevent toxic conformations and ensure effective cellular proteostasis.


Subject(s)
Chaperonin Containing TCP-1/metabolism , Molecular Chaperones/metabolism , Proteostasis/physiology , Actins/chemistry , Actins/metabolism , Chaperonin Containing TCP-1/chemistry , Chaperonin Containing TCP-1/genetics , Cryoelectron Microscopy , Humans , Models, Molecular , Molecular Chaperones/chemistry , Molecular Chaperones/genetics , Protein Folding , Protein Structure, Quaternary , Protein Subunits/chemistry , Protein Subunits/genetics , Protein Subunits/metabolism , Recombinant Proteins/biosynthesis , Recombinant Proteins/chemistry , Recombinant Proteins/isolation & purification , Saccharomyces cerevisiae/metabolism , Static Electricity
13.
Cell ; 177(3): 737-750.e15, 2019 04 18.
Article in English | MEDLINE | ID: mdl-31002798

ABSTRACT

The proteasome mediates selective protein degradation and is dynamically regulated in response to proteotoxic challenges. SKN-1A/Nrf1, an endoplasmic reticulum (ER)-associated transcription factor that undergoes N-linked glycosylation, serves as a sensor of proteasome dysfunction and triggers compensatory upregulation of proteasome subunit genes. Here, we show that the PNG-1/NGLY1 peptide:N-glycanase edits the sequence of SKN-1A protein by converting particular N-glycosylated asparagine residues to aspartic acid. Genetically introducing aspartates at these N-glycosylation sites bypasses the requirement for PNG-1/NGLY1, showing that protein sequence editing rather than deglycosylation is key to SKN-1A function. This pathway is required to maintain sufficient proteasome expression and activity, and SKN-1A hyperactivation confers resistance to the proteotoxicity of human amyloid beta peptide. Deglycosylation-dependent protein sequence editing explains how ER-associated and cytosolic isoforms of SKN-1 perform distinct cytoprotective functions corresponding to those of mammalian Nrf1 and Nrf2. Thus, we uncover an unexpected mechanism by which N-linked glycosylation regulates protein function and proteostasis.


Subject(s)
Caenorhabditis elegans Proteins/metabolism , DNA-Binding Proteins/metabolism , Proteasome Endopeptidase Complex/metabolism , Transcription Factors/metabolism , Amino Acid Sequence , Animals , Asparagine/metabolism , Bortezomib/pharmacology , CRISPR-Cas Systems/genetics , Caenorhabditis elegans/metabolism , Caenorhabditis elegans Proteins/chemistry , Caenorhabditis elegans Proteins/genetics , DNA-Binding Proteins/chemistry , DNA-Binding Proteins/genetics , Endoplasmic Reticulum/metabolism , Gene Editing , Gene Expression Regulation/drug effects , Oxidative Stress , Proteasome Endopeptidase Complex/genetics , Protein Subunits/chemistry , Protein Subunits/genetics , Protein Subunits/metabolism , Sequence Alignment , Transcription Factors/chemistry , Transcription Factors/genetics
14.
Annu Rev Cell Dev Biol ; 36: 141-164, 2020 10 06.
Article in English | MEDLINE | ID: mdl-32886535

ABSTRACT

Mitochondrial function depends on the efficient import of proteins synthesized in the cytosol. When cells experience stress, the efficiency and faithfulness of the mitochondrial protein import machinery are compromised, leading to homeostatic imbalances and damage to the organelle. Yeast Msp1 (mitochondrial sorting of proteins 1) and mammalian ATAD1 (ATPase family AAA domain-containing 1) are orthologous AAA proteins that, fueled by ATP hydrolysis, recognize and extract mislocalized membrane proteins from the outer mitochondrial membrane. Msp1 also extracts proteins that have become stuck in the import channel. The extracted proteins are targeted for proteasome-dependent degradation or, in the case of mistargeted tail-anchored proteins, are given another chance to be routed correctly. In addition, ATAD1 is implicated in the regulation of synaptic plasticity, mediating the release of neurotransmitter receptors from postsynaptic scaffolds to allow their trafficking. Here we discuss how structural and functional specialization imparts the unique properties that allow Msp1/ATAD1 ATPases to fulfill these diverse functions and also highlight outstanding questions in the field.


Subject(s)
Adenosine Triphosphatases/metabolism , Synapses/metabolism , Animals , Humans , Mitochondria/metabolism , Mitochondrial Proteins/chemistry , Mitochondrial Proteins/metabolism , Models, Molecular
15.
Annu Rev Biochem ; 87: 105-129, 2018 06 20.
Article in English | MEDLINE | ID: mdl-29401000

ABSTRACT

Proteins are increasingly used in basic and applied biomedical research. Many proteins, however, are only marginally stable and can be expressed in limited amounts, thus hampering research and applications. Research has revealed the thermodynamic, cellular, and evolutionary principles and mechanisms that underlie marginal stability. With this growing understanding, computational stability design methods have advanced over the past two decades starting from methods that selectively addressed only some aspects of marginal stability. Current methods are more general and, by combining phylogenetic analysis with atomistic design, have shown drastic improvements in solubility, thermal stability, and aggregation resistance while maintaining the protein's primary molecular activity. Stability design is opening the way to rational engineering of improved enzymes, therapeutics, and vaccines and to the application of protein design methodology to large proteins and molecular activities that have proven challenging in the past.


Subject(s)
Proteins/chemistry , Proteins/metabolism , Animals , Directed Molecular Evolution/methods , Drug Design , Humans , Models, Molecular , Phylogeny , Protein Aggregates , Protein Engineering/methods , Protein Folding , Protein Stability , Proteins/genetics , Thermodynamics
16.
Annu Rev Biochem ; 87: 725-749, 2018 06 20.
Article in English | MEDLINE | ID: mdl-29925261

ABSTRACT

Nuclear proteins participate in diverse cellular processes, many of which are essential for cell survival and viability. To maintain optimal nuclear physiology, the cell employs the ubiquitin-proteasome system to eliminate damaged and misfolded proteins in the nucleus that could otherwise harm the cell. In this review, we highlight the current knowledge about the major ubiquitin-protein ligases involved in protein quality control degradation (PQCD) in the nucleus and how they orchestrate their functions to eliminate misfolded proteins in different nuclear subcompartments. Many human disorders are causally linked to protein misfolding in the nucleus, hence we discuss major concepts that still need to be clarified to better understand the basis of the nuclear misfolded proteins' toxic effects. Additionally, we touch upon potential strategies for manipulating nuclear PQCD pathways to ameliorate diseases associated with protein misfolding and aggregation in the nucleus.


Subject(s)
Cell Nucleus/metabolism , Nuclear Proteins/metabolism , Proteolysis , Aging/metabolism , Humans , Metabolic Networks and Pathways , Models, Biological , Neoplasms/metabolism , Nuclear Envelope/metabolism , Proteasome Endopeptidase Complex/metabolism , Protein Aggregation, Pathological/metabolism , Protein Biosynthesis , Protein Folding , Proteostasis Deficiencies/metabolism , Saccharomyces cerevisiae/metabolism , Stress, Physiological , Substrate Specificity , Ubiquitin-Protein Ligases/metabolism
17.
Cell ; 173(1): 260-274.e25, 2018 03 22.
Article in English | MEDLINE | ID: mdl-29551266

ABSTRACT

Protein degradation plays important roles in biological processes and is tightly regulated. Further, targeted proteolysis is an emerging research tool and therapeutic strategy. However, proteome-wide technologies to investigate the causes and consequences of protein degradation in biological systems are lacking. We developed "multiplexed proteome dynamics profiling" (mPDP), a mass-spectrometry-based approach combining dynamic-SILAC labeling with isobaric mass tagging for multiplexed analysis of protein degradation and synthesis. In three proof-of-concept studies, we uncover different responses induced by the bromodomain inhibitor JQ1 versus a JQ1 proteolysis targeting chimera; we elucidate distinct modes of action of estrogen receptor modulators; and we comprehensively classify HSP90 clients based on their requirement for HSP90 constitutively or during synthesis, demonstrating that constitutive HSP90 clients have lower thermal stability than non-clients, have higher affinity for the chaperone, vary between cell types, and change upon external stimuli. These findings highlight the potential of mPDP to identify dynamically controlled degradation mechanisms in cellular systems.


Subject(s)
HSP90 Heat-Shock Proteins/metabolism , Proteome/analysis , Proteomics/methods , Azepines/chemistry , Azepines/metabolism , Azepines/pharmacology , Cell Line , Chromatography, High Pressure Liquid , Cluster Analysis , Estradiol/pharmacology , Humans , Isotope Labeling , Jurkat Cells , MCF-7 Cells , Neoplasm Proteins/metabolism , Proteins/antagonists & inhibitors , Proteins/metabolism , Proteolysis/drug effects , Receptors, Estrogen/metabolism , Tandem Mass Spectrometry , Triazoles/chemistry , Triazoles/metabolism , Triazoles/pharmacology
18.
Cell ; 174(5): 1216-1228.e19, 2018 08 23.
Article in English | MEDLINE | ID: mdl-30057111

ABSTRACT

Protein phosphorylation is a prevalent and ubiquitous mechanism of regulation. Kinases are popular drug targets, but identifying selective phosphatase inhibitors has been challenging. Here, we used surface plasmon resonance to design a method to enable target-based discovery of selective serine/threonine phosphatase inhibitors. The method targeted a regulatory subunit of protein phosphatase 1, PPP1R15B (R15B), a negative regulator of proteostasis. This yielded Raphin1, a selective inhibitor of R15B. In cells, Raphin1 caused a rapid and transient accumulation of its phosphorylated substrate, resulting in a transient attenuation of protein synthesis. In vitro, Raphin1 inhibits the recombinant R15B-PP1c holoenzyme, but not the closely related R15A-PP1c, by interfering with substrate recruitment. Raphin1 was orally bioavailable, crossed the blood-brain barrier, and demonstrated efficacy in a mouse model of Huntington's disease. This identifies R15B as a druggable target and provides a platform for target-based discovery of inhibitors of serine/threonine phosphatases.


Subject(s)
Blood-Brain Barrier/drug effects , Enzyme Inhibitors/pharmacology , Guanidines/pharmacology , Protein Phosphatase 1/antagonists & inhibitors , Animals , Body Weight , Disease Models, Animal , Drug Discovery , Female , Guanidines/chemistry , HeLa Cells , Humans , Huntington Disease/metabolism , Male , Maze Learning , Mice , Mice, Inbred C57BL , Phosphorylation , Protein Phosphatase 1/metabolism , Protein Subunits/antagonists & inhibitors , Proteostasis , Recombinant Proteins/pharmacology , Surface Plasmon Resonance
19.
Annu Rev Biochem ; 86: 97-122, 2017 06 20.
Article in English | MEDLINE | ID: mdl-28489421

ABSTRACT

A healthy proteome is essential for cell survival. Protein misfolding is linked to a rapidly expanding list of human diseases, ranging from neurodegenerative diseases to aging and cancer. Many of these diseases are characterized by the accumulation of misfolded proteins in intra- and extracellular inclusions, such as amyloid plaques. The clear link between protein misfolding and disease highlights the need to better understand the elaborate machinery that manages proteome homeostasis, or proteostasis, in the cell. Proteostasis depends on a network of molecular chaperones and clearance pathways involved in the recognition, refolding, and/or clearance of aberrant proteins. Recent studies reveal that an integral part of the cellular management of misfolded proteins is their spatial sequestration into several defined compartments. Here, we review the properties, function, and formation of these compartments. Spatial sequestration plays a central role in protein quality control and cellular fitness and represents a critical link to the pathogenesis of protein aggregation-linked diseases.


Subject(s)
Aging/metabolism , Molecular Chaperones/metabolism , Neurodegenerative Diseases/metabolism , Protein Aggregation, Pathological/metabolism , Proteostasis Deficiencies/metabolism , Aging/genetics , Aging/pathology , Amyloidogenic Proteins/chemistry , Amyloidogenic Proteins/genetics , Amyloidogenic Proteins/metabolism , Cell Compartmentation , Gene Expression Regulation , Humans , Molecular Chaperones/genetics , Neurodegenerative Diseases/genetics , Neurodegenerative Diseases/pathology , Prion Proteins/chemistry , Prion Proteins/genetics , Prion Proteins/metabolism , Protein Aggregation, Pathological/genetics , Protein Aggregation, Pathological/pathology , Protein Biosynthesis , Protein Conformation , Protein Folding , Protein Refolding , Proteolysis , Proteostasis Deficiencies/genetics , Proteostasis Deficiencies/pathology
20.
Annu Rev Biochem ; 86: 21-26, 2017 06 20.
Article in English | MEDLINE | ID: mdl-28441058

ABSTRACT

The majority of protein molecules must fold into defined three-dimensional structures to acquire functional activity. However, protein chains can adopt a multitude of conformational states, and their biologically active conformation is often only marginally stable. Metastable proteins tend to populate misfolded species that are prone to forming toxic aggregates, including soluble oligomers and fibrillar amyloid deposits, which are linked with neurodegeneration in Alzheimer and Parkinson disease, and many other pathologies. To prevent or regulate protein aggregation, all cells contain an extensive protein homeostasis (or proteostasis) network comprising molecular chaperones and other factors. These defense systems tend to decline during aging, facilitating the manifestation of aggregate deposition diseases. This volume of the Annual Review of Biochemistry contains a set of three articles addressing our current understanding of the structures of pathological protein aggregates and their associated disease mechanisms. These articles also discuss recent insights into the strategies cells have evolved to neutralize toxic aggregates by sequestering them in specific cellular locations.


Subject(s)
Aging/metabolism , Alzheimer Disease/metabolism , Parkinson Disease/metabolism , Protein Aggregation, Pathological/metabolism , Proteostasis Deficiencies/metabolism , Aging/genetics , Aging/pathology , Alzheimer Disease/genetics , Alzheimer Disease/pathology , Amyloid/chemistry , Amyloid/genetics , Amyloid/metabolism , Gene Expression Regulation , Humans , Molecular Chaperones/genetics , Molecular Chaperones/metabolism , Parkinson Disease/genetics , Parkinson Disease/pathology , Protein Aggregation, Pathological/genetics , Protein Aggregation, Pathological/pathology , Protein Conformation , Protein Folding , Proteostasis Deficiencies/genetics , Proteostasis Deficiencies/pathology
SELECTION OF CITATIONS
SEARCH DETAIL