Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 9.701
Filter
Add more filters

Publication year range
1.
Cell ; 183(6): 1699-1713.e13, 2020 12 10.
Article in English | MEDLINE | ID: mdl-33188775

ABSTRACT

To elucidate the role of Tau isoforms and post-translational modification (PTM) stoichiometry in Alzheimer's disease (AD), we generated a high-resolution quantitative proteomics map of 95 PTMs on multiple isoforms of Tau isolated from postmortem human tissue from 49 AD and 42 control subjects. Although Tau PTM maps reveal heterogeneity across subjects, a subset of PTMs display high occupancy and frequency for AD, suggesting importance in disease. Unsupervised analyses indicate that PTMs occur in an ordered manner, leading to Tau aggregation. The processive addition and minimal set of PTMs associated with seeding activity was further defined by analysis of size-fractionated Tau. To summarize, features in the Tau protein critical for disease intervention at different stages of disease are identified, including enrichment of 0N and 4R isoforms, underrepresentation of the C terminus, an increase in negative charge in the proline-rich region (PRR), and a decrease in positive charge in the microtubule binding domain (MBD).


Subject(s)
Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Protein Processing, Post-Translational , tau Proteins/metabolism , Case-Control Studies , Cohort Studies , Disease Progression , Humans , Principal Component Analysis , Protein Isoforms/metabolism
2.
Mol Cell ; 78(5): 960-974.e11, 2020 06 04.
Article in English | MEDLINE | ID: mdl-32330456

ABSTRACT

Dynamic cellular processes such as differentiation are driven by changes in the abundances of transcription factors (TFs). However, despite years of studies, our knowledge about the protein copy number of TFs in the nucleus is limited. Here, by determining the absolute abundances of 103 TFs and co-factors during the course of human erythropoiesis, we provide a dynamic and quantitative scale for TFs in the nucleus. Furthermore, we establish the first gene regulatory network of cell fate commitment that integrates temporal protein stoichiometry data with mRNA measurements. The model revealed quantitative imbalances in TFs' cross-antagonistic relationships that underlie lineage determination. Finally, we made the surprising discovery that, in the nucleus, co-repressors are dramatically more abundant than co-activators at the protein level, but not at the RNA level, with profound implications for understanding transcriptional regulation. These analyses provide a unique quantitative framework to understand transcriptional regulation of cell differentiation in a dynamic context.


Subject(s)
Erythropoiesis/genetics , Gene Regulatory Networks/genetics , Transcription Factors/genetics , Databases, Factual , Gene Expression Regulation/genetics , Hematopoiesis/genetics , Humans , Proteomics/methods , Transcription Factors/analysis , Transcription Factors/metabolism
3.
Trends Genet ; 40(3): 276-290, 2024 03.
Article in English | MEDLINE | ID: mdl-38123442

ABSTRACT

In the past decade tRNA sequencing (tRNA-seq) has attracted considerable attention as an important tool for the development of novel approaches to quantify highly modified tRNA species and to propel tRNA research aimed at understanding the cellular physiology and disease and development of tRNA-based therapeutics. Many methods are available to quantify tRNA abundance while accounting for modifications and tRNA charging/acylation. Advances in both library preparation methods and bioinformatic workflows have enabled developments in next-generation sequencing (NGS) workflows. Other approaches forgo NGS applications in favor of hybridization-based approaches. In this review we provide a brief comparative overview of various tRNA quantification approaches, focusing on the advantages and disadvantages of these methods, which together facilitate reliable tRNA quantification.


Subject(s)
High-Throughput Nucleotide Sequencing , RNA, Transfer , RNA, Transfer/genetics , High-Throughput Nucleotide Sequencing/methods , Computational Biology , Transfer RNA Aminoacylation
4.
Trends Genet ; 39(12): 897-907, 2023 12.
Article in English | MEDLINE | ID: mdl-37839990

ABSTRACT

Numerous circular RNAs (circRNAs) produced from back-splicing of exon(s) have been recently revealed on a genome-wide scale across species. Although generally expressed at a low level, some relatively abundant circRNAs can play regulatory roles in various biological processes, prompting continuous profiling of circRNA in broader conditions. Over the past decade, distinct strategies have been applied in both transcriptome enrichment and bioinformatic tools for detecting and quantifying circRNAs. Understanding the scope and limitations of these strategies is crucial for the subsequent annotation and characterization of circRNAs, especially those with functional potential. Here, we provide an overview of different transcriptome enrichment, deep sequencing and computational approaches for genome-wide circRNA identification, and discuss strategies for accurate quantification and characterization of circRNA.


Subject(s)
RNA, Circular , RNA , RNA, Circular/genetics , RNA/genetics , Transcriptome , Computational Biology , Genome/genetics
5.
Brief Bioinform ; 25(3)2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38701418

ABSTRACT

Coverage quantification is required in many sequencing datasets within the field of genomics research. However, most existing tools fail to provide comprehensive statistical results and exhibit limited performance gains from multithreading. Here, we present PanDepth, an ultra-fast and efficient tool for calculating coverage and depth from sequencing alignments. PanDepth outperforms other tools in computation time and memory efficiency for both BAM and CRAM-format alignment files from sequencing data, regardless of read length. It employs chromosome parallel computation and optimized data structures, resulting in ultrafast computation speeds and memory efficiency. It accepts sorted or unsorted BAM and CRAM-format alignment files as well as GTF, GFF and BED-formatted interval files or a specific window size. When provided with a reference genome sequence and the option to enable GC content calculation, PanDepth includes GC content statistics, enhancing the accuracy and reliability of copy number variation analysis. Overall, PanDepth is a powerful tool that accelerates scientific discovery in genomics research.


Subject(s)
Genomics , Software , Genomics/methods , Humans , Sequence Analysis, DNA/methods , High-Throughput Nucleotide Sequencing/methods , Base Composition , DNA Copy Number Variations , Computational Biology/methods , Algorithms , Sequence Alignment/methods
6.
Brief Bioinform ; 25(2)2024 Jan 22.
Article in English | MEDLINE | ID: mdl-38271484

ABSTRACT

Accurate approaches for quantifying muscle fibers are essential in biomedical research and meat production. In this study, we address the limitations of existing approaches for hematoxylin and eosin-stained muscle fibers by manually and semiautomatically labeling over 660 000 muscle fibers to create a large dataset. Subsequently, an automated image segmentation and quantification tool named MyoV is designed using mask regions with convolutional neural networks and a residual network and feature pyramid network as the backbone network. This design enables the tool to allow muscle fiber processing with different sizes and ages. MyoV, which achieves impressive detection rates of 0.93-0.96 and precision levels of 0.91-0.97, exhibits a superior performance in quantification, surpassing both manual methods and commonly employed algorithms and software, particularly for whole slide images (WSIs). Moreover, MyoV is proven as a powerful and suitable tool for various species with different muscle development, including mice, which are a crucial model for muscle disease diagnosis, and agricultural animals, which are a significant meat source for humans. Finally, we integrate this tool into visualization software with functions, such as segmentation, area determination and automatic labeling, allowing seamless processing for over 400 000 muscle fibers within a WSI, eliminating the model adjustment and providing researchers with an easy-to-use visual interface to browse functional options and realize muscle fiber quantification from WSIs.


Subject(s)
Deep Learning , Humans , Animals , Mice , Image Processing, Computer-Assisted/methods , Muscle Fibers, Skeletal , Neural Networks, Computer , Algorithms
7.
Brief Bioinform ; 25(3)2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38555473

ABSTRACT

Digital PCR (dPCR) is a highly accurate technique for the quantification of target nucleic acid(s). It has shown great potential in clinical applications, like tumor liquid biopsy and validation of biomarkers. Accurate classification of partitions based on end-point fluorescence intensities is crucial to avoid biased estimators of the concentration of the target molecules. We have evaluated many clustering methods, from general-purpose methods to specific methods for dPCR and flowcytometry, on both simulated and real-life data. Clustering method performance was evaluated by simulating various scenarios. Based on our extensive comparison of clustering methods, we describe the limits of these methods, and formulate guidelines for choosing an appropriate method. In addition, we have developed a novel method for simulating realistic dPCR data. The method is based on a mixture distribution of a Poisson point process and a skew-$t$ distribution, which enables the generation of irregularities of cluster shapes and randomness of partitions between clusters ('rain') as commonly observed in dPCR data. Users can fine-tune the model parameters and generate labeled datasets, using their own data as a template. Besides, the database of experimental dPCR data augmented with the labeled simulated data can serve as training and testing data for new clustering methods. The simulation method is available as an R Shiny app.


Subject(s)
Neoplasms , Nucleic Acids , Humans , Polymerase Chain Reaction/methods , Benchmarking , Liquid Biopsy
8.
Mol Cell ; 71(6): 1092-1104.e5, 2018 09 20.
Article in English | MEDLINE | ID: mdl-30174291

ABSTRACT

Activation of class I phosphatidylinositol 3-kinase (PI3K) leads to formation of phosphatidylinositol-3,4,5-trisphophate (PIP3) and phosphatidylinositol-3,4-bisphophate (PI34P2), which spatiotemporally coordinate and regulate a myriad of cellular processes. By simultaneous quantitative imaging of PIP3 and PI34P2 in live cells, we here show that they have a distinctively different spatiotemporal distribution and history in response to growth factor stimulation, which allows them to selectively induce the membrane recruitment and activation of Akt isoforms. PI34P2 selectively activates Akt2 at both the plasma membrane and early endosomes, whereas PIP3 selectively stimulates Akt1 and Akt3 exclusively at the plasma membrane. These spatiotemporally distinct activation patterns of Akt isoforms provide a mechanism for their differential regulation of downstream signaling molecules. Collectively, our studies show that different spatiotemporal dynamics of PIP3 and PI34P2 and their ability to selectively activate key signaling proteins allow them to mediate class I PI3K signaling pathways in a spatiotemporally specific manner.


Subject(s)
Optical Imaging/methods , Phosphatidylinositol Phosphates/physiology , Single Molecule Imaging/methods , Animals , Cell Line , Cell Membrane , Humans , Inositol Phosphates , Mice , Phosphatidylinositol 3-Kinases/metabolism , Phosphatidylinositol 3-Kinases/physiology , Phosphatidylinositol Phosphates/metabolism , Phosphatidylinositols , Protein Isoforms , Protein Transport , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction
9.
Genet Epidemiol ; 2024 Apr 21.
Article in English | MEDLINE | ID: mdl-38644517

ABSTRACT

The genome-wide association studies (GWAS) typically use linear or logistic regression models to identify associations between phenotypes (traits) and genotypes (genetic variants) of interest. However, the use of regression with the additive assumption has potential limitations. First, the normality assumption of residuals is the one that is rarely seen in practice, and deviation from normality increases the Type-I error rate. Second, building a model based on such an assumption ignores genetic structures, like, dominant, recessive, and protective-risk cases. Ignoring genetic variants may result in spurious conclusions about the associations between a variant and a trait. We propose an assumption-free model built upon data-consistent inversion (DCI), which is a recently developed measure-theoretic framework utilized for uncertainty quantification. This proposed DCI-derived model builds a nonparametric distribution on model inputs that propagates to the distribution of observed data without the required normality assumption of residuals in the regression model. This characteristic enables the proposed DCI-derived model to cover all genetic variants without emphasizing on additivity of the classic-GWAS model. Simulations and a replication GWAS with data from the COPDGene demonstrate the ability of this model to control the Type-I error rate at least as well as the classic-GWAS (additive linear model) approach while having similar or greater power to discover variants in different genetic modes of transmission.

10.
J Biol Chem ; 300(3): 105676, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38278326

ABSTRACT

Infectious diseases are one of the world's leading causes of morbidity. Their rapid spread emphasizes the need for accurate and fast diagnostic methods for large-scale screening. Here, we describe a robust method for the detection of pathogens based on microscale thermophoresis (MST). The method involves the hybridization of a fluorescently labeled DNA probe to a target RNA and the assessment of thermophoretic migration of the resulting complex in solution within a 2 to 30-time window. We found that the thermophoretic migration of the nucleic acid-based probes is primarily determined by the fluorescent molecule used, rather than the nucleic acid sequence of the probe. Furthermore, a panel of uniformly labeled probes that bind to the same target RNA yields a more responsive detection pattern than a single probe, and moreover, can be used for the detection of specific pathogen variants. In addition, intercalating agents (ICA) can be used to alter migration directionality to improve detection sensitivity and resolving power by several orders of magnitude. We show that this approach can rapidly diagnose viral SARS-CoV2, influenza H1N1, artificial pathogen targets, and bacterial infections. Furthermore, it can be used for anti-microbial resistance testing within 2 h, demonstrating its diagnostic potential for early pathogen detection.


Subject(s)
High-Throughput Screening Assays , Microbiological Techniques , Molecular Diagnostic Techniques , Nucleic Acid Hybridization , RNA , DNA Probes , Influenza A Virus, H1N1 Subtype/genetics , Influenza A Virus, H1N1 Subtype/isolation & purification , Molecular Diagnostic Techniques/methods , Molecular Diagnostic Techniques/standards , Microbiological Techniques/methods , Microbiological Techniques/standards , High-Throughput Screening Assays/methods , High-Throughput Screening Assays/standards , RNA/analysis , SARS-CoV-2/genetics , SARS-CoV-2/isolation & purification , Virus Diseases/diagnosis , Bacterial Infections/diagnosis , Cell Line, Tumor , Humans
11.
Development ; 149(3)2022 02 01.
Article in English | MEDLINE | ID: mdl-35005771

ABSTRACT

Zebrafish transgenic lines and light sheet fluorescence microscopy allow in-depth insights into three-dimensional vascular development in vivo. However, quantification of the zebrafish cerebral vasculature in 3D remains highly challenging. Here, we describe and test an image analysis workflow for 3D quantification of the total or regional zebrafish brain vasculature, called zebrafish vasculature quantification (ZVQ). It provides the first landmark- or object-based vascular inter-sample registration of the zebrafish cerebral vasculature, producing population average maps allowing rapid assessment of intra- and inter-group vascular anatomy. ZVQ also extracts a range of quantitative vascular parameters from a user-specified region of interest, including volume, surface area, density, branching points, length, radius and complexity. Application of ZVQ to 13 experimental conditions, including embryonic development, pharmacological manipulations and morpholino-induced gene knockdown, shows that ZVQ is robust, allows extraction of biologically relevant information and quantification of vascular alteration, and can provide novel insights into vascular biology. To allow dissemination, the code for quantification, a graphical user interface and workflow documentation are provided. Together, ZVQ provides the first open-source quantitative approach to assess the 3D cerebrovascular architecture in zebrafish.


Subject(s)
Cerebral Veins/diagnostic imaging , Imaging, Three-Dimensional/methods , Zebrafish/growth & development , Animals , Animals, Genetically Modified/growth & development , Automation , Brain/blood supply , Cluster Analysis , Embryo, Nonmammalian/blood supply , Embryonic Development , Image Processing, Computer-Assisted , User-Computer Interface
12.
Biostatistics ; 25(2): 559-576, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-37040757

ABSTRACT

Differential transcript usage (DTU) occurs when the relative expression of multiple transcripts arising from the same gene changes between different conditions. Existing approaches to detect DTU often rely on computational procedures that can have speed and scalability issues as the number of samples increases. Here we propose a new method, CompDTU, that uses compositional regression to model the relative abundance proportions of each transcript that are of interest in DTU analyses. This procedure leverages fast matrix-based computations that make it ideally suited for DTU analysis with larger sample sizes. This method also allows for the testing of and adjustment for multiple categorical or continuous covariates. Additionally, many existing approaches for DTU ignore quantification uncertainty in the expression estimates for each transcript in RNA-seq data. We extend our CompDTU method to incorporate quantification uncertainty leveraging common output from RNA-seq expression quantification tool in a novel method CompDTUme. Through several power analyses, we show that CompDTU has excellent sensitivity and reduces false positive results relative to existing methods. Additionally, CompDTUme results in further improvements in performance over CompDTU with sufficient sample size for genes with high levels of quantification uncertainty, while also maintaining favorable speed and scalability. We motivate our methods using data from the Cancer Genome Atlas Breast Invasive Carcinoma data set, specifically using RNA-seq data from primary tumors for 740 patients with breast cancer. We show greatly reduced computation time from our new methods as well as the ability to detect several novel genes with significant DTU across different breast cancer subtypes.


Subject(s)
Breast Neoplasms , Gene Expression Profiling , Humans , Female , Uncertainty , Sequence Analysis, RNA/methods , Genome , Breast Neoplasms/genetics
13.
RNA ; 29(6): 777-789, 2023 06.
Article in English | MEDLINE | ID: mdl-36810234

ABSTRACT

N6-methyladenosine (m6A) in mRNA regulates almost every stage in the mRNA life cycle, and the development of methodologies for the high-throughput detection of methylated sites in mRNA using m6A-specific methylated RNA immunoprecipitation with next-generation sequencing (MeRIPSeq) or m6A individual-nucleotide-resolution cross-linking and immunoprecipitation (miCLIP) have revolutionized the m6A research field. Both of these methods are based on immunoprecipitation of fragmented mRNA. However, it is well documented that antibodies often have nonspecific activities, thus verification of identified m6A sites using an antibody-independent method would be highly desirable. We mapped and quantified the m6A site in the chicken ß-actin zipcode based on the data from chicken embryo MeRIPSeq results and our RNA-Epimodification Detection and Base-Recognition (RedBaron) antibody-independent assay. We also demonstrated that methylation of this site in the ß-actin zipcode enhances ZBP1 binding in vitro, while methylation of a nearby adenosine abolishes binding. This suggests that m6A may play a role in regulating localized translation of ß-actin mRNA, and the ability of m6A to enhance or inhibit a reader protein's RNA binding highlights the importance of m6A detection at nucleotide resolution.


Subject(s)
Actins , Chickens , Animals , Chick Embryo , RNA, Messenger/genetics , RNA, Messenger/metabolism , Actins/genetics , Chickens/genetics , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , RNA/metabolism , Antibodies , Nucleotides/metabolism
14.
Brief Bioinform ; 24(5)2023 09 20.
Article in English | MEDLINE | ID: mdl-37595963

ABSTRACT

Alignment-based RNA-seq quantification methods typically involve a time-consuming alignment process prior to estimating transcript abundances. In contrast, alignment-free RNA-seq quantification methods bypass this step, resulting in significant speed improvements. Existing alignment-free methods rely on the Expectation-Maximization (EM) algorithm for estimating transcript abundances. However, EM algorithms only guarantee locally optimal solutions, leaving room for further accuracy improvement by finding a globally optimal solution. In this study, we present TQSLE, the first alignment-free RNA-seq quantification method that provides a globally optimal solution for transcript abundances estimation. TQSLE adopts a two-step approach: first, it constructs a k-mer frequency matrix A for the reference transcriptome and a k-mer frequency vector b for the RNA-seq reads; then, it directly estimates transcript abundances by solving the linear equation ATAx = ATb. We evaluated the performance of TQSLE using simulated and real RNA-seq data sets and observed that, despite comparable speed to other alignment-free methods, TQSLE outperforms them in terms of accuracy. TQSLE is freely available at https://github.com/yhg926/TQSLE.


Subject(s)
Algorithms , Transcriptome , RNA-Seq , Sequence Analysis, RNA/methods , Software , Gene Expression Profiling/methods
15.
Brief Bioinform ; 24(1)2023 01 19.
Article in English | MEDLINE | ID: mdl-36403090

ABSTRACT

The label-free quantification (LFQ) has emerged as an exceptional technique in proteomics owing to its broad proteome coverage, great dynamic ranges and enhanced analytical reproducibility. Due to the extreme difficulty lying in an in-depth quantification, the LFQ chains incorporating a variety of transformation, pretreatment and imputation methods are required and constructed. However, it remains challenging to determine the well-performing chain, owing to its strong dependence on the studied data and the diverse possibility of integrated chains. In this study, an R package EVALFQ was therefore constructed to enable a performance evaluation on >3000 LFQ chains. This package is unique in (a) automatically evaluating the performance using multiple criteria, (b) exploring the quantification accuracy based on spiking proteins and (c) discovering the well-performing chains by comprehensive assessment. All in all, because of its superiority in assessing from multiple perspectives and scanning among over 3000 chains, this package is expected to attract broad interests from the fields of proteomic quantification. The package is available at https://github.com/idrblab/EVALFQ.


Subject(s)
Proteome , Proteomics , Proteome/metabolism , Proteomics/methods , Reproducibility of Results
16.
Brief Bioinform ; 24(6)2023 09 22.
Article in English | MEDLINE | ID: mdl-37985456

ABSTRACT

Blood-brain barrier penetrating peptides (BBBPs) are short peptide sequences that possess the ability to traverse the selective blood-brain interface, making them valuable drug candidates or carriers for various payloads. However, the in vivo or in vitro validation of BBBPs is resource-intensive and time-consuming, driving the need for accurate in silico prediction methods. Unfortunately, the scarcity of experimentally validated BBBPs hinders the efficacy of current machine-learning approaches in generating reliable predictions. In this paper, we present DeepB3P3, a novel framework for BBBPs prediction. Our contribution encompasses four key aspects. Firstly, we propose a novel deep learning model consisting of a transformer encoder layer, a convolutional network backbone, and a capsule network classification head. This integrated architecture effectively learns representative features from peptide sequences. Secondly, we introduce masked peptides as a powerful data augmentation technique to compensate for small training set sizes in BBBP prediction. Thirdly, we develop a novel threshold-tuning method to handle imbalanced data by approximating the optimal decision threshold using the training set. Lastly, DeepB3P3 provides an accurate estimation of the uncertainty level associated with each prediction. Through extensive experiments, we demonstrate that DeepB3P3 achieves state-of-the-art accuracy of up to 98.31% on a benchmarking dataset, solidifying its potential as a promising computational tool for the prediction and discovery of BBBPs.


Subject(s)
Blood-Brain Barrier , Peptides , Machine Learning , Amino Acid Sequence , Computational Biology/methods
17.
FASEB J ; 38(13): e23766, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38967214

ABSTRACT

Dysbiosis of gut microbiota may account for pathobiology in simple fatty liver (SFL), metabolic dysfunction-associated steatohepatitis (MASH), fibrotic progression, and transformation to MASH-associated hepatocellular carcinoma (MASH-HCC). The aim of the present study is to investigate gut dysbiosis in this progression. Fecal microbial rRNA-16S sequencing, absolute quantification, histopathologic, and biochemical tests were performed in mice fed high fat/calorie diet plus high fructose and glucose in drinking water (HFCD-HF/G) or control diet (CD) for 2, 16 weeks, or 14 months. Histopathologic examination verified an early stage of SFL, MASH, fibrotic, or MASH-HCC progression with disturbance of lipid metabolism, liver injury, and impaired gut mucosal barrier as indicated by loss of occludin in ileum mucosa. Gut dysbiosis occurred as early as 2 weeks with reduced α diversity, expansion of Kineothrix, Lactococcus, Akkermansia; and shrinkage in Bifidobacterium, Lactobacillus, etc., at a genus level. Dysbiosis was found as early as MAHS initiation, and was much more profound through the MASH-fibrotic and oncogenic progression. Moreover, the expansion of specific species, such as Lactobacillus johnsonii and Kineothrix alysoides, was confirmed by an optimized method for absolute quantification. Dynamic alterations of gut microbiota were characterized in three stages of early SFL, MASH, and its HCC transformation. The findings suggest that the extent of dysbiosis was accompanied with MASH progression and its transformation to HCC, and the shrinking or emerging of specific microbial species may account at least in part for pathologic, metabolic, and immunologic alterations in fibrogenic progression and malignant transition in the liver.


Subject(s)
Carcinoma, Hepatocellular , Dysbiosis , Gastrointestinal Microbiome , Liver Neoplasms , Mice, Inbred C57BL , Animals , Mice , Carcinoma, Hepatocellular/metabolism , Carcinoma, Hepatocellular/microbiology , Carcinoma, Hepatocellular/pathology , Carcinoma, Hepatocellular/etiology , Liver Neoplasms/metabolism , Liver Neoplasms/pathology , Liver Neoplasms/microbiology , Liver Neoplasms/etiology , Dysbiosis/microbiology , Male , Fatty Liver/metabolism , Fatty Liver/pathology , Fatty Liver/microbiology , Diet, High-Fat/adverse effects , Disease Models, Animal , Disease Progression , Lipid Metabolism , Liver/metabolism , Liver/pathology
18.
Methods ; 225: 74-88, 2024 May.
Article in English | MEDLINE | ID: mdl-38493931

ABSTRACT

Computational modeling and simulation (CM&S) is a key tool in medical device design, development, and regulatory approval. For example, finite element analysis (FEA) is widely used to understand the mechanical integrity and durability of orthopaedic implants. The ASME V&V 40 standard and supporting FDA guidance provide a framework for establishing model credibility, enabling deeper reliance on CM&S throughout the total product lifecycle. Examples of how to apply the principles outlined in the ASME V&V 40 standard are important to facilitating greater adoption by the medical device community, but few published examples are available that demonstrate best practices. Therefore, this paper outlines an end-to-end (E2E) example of the ASME V&V 40 standard applied to an orthopaedic implant. The objective of this study was to illustrate how to establish the credibility of a computational model intended for use as part of regulatory evaluation. In particular, this study focused on whether a design change to a spinal pedicle screw construct (specifically, the addition of a cannulation to an existing non-cannulated pedicle screw) would compromise the rod-screw construct mechanical performance. This question of interest (?OI) was addressed by establishing model credibility requirements according to the ASME V&V 40 standard. Experimental testing to support model validation was performed using spinal rods and non-cannulated pedicle screw constructs made with medical grade titanium (Ti-6Al-4V ELI). FEA replicating the experimental tests was performed by three independent modelers and validated through comparisons of common mechanical properties such as stiffness and yield force. The validated model was then used to simulate F1717 compression-bending testing on the new cannulated pedicle screw design to answer the ?OI, without performing any additional experimental testing. This E2E example provides a realistic scenario for the application of the ASME V&V 40 standard to orthopedic medical device applications.


Subject(s)
Finite Element Analysis , Pedicle Screws , Pedicle Screws/standards , Humans , Computer Simulation , Materials Testing/methods , Materials Testing/standards , Titanium/chemistry , Compressive Strength
19.
Methods ; 222: 81-99, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38185226

ABSTRACT

Many of the health-associated impacts of the microbiome are mediated by its chemical activity, producing and modifying small molecules (metabolites). Thus, microbiome metabolite quantification has a central role in efforts to elucidate and measure microbiome function. In this review, we cover general considerations when designing experiments to quantify microbiome metabolites, including sample preparation, data acquisition and data processing, since these are critical to downstream data quality. We then discuss data analysis and experimental steps to demonstrate that a given metabolite feature is of microbial origin. We further discuss techniques used to quantify common microbial metabolites, including short-chain fatty acids (SCFA), secondary bile acids (BAs), tryptophan derivatives, N-acyl amides and trimethylamine N-oxide (TMAO). Lastly, we conclude with challenges and future directions for the field.


Subject(s)
Gastrointestinal Microbiome , Microbiota , Humans , Microbiota/genetics , Fatty Acids, Volatile/metabolism , Methylamines/metabolism
20.
Cereb Cortex ; 34(2)2024 01 31.
Article in English | MEDLINE | ID: mdl-38236724

ABSTRACT

An increasing number of studies have shown that flight training alters the human brain structure; however, most studies have focused on gray matter, and the exploration of white matter structure has been largely neglected. This study aimed to investigate the changes in white matter structure induced by flight training and estimate the correlation between such changes and psychomotor and flight performance. Diffusion tensor imaging data were obtained from 25 flying cadets and 24 general college students. Data were collected in 2019 and 2022 and analyzed using automated fiber quantification. This study found no significant changes in the flight group in 2019. However, in 2022, the flight group exhibited significant alterations in the diffusion tensor imaging of the right anterior thalamic radiation, left cingulum cingulate, bilateral superior longitudinal fasciculus, and left arcuate fasciculus. These changes occurred within local nodes of the fiber tracts. In addition, we found that changes in fiber tracts in the 2022 flight group were correlated with the reaction time of the psychomotor test task and flight duration. These findings may help improve flight training programs and provide new ideas for the selection of excellent pilots.


Subject(s)
White Matter , Humans , White Matter/diagnostic imaging , Diffusion Tensor Imaging/methods , Brain/diagnostic imaging , Gray Matter , Nerve Fibers , Anisotropy
SELECTION OF CITATIONS
SEARCH DETAIL