Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 413
Filter
1.
Environ Sci Technol ; 58(24): 10415-10444, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38848315

ABSTRACT

Persulfate (PS)-based advanced oxidation processes (AOPs) for pollutant removal have attracted extensive interest, but some controversies about the identification of reactive species were usually observed. This critical review aims to comprehensively introduce basic concepts and rectify cognitive biases and appeals to pay more attention to experimental details in PS-AOPs, so as to accurately explore reaction mechanisms. The review scientifically summarizes the character, generation, and identification of different reactive species. It then highlights the complexities about the analysis of electron paramagnetic resonance, the uncertainties about the use of probes and scavengers, and the necessities about the determination of scavenger concentration. The importance of the choice of buffer solution, operating mode, terminator, and filter membrane is also emphasized. Finally, we discuss current challenges and future perspectives to alleviate the misinterpretations toward reactive species and reaction mechanisms in PS-AOPs.


Subject(s)
Oxidation-Reduction , Sulfates/chemistry
2.
Environ Res ; 252(Pt 1): 118779, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38552825

ABSTRACT

Numerous application of pyrethroid insecticides has led to their accumulation in the environment, threatening ecological environment and human health. Its fate in the presence of iron-bearing minerals and natural organic matter under light irradiation is still unknown. We found that goethite (Gt) and humic acid (HA) could improve the photodegradation of bifenthrin (BF) in proper concentration under light irradiation. The interaction between Gt and HA may further enhance BF degradation. On one hand, the adsorption of HA on Gt may decrease the photocatalytic activity of HA through decreasing HA content in solution and sequestering the functional groups related with the production of reactive species. On the other hand, HA could improve the photocatalytic activity of Gt through extending light absorption, lowing of bandgap energy, hindering the recombination of photo-generated charges, and promoting the oxidation and reduction reaction on Gt surface. The increased oxygen vacancies on Gt surface along with the reduction of trivalent iron and the nucleophilic attack of hole to surface hydroxyl group contributed to the increasing photocatalytic activity of Gt. Electron paramagnetic resonance and quenching studies demonstrated that both oxidation species, such as hydroxyl radical (•OH) and singlet oxygen (1O2), and reducing species, such as hydrogen atoms (H•) and superoxide anion radical (O2•-), contributed to BF degradation in UV-Gt-HA system. Mass spectrometry, ion chromatography, and toxicity assessment indicated that less toxic C23H22ClF3O3 (OH-BF), C9H10ClF3O (TFP), C14H14O2 (OH-MBP), C14H12O2 (MBP acid), C14H12O3 (OH-MBP acid), and chloride ions were the main degradation products. The production of OH-BF, MPB, and TFP acid through oxidation and the production of MPB and TFP via reduction were the two primary pathways of BF degradation.


Subject(s)
Humic Substances , Iron Compounds , Minerals , Oxidation-Reduction , Pyrethrins , Humic Substances/analysis , Minerals/chemistry , Iron Compounds/chemistry , Pyrethrins/chemistry , Photolysis , Insecticides/chemistry
3.
Environ Res ; 247: 118256, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38266900

ABSTRACT

Water pollution by dyes and pesticides poses significant threats to our ecosystem. In this research, a visible-light ternary composite photocatalytic system was fabricated using graphene oxide (GO) by reducing with N2H4, modifying with KOH, and decorating with Ag/V2O5. The fabricated photocatalysts were characterized through FTIR, SEM, XRD, BET, PL, EDX, ESR, UV-vis spectroscopy, TGA, ESI-MS, and Raman spectroscopy. The point zero charge of the reduced and modified GO (RMGO/Ag/V2O5) was measured to be 6.7 by the pH drift method. This ternary composite was able to achieve complete removal of methyl orange (MO) and chlorpyrifos (CP) in solutions in 80 min under the optimum operation conditions (e.g., in terms of pollutant/catalyst concentrations, pH effects, and contact time). The role of active species responsible for photocatalytic activity was confirmed by scavenger analysis and ESR investigations. The potential mechanism for photocatalytic activity was studied through a fragmentation process carried out by MS analysis. Through nonlinear fitting of the experimental data, MO and CP exhibited the best fit results with the pseudo 1st-order kinetics (quantum yields of 1.07 × 10-3 and 2.16 × 10-3 molecules photon-1 and space-time yields of 1.53 × 10-5 and 2.7 × 10-5 molecules photon-1 mg-1, respectively). The structure of the nanomaterials remained mostly intact to support increased stability and reusability of the prepared photocatalysts even after 10 successive regeneration cycles.


Subject(s)
Azo Compounds , Chlorpyrifos , Graphite , Pesticides , Coloring Agents/chemistry , Ecosystem , Light
4.
Arch Toxicol ; 98(6): 1581-1628, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38520539

ABSTRACT

Data are presented on the formation of potentially toxic metabolites of drugs that are substrates of human drug metabolizing enzymes. The tabular data lists the formation of potentially toxic/reactive products. The data were obtained from in vitro experiments and showed that the oxidative reactions predominate (with 96% of the total potential toxication reactions). Reductive reactions (e.g., reduction of nitro to amino group and reductive dehalogenation) participate to the extent of 4%. Of the enzymes, cytochrome P450 (P450, CYP) enzymes catalyzed 72% of the reactions, myeloperoxidase (MPO) 7%, flavin-containing monooxygenase (FMO) 3%, aldehyde oxidase (AOX) 4%, sulfotransferase (SULT) 5%, and a group of minor participating enzymes to the extent of 9%. Within the P450 Superfamily, P450 Subfamily 3A (P450 3A4 and 3A5) participates to the extent of 27% and the Subfamily 2C (P450 2C9 and P450 2C19) to the extent of 16%, together catalyzing 43% of the reactions, followed by P450 Subfamily 1A (P450 1A1 and P450 1A2) with 15%. The P450 2D6 enzyme participated in an extent of 8%, P450 2E1 in 10%, and P450 2B6 in 6% of the reactions. All other enzymes participate to the extent of 14%. The data show that, of the human enzymes analyzed, P450 enzymes were dominant in catalyzing potential toxication reactions of drugs and their metabolites, with the major role assigned to the P450 Subfamily 3A and significant participation of the P450 Subfamilies 2C and 1A, plus the 2D6, 2E1 and 2B6 enzymes contributing. Selected examples of drugs that are activated or proposed to form toxic species are discussed.


Subject(s)
Cytochrome P-450 Enzyme System , Humans , Cytochrome P-450 Enzyme System/metabolism , Pharmaceutical Preparations/metabolism , Sulfotransferases/metabolism , Oxidation-Reduction , Aldehyde Oxidase/metabolism , Peroxidase/metabolism , Oxygenases
5.
Physiol Mol Biol Plants ; 30(5): 807-822, 2024 May.
Article in English | MEDLINE | ID: mdl-38846465

ABSTRACT

Polyamines play an important role in growth and differentiation by regulating numerous physiological and biochemical processes at the cellular level. In addition to their roborative effect, their essential role in plant stress responses has been also reported. However, the positive effect may depend on the fine-tuning of polyamine metabolism, which influences the production of free radicals and/or signalling molecules. In the present study, 0.3 mM hydroponic putrescine treatment was tested in wheat, maize, and rice in order to reveal differences in their answers and highlight the relation of these with polyamine metabolism. In the case of wheat, the chlorophyll content and the actual quantum yield increased after putrescine treatment, and no remarkable changes were detected in the stress markers, polyamine contents, or polyamine metabolism-related gene expression. Although, in maize, the actual quantum yield decreased, and the root hydrogen peroxide content increased, no other negative effect was observed after putrescine treatment due to activation of polyamine oxidases at enzyme and gene expression levels. The results also demonstrated that after putrescine treatment, rice with a higher initial polyamine content, the balance of polyamine metabolism was disrupted and a significant amount of putrescine was accumulated, accompanied by a detrimental decrease in the level of higher polyamines. These initial differences and the putrescine-induced shift in polyamine metabolism together with the terminal catabolism or back-conversion-induced release of a substantial quantity of hydrogen peroxide could contribute to oxidative stress observed in rice.

6.
J Environ Sci (China) ; 142: 103-114, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38527876

ABSTRACT

This study investigated degradation behaviors of a nonsteroidal anti-inflammatory drug Nabumetone (NMT) and its major metabolite 6-methoxy-2-naphthylacetic acid (MNA) in the coupling process of ultraviolet and monochloramine (UV/NH2Cl). The second-order rate constants of the contaminants reacting with reactive radicals (HO•, Cl•, Cl2•⁻, and CO3•⁻) were determined by laser flash photolysis experiments. HO• and Cl• contributed predominantly with 52.3% and 21.7% for NMT degradation and 60.8% and 22.3% for MNA degradation. The presence of chlorides retarded the degradation of NMT, while promoted the destruction of MNA, which was ascribed to the photosensitization effects of MNA under UV irradiation. Density functional theory (DFT) calculations revealed that radical adduct formation (RAF) was dominant pathway for both HO• and Cl• reacting with the contaminants, and hydrogen atom transfer (HAT) preferred to occur on side chains of NMT and MNA. NMT reacted with NO2• through single electron transfer (SET) with the second-order rate constant calculated to be 5.35 × 107 (mol/L)-1 sec-1, and the contribution of NO2• was predicted to be 13.0% of the total rate constant of NMT in pure water, which indicated that NO2• played a non-negligible role in the degradation of NMT. The acute toxicity and developmental toxicity of NMT were enhanced after UV/NH2Cl treatment, while those of MNA were alleviated. The transformation products of both NMT and MNA exhibited higher mutagenicity than their parent compounds. This study provides a deep understanding of the mechanism of radical degradation of NMT and MNA in the treatment of UV/NH2Cl.


Subject(s)
Chloramines , Water Pollutants, Chemical , Water Purification , Nabumetone , Nitrogen Dioxide , Water Pollutants, Chemical/analysis , Kinetics , Ultraviolet Rays , Oxidation-Reduction , Models, Theoretical , Chlorine
7.
J Environ Sci (China) ; 139: 12-22, 2024 May.
Article in English | MEDLINE | ID: mdl-38105040

ABSTRACT

Carbon nitride has been extensively used as a visible-light photocatalyst, but it has the disadvantages of a low specific surface area, rapid electron-hole recombination, and relatively low light absorbance. In this study, single-atom Ag was successfully anchored on ultrathin carbon nitride (UTCN) via thermal polymerization, the catalyst obtained is called AgUTCN. The Ag hardly changed the carbon nitride's layered and porous physical structure. AgUTCN exhibited efficient visible-light photocatalytic performances in the degradation of various recalcitrant pollutants, eliminations of 85% were achieved by visible-light irradiation for 1 hr. Doping with Ag improved the photocatalytic performance of UTCN by narrowing the forbidden band gap from 2.49 to 2.36 eV and suppressing electron-hole pair recombination. In addition, Ag doping facilitated O2 adsorption on UTCN by decreasing the adsorption energy from -0.2 to -2.22 eV and favored the formation of O2·-. Electron spin resonance and radical-quenching experiments showed that O2·- was the major reactive species in the degradation of Acetaminophen (paracetamol, APAP).


Subject(s)
Acetaminophen , Environmental Pollutants , Nitriles/chemistry , Carbon , Catalysis
8.
J Environ Sci (China) ; 139: 428-445, 2024 May.
Article in English | MEDLINE | ID: mdl-38105066

ABSTRACT

Global environmental concern over organic contaminated sites has been progressively conspicuous during the process of urbanization and industrial restructuring. While traditional physical or chemical remediation technologies may significantly destroy the soil structure and function, coupling moderate chemical degradation with microbial remediation becomes a potential way for the green, economic, and efficient remediation of contaminated sites. Hence, this work systematically elucidates why and how to couple chemical technology with microbial remediation, mainly focused on the controllable redox reactions of organic contaminants. The rational design of materials structure, selective generation of reactive oxygen species, and estimation of degradation pathway are described for chemical oxidation. Meanwhile, current progress on efficient and selective reductions of organic contaminants (i.e., dechlorination, defluorination, -NO2 reduction) is introduced. Combined with the microbial remediation of contaminated sites, several consideration factors of how to couple chemical and microbial remediation are proposed based on both fundamental and practical points of view. This review will advance the understanding and development of chemical-microbial coupled remediation for organic contaminated sites.


Subject(s)
Environmental Restoration and Remediation , Soil Pollutants , Waste Management , Oxidation-Reduction , Soil Pollutants/analysis , Soil
9.
J Environ Sci (China) ; 139: 72-83, 2024 May.
Article in English | MEDLINE | ID: mdl-38105079

ABSTRACT

Chlorine has been widely used in different advanced oxidation processes (AOPs) for micropollutants removal. In this study, different chlorine-based AOPs, namely medium pressure (MP) UV/chlorine, low pressure (LP) UV/chlorine, and in-situ chlorination, were compared for carbamazepine (CBZ) removal efficiency, energy consumption, and disinfection by-products (DBPs) formation. All three processes could achieve nearly 100% CBZ removal, while the reaction time needed by in-situ chlorination was double the time required by UV/chlorine processes. The energy consumed per magnitude of CBZ removed (EE/O) of MP UV/chlorine was 13 times higher than that of LP UV/chlorine, and relative to that of in-situ chlorination process. Accordingly, MP and LP UV/chlorine processes generated one to two orders of magnitude more hydroxyl radicals (•OH) and reactive chlorine species (RCS) than in-situ chlorination. Besides, RCS were the dominant reactive species, contributing to 78.3%, 75.6%, and 71.6% of CBZ removal in MP, LP UV/chlorine, and in-situ chlorination, respectively. According to the Gibbs free energy barriers between CBZ and RCS/•OH calculated based on density functional theory (DFT), RCS had more reaction routes with CBZ and showed lower energy barrier in the main CBZ degradation pathways like epoxidation and formation of iminostilbene. When applied to secondary wastewater effluent, UV/chlorine and in-situ chlorination produced overall DBPs ranging from 104.77 to 135.41 µg/L. However, the production of chlorate during UV/chlorine processes was 15 times higher than that during in-situ chlorination.


Subject(s)
Water Pollutants, Chemical , Water Purification , Chlorine , Disinfection , Water Pollutants, Chemical/analysis , Carbamazepine , Oxidation-Reduction , Halogenation , Chlorides , Ultraviolet Rays
10.
Am J Physiol Renal Physiol ; 325(2): F135-F149, 2023 08 01.
Article in English | MEDLINE | ID: mdl-37262088

ABSTRACT

Diabetic kidney disease (DKD) is one of the most devastating complications of diabetes mellitus, where currently there is no cure available. Several important mechanisms contribute to the pathogenesis of this complication, with oxidative stress being one of the key factors. The past decades have seen a large number of publications with various aspects of this topic; however, the specific details of redox regulation in DKD are still unclear. This is partly because redox biology is very complex, coupled with a complex and heterogeneous organ with numerous cell types. Furthermore, often times terms such as "oxidative stress" or reactive oxygen species are used as a general term to cover a wide and rich variety of reactive species and their differing reactions. However, no reactive species are the same, and not all of them are capable of biologically relevant reactions or "redox signaling." The goal of this review is to provide a biochemical background for an array of specific reactive oxygen species types with varying reactivity and specificity in the kidney as well as highlight some of the advances in redox biology that are paving the way to a better understanding of DKD development and risk.


Subject(s)
Diabetes Mellitus , Diabetic Nephropathies , Humans , Diabetic Nephropathies/metabolism , Reactive Oxygen Species/metabolism , Oxidative Stress/physiology , Kidney/metabolism , Oxidation-Reduction , Diabetes Mellitus/metabolism
11.
Metab Eng ; 80: 78-93, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37689259

ABSTRACT

Reactive species (RS) play significant roles in many disease contexts. Despite their crucial roles in diseases including cancer, the RS are not adequately modeled in the genome-scale metabolic (GSM) models, which are used to understand cell metabolism in disease contexts. We have developed a scalable RS reactions module that can be integrated with any Recon 3D-derived human metabolic model, or after fine-tuning, with any metabolic model. With RS-integration, the GSM models of three cancers (basal-like triple negative breast cancer (TNBC), high grade serous ovarian carcinoma (HGSOC) and colorectal cancer (CRC)) built from Recon 3D, precisely highlighted the increases/decreases in fluxes (dysregulation) occurring in important pathways of these cancers. These dysregulations were not prominent in the standard cancer models without the RS module. Further, the results from these RS-integrated cancer GSM models suggest the following decreasing order in the ease of ferroptosis-targeting to treat the cancers: TNBC > HGSOC > CRC.


Subject(s)
Triple Negative Breast Neoplasms , Humans , Triple Negative Breast Neoplasms/genetics , Genome
12.
Environ Sci Technol ; 57(33): 12153-12179, 2023 08 22.
Article in English | MEDLINE | ID: mdl-37535865

ABSTRACT

Urbanization and industrialization have exerted significant adverse effects on water quality, resulting in a growing need for reliable and eco-friendly treatment technologies. Persulfate (PS)-based advanced oxidation processes (AOPs) are emerging as viable technologies to treat challenging industrial wastewaters or remediate groundwater impacted by hazardous wastes. While the generated reactive species can degrade a variety of priority organic contaminants through radical and nonradical pathways, there is a lack of systematic and in-depth comparison of these pathways for practical implementation in different treatment scenarios. Our comparative analysis of reaction rate constants for radical vs. nonradical species indicates that radical-based AOPs may achieve high removal efficiency of organic contaminants with relatively short contact time. Nonradical AOPs feature advantages with minimal water matrix interference for complex wastewater treatments. Nonradical species (e.g., singlet oxygen, high-valent metals, and surface activated PS) preferentially react with contaminants bearing electron-donating groups, allowing enhancement of degradation efficiency of known target contaminants. For byproduct formation, analytical limitations and computational chemistry applications are also considered. Finally, we propose a holistically estimated electrical energy per order of reaction (EE/O) parameter and show significantly higher energy requirements for the nonradical pathways. Overall, these critical comparisons help prioritize basic research on PS-based AOPs and inform the merits and limitations of system-specific applications.


Subject(s)
Water Pollutants, Chemical , Water Purification , Water Pollutants, Chemical/analysis , Oxidation-Reduction , Wastewater , Water Purification/methods
13.
Environ Sci Technol ; 57(29): 10629-10639, 2023 07 25.
Article in English | MEDLINE | ID: mdl-36241607

ABSTRACT

In this work, the oxidation of five phenolic contaminants by ferrate(VI) was comparatively investigated to explore the possible reaction mechanisms by combined experimental results and theoretical calculations. The second-order rate constants were positively correlated with the energy of the highest occupied molecular orbital. Considering electronic effects of different substituents, the easy oxidation of phenols by ferrate(VI) could be ranked as the electron-donating group (-R) > weak electron-withdrawing group (-X) > strong electron-withdrawing group (-(C═O)-). The contributions of reactive species (Fe(VI), Fe(V)/(IV), and •OH) were determined, and Fe(VI) was found to dominate the reaction process. Four main reaction mechanisms including single-oxygen transfer (SOT), double-oxygen transfer (DOT), •OH attack, and electron-transfer-mediated coupling reaction were proposed for the ferrate(VI) oxidation process. According to density functional theory calculation results, the presence of -(C═O)- was more conducive for the occurrence of DOT and •OH attack reactions than -R and -X, while the tendency of SOT for different substituents was -R > -(C═O)- > -X and that of e--transfer reaction was -R > -X > -(C═O)-. Moreover, the DOT pathway was found in the oxidation of all four substituted phenols, indicating that it may be a common reaction mechanism during the ferrate(VI) oxidation of phenolic compounds.


Subject(s)
Environmental Pollutants , Water Pollutants, Chemical , Water Purification , Kinetics , Density Functional Theory , Oxidation-Reduction , Phenols , Oxygen , Water Purification/methods
14.
Environ Sci Technol ; 57(45): 17629-17639, 2023 11 14.
Article in English | MEDLINE | ID: mdl-37906720

ABSTRACT

This study provided an in-depth understanding of enhanced algae inactivation by combining ultraviolet and peracetic acid (UV/PAA) and selecting Microcystis aeruginosa as the target algae species. The electron paramagnetic resonance (EPR) tests and scavenging experiments provided direct evidence on the formed reactive species (RSs) and indicated the dominant role of RSs including singlet oxygen (1O2) and hydroxyl (HO•) and organic (RO•) radicals in algae inactivation. Based on the algae inactivation kinetic model and the determined steady-state concentration of RSs, the contribution of RSs was quantitatively assessed with the second-order rate constants for the inactivation of algae by HO•, RO•, and 1O2 of 2.67 × 109, 3.44 × 1010, and 1.72 × 109 M-1 s-1, respectively. Afterward, the coexisting bi/carbonate, acting as a shuttle, that promotes the transformation from HO• to RO• was evidenced to account for the better performance of the UV/PAA system in algae inactivation under the natural water background. Subsequently, along with the evaluation of the UV/PAA preoxidation to modify coagulation-sedimentation, the possible application of the UV/PAA process for algae removal was advanced.


Subject(s)
Water Pollutants, Chemical , Water Purification , Ultraviolet Rays , Peracetic Acid/pharmacology , Water , Hydrogen Peroxide , Oxidation-Reduction
15.
Environ Res ; 231(Pt 2): 116218, 2023 08 15.
Article in English | MEDLINE | ID: mdl-37224952

ABSTRACT

The accumulation of antibiotics in aquatic environments poses a serious threat to human health. Photocatalytic degradation is a promising method for removing antibiotics from water, but its practical implementation requires improvements in photocatalyst activity and recovery. Here, a novel graphite felt-supported MnS/Polypyrrole composite (MnS/PPy/GF) was constructed to achieve effective adsorption of antibiotics, stable loading of photocatalyst, and rapid separation of spatial charge. Systematic characterization of composition, structure and photoelectric properties indicated the efficient light absorption, charge separation and migration of the MnS/PPy/GF, which achieved 86.2% removal of antibiotic ciprofloxacin (CFX), higher than that of MnS/GF (73.7%) and PPy/GF (34.8%). The charge transfer-generated 1O2, energy transfer-generated 1O2, and photogenerated h+ were identified as the dominant reactive species, which mainly attacked the piperazine ring in the photodegradation of CFX by MnS/PPy/GF. The •OH was confirmed to participate in the defluorination of CFX via hydroxylation substitution. The MnS/PPy/GF-based photocatalytic process could ultimately achieve the mineralization of CFX. The facile recyclability, robust stability, and excellent adaptability to actual aquatic environments further confirmed MnS/PPy/GF is a promising eco-friendly photocatalyst for antibiotic pollution control.


Subject(s)
Ciprofloxacin , Graphite , Humans , Ciprofloxacin/chemistry , Graphite/chemistry , Polymers/chemistry , Pyrroles/chemistry , Anti-Bacterial Agents/chemistry
16.
Int J Mol Sci ; 24(3)2023 Jan 17.
Article in English | MEDLINE | ID: mdl-36768162

ABSTRACT

Classically, superoxide anion O2•- and reactive oxygen species ROS play a dual role. At the physiological balance level, they are a by-product of O2 reduction, necessary for cell signalling, and at the pathological level they are considered harmful, as they can induce disease and apoptosis, necrosis, ferroptosis, pyroptosis and autophagic cell death. This revision focuses on understanding the main characteristics of the superoxide O2•-, its generation pathways, the biomolecules it oxidizes and how it may contribute to their modification and toxicity. The role of superoxide dismutase, the enzyme responsible for the removal of most of the superoxide produced in living organisms, is studied. At the same time, the toxicity induced by superoxide and derived radicals is beneficial in the oxidative death of microbial pathogens, which are subsequently engulfed by specialized immune cells, such as neutrophils or macrophages, during the activation of innate immunity. Ultimately, this review describes in some depth the chemistry related to O2•- and how it is harnessed by the innate immune system to produce lysis of microbial agents.


Subject(s)
Superoxide Dismutase , Superoxides , Superoxides/metabolism , Reactive Oxygen Species/metabolism , Superoxide Dismutase/metabolism , Apoptosis , Immunity, Innate
17.
Int J Mol Sci ; 24(3)2023 Feb 03.
Article in English | MEDLINE | ID: mdl-36769331

ABSTRACT

At inflammatory sites, cytotoxic agents are released and generated from invading immune cells and damaged tissue cells. The further fate of the inflammation highly depends on the presence of antagonizing principles that are able to inactivate these host-derived cytotoxic agents. As long as the affected tissues are well equipped with ready-to-use protective mechanisms, no damage by cytotoxic agents occurs and resolution of inflammation is initiated. However, long-lasting and severe immune responses can be associated with the decline, exhaustion, or inactivation of selected antagonizing principles. Hence, cytotoxic agents are only partially inactivated and contribute to damage of yet-unperturbed cells. Consequently, a chronic inflammatory process results. In this vicious circle of permanent cell destruction, not only novel cytotoxic elements but also novel alarmins and antigens are liberated from affected cells. In severe cases, very low protection leads to organ failure, sepsis, and septic shock. In this review, the major classes of host-derived cytotoxic agents (reactive species, oxidized heme proteins and free heme, transition metal ions, serine proteases, matrix metalloproteases, and pro-inflammatory peptides), their corresponding protective principles, and resulting implications on the pathogenesis of diseases are highlighted.


Subject(s)
Cytotoxins , Inflammation , Humans , Inflammation/metabolism , Disease Progression , Alarmins/metabolism , Serine Proteases
18.
J Environ Manage ; 326(Pt B): 116691, 2023 Jan 15.
Article in English | MEDLINE | ID: mdl-36402013

ABSTRACT

L-Proline (2%)-TiO2/BiOBr (30%) nanocomposite was synthesized to obtain high photocatalytic performance in the visible light region and infrared radiation(IR) for methylene blue (MB) and congo red (CR) removal from the contaminated wastewater. L-Proline (2%)-TiO2/BiOBr (30%) photocatalyst with strong absorption near IR wavelength and high charge separation ability was fabricated for the first time. X-ray diffraction (XRD), Fourier transform infrared (FTIR), field-emission scanning electron microscope (FESEM)/Energy Dispersive X-ray (EDX), UV-Vis diffuse reflectance spectrum (DRS), photoluminescence (PL) and Brunauer-Emmett-Teller (BET) characterization techniques show that the visible driven nanocomposite was successfully synthesized. According to the UV-DRS analysis, the estimated band gaps for the L-proline (2%)-TiO2 and L-Proline (2%)-TiO2/BiOBr (30%) nanostructures were respectively 2.3 eV and 2.1 eV.The nanoparticles exhibited enhanced photocatalytic activity (93-100%) and high mineralization efficiency (71-89% TOC removal) for both the dyes. The best photocatalytic activity was achieved by adding 2 wt% of L-Proline and 30 wt% of BiOBr into TiO2 sol. Response surface methodology (RSM) was employed to find significant parameters and their optimum values for maximum degradation, which show pH, dye concentration, irradiation time, and catalyst dosage for both the dyes are significant. The best photocatalytic degradation efficiency was achieved at the optimum conditions of pH = 7.7, catalyst dosage = 0.71 g/L, irradiation time = 142 and dye concentration = 11 mg/L for MB. Scavenger study showed that •OH radicals are responsible for the degradation process.


Subject(s)
Coloring Agents , Nanocomposites , Proline , Titanium/chemistry , Light , Catalysis , Nanocomposites/chemistry , Methylene Blue
19.
J Food Sci Technol ; 60(6): 1674-1680, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37187979

ABSTRACT

The formation of trans-fatty acids during the hydrogenation of oils using traditional methods is a known fact. Hydrogenation involves the conversion of unsaturation to saturation to enhance the keeping quality of oils. These trans-fatty acids are considered harmful leading to several cardiovascular diseases. Methods like the use of novel catalysts, interesterification, supercritical CO2 hydrogenation and electrocatalytic hydrogenation have been employed to reduce the trans-fatty acid formation. Recently, the application of cold plasma for hydrogenation was employed as an eco-friendly technology. The use of hydrogen as a feed gas will be the source of atomic hydrogen required for the conversion of unsaturated to saturated bonds. The hydrogenation using cold plasma did not result in the formation of trans-fatty acids. However, some reports have shown insignificant levels of trans-fatty acids and secondary lipid oxidation compounds after the plasma treatment. Therefore, it is necessary to optimize the plasma parameters, feed gas type and composition, processing condition to avoid practical implications. It can be concluded that after the detailed investigation of role of reactive species in the partial hydrogenation of oils cold plasma can be considered as an alternative technology.

20.
Glia ; 70(11): 2045-2061, 2022 11.
Article in English | MEDLINE | ID: mdl-35762739

ABSTRACT

Oligodendrocytes (ODCs) are myelinating cells of the central nervous system (CNS) supporting neuronal survival. Oxidants and mitochondrial dysfunction have been suggested as the main causes of ODC damage during neuroinflammation as observed in multiple sclerosis (MS). Nonetheless, the dynamics of this process remain unclear, thus hindering the design of neuroprotective therapeutic strategies. To decipher the spatio-temporal pattern of oxidative damage and dysfunction of ODC mitochondria in vivo, we created a novel mouse model in which ODCs selectively express the ratiometric H2 O2 biosensor mito-roGFP2-Orp1 allowing for quantification of redox changes in their mitochondria. Using 2-photon imaging of the exposed spinal cord, we observed significant mitochondrial oxidation in ODCs upon induction of the MS model experimental autoimmune encephalomyelitis (EAE). This redox change became already apparent during the preclinical phase of EAE prior to CNS infiltration of inflammatory cells. Upon clinical EAE development, mitochondria oxidation remained detectable and was associated with a significant impairment in organelle density and morphology. These alterations correlated with the proximity of ODCs to inflammatory lesions containing activated microglia/macrophages. During the chronic progression of EAE, ODC mitochondria maintained an altered morphology, but their oxidant levels decreased to levels observed in healthy mice. Taken together, our study implicates oxidative stress in ODC mitochondria as a novel pre-clinical sign of MS-like inflammation and demonstrates that evolving redox and morphological changes in mitochondria accompany ODC dysfunction during neuroinflammation.


Subject(s)
Encephalomyelitis, Autoimmune, Experimental , Multiple Sclerosis , Animals , Encephalomyelitis, Autoimmune, Experimental/pathology , Mice , Mice, Inbred C57BL , Mitochondria/metabolism , Multiple Sclerosis/pathology , Neuroinflammatory Diseases , Oligodendroglia/metabolism , Oxidation-Reduction , Spinal Cord/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL