Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 366
Filter
1.
Metab Eng ; 84: 109-116, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38880390

ABSTRACT

The production of recombinant proteins in a host using synthetic constructs such as plasmids comes at the cost of detrimental effects such as reduced growth, energetic inefficiencies, and other stress responses, collectively known as metabolic burden. Increasing the number of copies of the foreign gene increases the metabolic load but increases the expression of the foreign protein. Thus, there is a trade-off between biomass and product yield in response to changes in heterologous gene copy number. This work proposes a computational method, rETFL (recombinant Expression and Thermodynamic Flux), for analyzing and predicting the responses of recombinant organisms to the introduction of synthetic constructs. rETFL is an extension to the ETFL formulations designed to reconstruct models of metabolism and expression (ME-models). We have illustrated the capabilities of the method in four studies to (i) capture the growth reduction in plasmid-containing E. coli and recombinant protein production; (ii) explore the trade-off between biomass and product yield as plasmid copy number is varied; (iii) predict the emergence of overflow metabolism in recombinant E. coli in agreement with experimental data; and (iv) investigate the individual pathways and enzymes affected by the presence of the plasmid. We anticipate that rETFL will serve as a comprehensive platform for integrating available omics data for recombinant organisms and making context-specific predictions that can help optimize recombinant expression systems for biopharmaceutical production and gene therapy.


Subject(s)
Escherichia coli , Recombinant Proteins , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Recombinant Proteins/biosynthesis , Escherichia coli/genetics , Escherichia coli/metabolism , Models, Biological , Plasmids/genetics , Computer Simulation , Genome, Bacterial
2.
Appl Environ Microbiol ; 90(5): e0020524, 2024 05 21.
Article in English | MEDLINE | ID: mdl-38625022

ABSTRACT

Dye-decolorizing peroxidases are heme peroxidases with a broad range of substrate specificity. Their physiological function is still largely unknown, but a role in the depolymerization of plant cell wall polymers has been widely proposed. Here, a new expression system for bacterial dye-decolorizing peroxidases as well as the activity with previously unexplored plant molecules are reported. The dye-decolorizing peroxidase from Amycolatopsis 75iv2 (DyP2) was heterologously produced in the Gram-positive bacterium Streptomyces lividans TK24 in both intracellular and extracellular forms without external heme supplementation. The enzyme was tested on a series of O-glycosides, which are plant secondary metabolites with a phenyl glycosidic linkage. O-glycosides are of great interest, both for studying the compounds themselves and as potential models for studying specific lignin-carbohydrate complexes. The primary DyP reaction products of salicin, arbutin, fraxin, naringin, rutin, and gossypin were oxidatively coupled oligomers. A cleavage of the glycone moiety upon radical polymerization was observed when using arbutin, fraxin, rutin, and gossypin as substrates. The amount of released glucose from arbutin and fraxin reached 23% and 3% of the total substrate, respectively. The proposed mechanism suggests a destabilization of the ether linkage due to the localization of the radical in the para position. In addition, DyP2 was tested on complex lignocellulosic materials such as wheat straw, spruce, willow, and purified water-soluble lignin fractions, but no remarkable changes in the carbohydrate profile were observed, despite obvious oxidative activity. The exact action of DyP2 on such lignin-carbohydrate complexes therefore remains elusive. IMPORTANCE: Peroxidases require correct incorporation of the heme cofactor for activity. Heterologous overproduction of peroxidases often results in an inactive enzyme due to insufficient heme synthesis by the host organism. Therefore, peroxidases are incubated with excess heme during or after purification to reconstitute activity. S. lividans as a production host can produce fully active peroxidases both intracellularly and extracellularly without the need for heme supplementation. This reduces the number of downstream processing steps and is beneficial for more sustainable production of industrially relevant enzymes. Moreover, this research has extended the scope of dye-decolorizing peroxidase applications by studying naturally relevant plant secondary metabolites and analyzing the formed products. A previously overlooked artifact of radical polymerization leading to the release of the glycosyl moiety was revealed, shedding light on the mechanism of DyP peroxidases. The key aspect is the continuous addition, rather than the more common approach of a single addition, of the cosubstrate, hydrogen peroxide. This continuous addition allows the peroxidase to complete a high number of turnovers without self-oxidation.


Subject(s)
Amycolatopsis , Coloring Agents , Glucosides , Peroxidases , Amycolatopsis/enzymology , Amycolatopsis/genetics , Arbutin , Color , Coloring Agents/chemistry , Coloring Agents/metabolism , Ethers , Glucose/metabolism , Glucosides/chemistry , Glucosides/metabolism , Hydrogen Peroxide/metabolism , Lignin/chemistry , Lignin/metabolism , Mass Spectrometry , Peroxidases/chemistry , Peroxidases/genetics , Peroxidases/metabolism , Rutin , Salix , Streptomyces/genetics , Streptomyces/metabolism , Substrate Specificity
3.
Arch Biochem Biophys ; 757: 110026, 2024 07.
Article in English | MEDLINE | ID: mdl-38718957

ABSTRACT

Heterologous expression of nattokinase, a potent fibrinolytic enzyme, has been successfully carried out in various microorganisms. However, the successful expression of this enzyme as a soluble protein was not achieved in E. coli. This study delves into the expression of nattokinase in E. coli as a soluble protein followed by its biochemical characterization and functional analysis for fibrinolytic activity. E. coli BL21C41 and pET32a vector host strain with pGro7 protein chaperone induced with IPTG at 16 °C 180 rpm for 16 h enabled the production of recombinant nattokinase in soluble fraction. Enzymatic assays demonstrated its protease activity, while characterization revealed optimal catalytic conditions at 37 °C and pH 8.0, with remarkable stability over a broad pH range (6.0-10.0) and up to 50 °C. The kinetic constants were determined as follows: Km = 25.83 ± 3.43 µM, Vmax = 62.91 ± 1.68 µM/s, kcat = 38.45 ± 1.06 s-1, and kcat/Km = 1.49 × 106 M-1 s-1. In addition, the fibrinolytic activity of NK, quantified by the fibrin plate hydrolysis assay was 1038 ± 156 U/ml, with a corresponding specific activity of 1730 ± 260 U/mg and the assessment of clot lysis time on an artificial clot (1 mg) was found to be 51.5 ± 2.5 min unveiling nattokinase's fibrinolytic potential. Through molecular docking, a substantial binding energy of -6.46 kcal/mol was observed between nattokinase and fibrin, indicative of a high binding affinity. Key fibrin binding residues, including Ser300, Leu302, and Asp303, were identified and confirmed. These mutants affected specifically the fibrin binding and not the proteolytic activity of NK. This comprehensive study provides crucial conditions for the expression of protein in soluble form in E. coli and biochemical properties paving the way for future research and potential applications in medicine and biotechnology.


Subject(s)
Escherichia coli , Fibrin , Recombinant Proteins , Subtilisins , Escherichia coli/genetics , Escherichia coli/metabolism , Fibrin/metabolism , Fibrin/chemistry , Subtilisins/metabolism , Subtilisins/genetics , Subtilisins/chemistry , Recombinant Proteins/metabolism , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Kinetics , Fibrinolysis , Hydrogen-Ion Concentration , Protein Binding , Gene Expression
4.
Protein Expr Purif ; 215: 106408, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38008389

ABSTRACT

Hexokinases (HKs) play a vital role in glucose metabolism, which controls the first committed step catalyzing the production of glucose-6-phosphate from glucose. Two HKs (CGIHK1 and CGIHK2) from the Pacific oyster Crassostrea giga were cloned and characterized. CGIHK1 and CGIHK2 were recombinantly expressed in Escherichia coli and successfully purified by the Ni-NTA column. The optimum pH of the two enzymes was pH 8.0 and 8.5, respectively. The optimum temperature of the two enzymes was 42 °C and 50 °C, respectively. Both enzymes showed a clear requirement for divalent magnesium and were strongly inhibited by SDS. CGIHK1 exhibited highly strict substrate specificity to glucose, while CGIHK2 could also catalyze other 11 monosaccharide substrates. This is the first report on the in vitro biosynthesis of glucose-6-phosphate by the hexokinases from Crassostrea gigas. The facile expression and purification procedures combined with different substrate specificities make CGIHK1 and CGIHK2 candidates for the biosynthesis of glucose-6-phosphate and other sugar-phosphates.


Subject(s)
Crassostrea , Hexokinase , Animals , Hexokinase/metabolism , Crassostrea/genetics , Glucose-6-Phosphate/metabolism , Temperature , Glucose/metabolism
5.
Protein Expr Purif ; 219: 106475, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38552891

ABSTRACT

AA139, a variant of natural antimicrobial peptide (AMP) arenicin-3, displayed potent activity against multidrug-resistant (MDR) and extensively drug-resistant (XDR) Gram-negative bacteria. Nevertheless, there were currently few reports on the bioprocess of AA139, and the yields were less than 5 mg/L. Additionally, it was difficult and expensive to prepare AA139 through chemical synthesis due to its complex structure. These factors have impeded the further research and following clinical application of AA139. Here, we reported a bioprocess for the preparation of AA139, which was expressed in Escherichia coli (E. coli) BL21 (DE3) intracellularly in a soluble form via SUMO (small ubiquitin-related modifier) fusion technology. Then, recombinant AA139 (rAA139, refer to AA139 obtained by recombinant expression in this study) was obtained through the simplified downstream process, which was rationally designed in accordance with the physicochemical characteristics. Subsequently, the expression level of the interest protein was increased by 54% after optimization of high cell density fermentation (HCDF). Finally, we obtained a yield of 56 mg of rAA139 from 1 L culture with a purity of 98%, which represented the highest reported yield of AA139 to date. Furthermore, various characterizations were conducted to confirm the molecular mass, disulfide bonds, and antimicrobial activity of rAA139.


Subject(s)
Antimicrobial Peptides , Escherichia coli , Escherichia coli/genetics , Escherichia coli/metabolism , Escherichia coli/drug effects , Antimicrobial Peptides/genetics , Antimicrobial Peptides/pharmacology , Antimicrobial Peptides/chemistry , Antimicrobial Peptides/biosynthesis , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/biosynthesis , Recombinant Fusion Proteins/pharmacology , Fermentation , Gene Expression
6.
Protein Expr Purif ; 224: 106564, 2024 Dec.
Article in English | MEDLINE | ID: mdl-39111349

ABSTRACT

Pectin lyases are important in various industries, including tobacco leaves processing. In this paper, a novel pectin lyase Pel04 from Bacillus velezensis was characterized. Pel04 molecular weight (Mw) and isoelectric point (pI) of the protein sequence after removing the signal peptide are 43.0 kDa. The optimal temperature and pH of Pel04 is 50 °C and 9.0, respectively. Pel04 was stable in the range of 30-50 °C, and pH 9.5-11. Ca2+ can significantly stimulate the enzyme activity, while Cu2+, Co2+, Fe3+, and Mn2+ have inhibitory effects on Pel04. By Pel04 treatment, the overall content of acids, alcohols, esters and other aromas in tobacco leaves increased, while the contents of phenolic and heterocyclic substances decreased. Pel04 has important potential for industrial application particularly in improving quality of tobacco leaves.


Subject(s)
Bacillus , Enzyme Stability , Nicotiana , Polysaccharide-Lyases , Hydrogen-Ion Concentration , Polysaccharide-Lyases/chemistry , Polysaccharide-Lyases/metabolism , Polysaccharide-Lyases/genetics , Bacillus/enzymology , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Temperature , Plant Leaves/chemistry , Plant Leaves/enzymology
7.
Protein Expr Purif ; 223: 106557, 2024 Nov.
Article in English | MEDLINE | ID: mdl-39009198

ABSTRACT

Nucleases play pivotal roles in DNA repair and apoptosis. Moreover, they have various applications in biotechnology and industry. Among nucleases, TatD has been characterized as an exonuclease with various biological functions in different organisms. Here, we biochemically characterized the potential TatD nuclease from Thermus thermophilus. The tatD gene from T. thermophilus was cloned, then the recombinant TatD nuclease was expressed and purified. Our results revealed that the TthTatD nuclease could degrade both single-stranded and double-stranded DNA, and its activity is dependent on the divalent metal ions Mg2+ and Mn2+. Remarkably, the activity of TthTatD nuclease is highest at 37 °C and decreases with increasing temperature. TthTatD is not a thermostable enzyme, even though it is from a thermophilic bacterium. Based on the sequence similarity and molecular docking of the DNA substrate into the modeled TthTatD structure, several key conserved residues were identified and their roles were confirmed by analyzing the enzymatic activities of the site-directed mutants. The residues E86 and H149 play key roles in binding metal ions, residues R124/K126 and K211/R212 had a critical role in binding DNA substrate. Our results confirm the enzymatic properties of TthTatD and provide a primary basis for its possible application in biotechnology.


Subject(s)
Bacterial Proteins , Thermus thermophilus , Thermus thermophilus/enzymology , Thermus thermophilus/genetics , Bacterial Proteins/genetics , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Recombinant Proteins/isolation & purification , Molecular Docking Simulation , Cloning, Molecular , Exodeoxyribonucleases/genetics , Exodeoxyribonucleases/chemistry , Exodeoxyribonucleases/metabolism
8.
Protein Expr Purif ; 223: 106540, 2024 Nov.
Article in English | MEDLINE | ID: mdl-38971213

ABSTRACT

To harness the diverse industrial applications of cellulase, including its use in the food, pulp, textile, agriculture, and biofuel sectors, this study focused on the high-yield production of a bioactive insect-derived endoglucanase, Monochamus saltuarius glycoside hydrolase family 5 (MsGHF5). MsGHF5 was introduced into the genome of Kluyveromyces lactis to maintain expression stability, and mass production of the enzyme was induced using fed-batch fermentation. After 40 h of cultivation, recombinant MsGHF5 was successfully produced in the culture broth, with a yield of 29,000 U/L, upon galactose induction. The optimal conditions for the activity of purified MsGHF5 were determined to be a pH of 5 and a temperature of 35 °C, with the presence of ferrous ions enhancing the enzymatic activity by up to 1.5-fold. Notably, the activity of MsGHF5 produced in K. lactis was significantly higher than that produced in Escherichia coli, suggesting that glycosylation is crucial for the functional performance of the enzyme. This study highlights the potential use of K. lactis as a host for the production of bioactive MsGHF5, thus paving the way for its application in various industrial sectors.


Subject(s)
Cellulase , Kluyveromyces , Recombinant Proteins , Animals , Kluyveromyces/genetics , Kluyveromyces/enzymology , Recombinant Proteins/genetics , Recombinant Proteins/chemistry , Recombinant Proteins/metabolism , Recombinant Proteins/biosynthesis , Recombinant Proteins/isolation & purification , Cellulase/genetics , Cellulase/chemistry , Cellulase/biosynthesis , Cellulase/isolation & purification , Cellulase/metabolism , Coleoptera/enzymology , Coleoptera/genetics , Escherichia coli/genetics , Escherichia coli/metabolism , Fermentation , Insect Proteins/genetics , Insect Proteins/chemistry , Insect Proteins/biosynthesis , Insect Proteins/metabolism , Insect Proteins/isolation & purification , Hydrogen-Ion Concentration
9.
Protein Expr Purif ; 215: 106409, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38040272

ABSTRACT

The secretion of extracellular vesicles (EVs) is a common process in Gram-negative bacteria and can be exploited for biotechnological applications. EVs pose a self-adjuvanting, non-replicative vaccine platform, where membrane and antigens are presented to the host immune system in a non-infectious fashion. The secreted quantity of EVs varies between Gram-negative bacterial species and is comparatively high in the model bacterium E. coli. The outer membrane proteins OmpA and OmpF of the fish pathogen Y. ruckeri have been proposed as vaccine candidates to prevent enteric redmouth disease in aquaculture. In this work, Y.ruckeri OmpA or OmpF were expressed in E. coli and recombinant EVs were isolated. To avoid competition between endogenous E. coli OmpA or OmpF, Y. ruckeri OmpA and OmpF were expressed in E. coli strains lacking ompA, ompF, and in a quadruple knockout strain where the four major outer membrane protein genes ompA, ompC, ompF and lamB were removed. Y.ruckeri OmpA and OmpF were successfully expressed in EVs derived from the E. coli mutants as verified by SDS-PAGE, heat modifiability and proteomic analysis using mass-spectrometry. Transmission electron microscopy revealed the presence of EVs in all E. coli strains, and increased EV concentrations were detected when expressing Y. ruckeri OmpA or OmpF in recombinant EVs compared to empty vector controls as verified by nanoparticle tracking analysis. These results show that E. coli can be utilized as a vector for production of EVs expressing outer membrane antigens from Y. ruckeri.


Subject(s)
Escherichia coli Proteins , Vaccines , Yersinia Infections , Animals , Escherichia coli/genetics , Escherichia coli/metabolism , Yersinia ruckeri/metabolism , Bacterial Outer Membrane Proteins/metabolism , Proteomics , Vaccines/metabolism , Escherichia coli Proteins/genetics
10.
Microb Cell Fact ; 23(1): 48, 2024 Feb 12.
Article in English | MEDLINE | ID: mdl-38347541

ABSTRACT

BACKGROUND: The three-finger proteins are a collection of disulfide bond rich proteins of great biomedical interests. Scalable recombinant expression and purification of bioactive three-finger proteins is quite difficult. RESULTS: We introduce a working pipeline for expression, purification and validation of disulfide-bond rich three-finger proteins using E. coli as the expression host. With this pipeline, we have successfully obtained highly purified and bioactive recombinant α-Βungarotoxin, k-Bungarotoxin, Hannalgesin, Mambalgin-1, α-Cobratoxin, MTα, Slurp1, Pate B etc. Milligrams to hundreds of milligrams of recombinant three finger proteins were obtained within weeks in the lab. The recombinant proteins showed specificity in binding assay and six of them were crystallized and structurally validated using X-ray diffraction protein crystallography. CONCLUSIONS: Our pipeline allows refolding and purifying recombinant three finger proteins under optimized conditions and can be scaled up for massive production of three finger proteins. As many three finger proteins have attractive therapeutic or research interests and due to the extremely high quality of the recombinant three finger proteins we obtained, our method provides a competitive alternative to either their native counterparts or chemically synthetic ones and should facilitate related research and applications.


Subject(s)
Escherichia coli , Inclusion Bodies , Escherichia coli/metabolism , Recombinant Proteins , Inclusion Bodies/metabolism , Disulfides/metabolism
11.
Arch Insect Biochem Physiol ; 115(2): e22088, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38349673

ABSTRACT

Geranylgeranyl diphosphate synthase (GGPPS) as the short-chain prenyltransferases for catalyzing the formation of the acyclic precursor (E)-GGPP has been extensively investigated in mammals, plants, and microbes, but its functional plasticity is poorly understood in insect species. Here, a single GGPPS in leaf beetle Monolepta hieroglyphica, MhieGGPPS, was functionally investigated. Phylogenetic analysis showed that MhieGGPPS was clustered in one clade with homologs and had six conserved motifs. Molecular docking results indicated that binding sites of dimethylallyl diphosphate (DMAPP), (E)-geranyl pyrophosphate (GPP), and (E)-farnesyl pyrophosphate (FPP) were in the chain-length determination region of MhieGGPPS, respectively. In vitro, recombiant MhieGGPPS could catalyze the formation of (E)-geranylgeraniol against different combinations of substrates including isopentenyl pyrophosphate (IPP)/DMAPP, IPP/(E)-GPP, and IPP/(E)-FPP, suggesting that MhieGGPPS could not only use (E)-FPP but also (E)-GPP and DMAPP as the allylic cosubstrates. In kinetic analysis, the (E)-FPP was most tightly bound to MhieGGPPS than that of others. It was proposed that MhieGGPPS as a multifunctional enzyme is differentiated from the other GGPPSs in the animals and plants, which only accepted (E)-FPP as the allylic cosubstrate. These findings provide valuable insights into understanding the functional plasticity of GGPPS in M. hieroglyphica and the novel biosynthesis mechanism in the isoprenoid pathway.


Subject(s)
Coleoptera , Hemiterpenes , Organophosphorus Compounds , Polyisoprenyl Phosphates , Sesquiterpenes , Animals , Farnesyltranstransferase , Kinetics , Molecular Docking Simulation , Phylogeny , Mammals
12.
Prep Biochem Biotechnol ; : 1-10, 2024 Aug 28.
Article in English | MEDLINE | ID: mdl-39196757

ABSTRACT

Recombinant fabs dominate the pharmaceutical pipelines today with microbial host systems continuing to be a major contributor toward their production. Escherichia coli is a versatile host for recombinant protein expression due to its simplicity, affordability, and ability to be cultivated at high cell density. It is particularly suitable for non-glycosylated proteins and small proteins. Despite the aforementioned benefits, the use of E. coli as the host for the synthesis of recombinant antibody fragments often suffers from low yield and reduced activity. In most cases, proteins are expressed as inclusion bodies and need to undergo refolding to achieve their active forms and this refolding step is generally low-yielding. In this article, we review the various approaches that researchers have taken to enhance the production of recombinant antibody fragments in E. coli. Molecular biology-oriented approaches such as cloning, chaperone-mediated folding, and host cell screening as well as process optimization involving examination of process parameters, media, and feeding have been addressed.

13.
World J Microbiol Biotechnol ; 40(2): 69, 2024 Jan 16.
Article in English | MEDLINE | ID: mdl-38225505

ABSTRACT

Ganoderma capense is a precious medicinal fungus in China. In this study, a novel fungal immunomodulatory protein gene, named as FIP-gca, was cloned from G. capense by homologous cloning. Sequencing analysis indicated that FIP-gca was composed of 336 bp, which encoded a polypeptide of 110 amino acids. Protein sequence blasting and phylogenetic analysis showed that FIP-gca shared homology with other Ganoderma FIPs. FIP-gca was effectively expressed in Pichia pastoris GS115 at an expression level of 166.8 mg/L and purified using HisTrap™ fast-flow prepack columns. The immunomodulation capacity of rFIP-gca was demonstrated by that rFIP-gca could obviously stimulate cell proliferation and increase IL-2 secretion of murine spleen lymphocytes. Besides, antitumor activity of rFIP-gca towards human stomach cancer AGS cell line was evaluated in vitro. Cell wound scratch assay proved that rFIP-gca could inhibit migration of AGS cells. And flow cytometry assay revealed that rFIP-gca could significantly induce apoptosis of AGS cells. rFIP-gca was able to induce 18.12% and 22.29% cell apoptosis at 0.3 µM and 0.6 µM, respectively. Conclusively, the novel FIP-gca gene from G. capense has been functionally expressed in Pichia and rFIP-gca exhibited ideal immunomodulation and anti-tumour activities, which implies its potential application and study in future.


Subject(s)
Ganoderma , Saccharomycetales , Animals , Mice , Humans , Phylogeny , Ganoderma/genetics , Ganoderma/chemistry , Pichia/genetics , Pichia/metabolism , Fungal Proteins/metabolism
14.
BMC Bioinformatics ; 24(1): 200, 2023 May 16.
Article in English | MEDLINE | ID: mdl-37193950

ABSTRACT

BACKGROUND: Cysteine-dense peptides (CDPs) are an attractive pharmaceutical scaffold that display extreme biochemical properties, low immunogenicity, and the ability to bind targets with high affinity and selectivity. While many CDPs have potential and confirmed therapeutic uses, synthesis of CDPs is a challenge. Recent advances have made the recombinant expression of CDPs a viable alternative to chemical synthesis. Moreover, identifying CDPs that can be expressed in mammalian cells is crucial in predicting their compatibility with gene therapy and mRNA therapy. Currently, we lack the ability to identify CDPs that will express recombinantly in mammalian cells without labour intensive experimentation. To address this, we developed CysPresso, a novel machine learning model that predicts recombinant expression of CDPs based on primary sequence. RESULTS: We tested various protein representations generated by deep learning algorithms (SeqVec, proteInfer, AlphaFold2) for their suitability in predicting CDP expression and found that AlphaFold2 representations possessed the best predictive features. We then optimized the model by concatenation of AlphaFold2 representations, time series transformation with random convolutional kernels, and dataset partitioning. CONCLUSION: Our novel model, CysPresso, is the first to successfully predict recombinant CDP expression in mammalian cells and is particularly well suited for predicting recombinant expression of knottin peptides. When preprocessing the deep learning protein representation for supervised machine learning, we found that random convolutional kernel transformation preserves more pertinent information relevant for predicting expressibility than embedding averaging. Our study showcases the applicability of deep learning-based protein representations, such as those provided by AlphaFold2, in tasks beyond structure prediction.


Subject(s)
Cysteine , Deep Learning , Animals , Proteins/chemistry , Peptides/chemistry , Algorithms , Mammals
15.
Amino Acids ; 55(6): 713-729, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37142771

ABSTRACT

Cyclotides are plant peptides characterized with a head-to-tail cyclized backbone and three interlocking disulfide bonds, known as a cyclic cysteine knot. Despite the variations in cyclotides peptide sequences, this core structure is conserved, underlying their most useful feature: stability against thermal and chemical breakdown. Cyclotides are the only natural peptides known to date that are orally bioavailable and able to cross cell membranes. Cyclotides also display bioactivities that have been exploited and expanded to develop as potential therapeutic reagents for a wide range of conditions (e.g., HIV, inflammatory conditions, multiple sclerosis, etc.). As such, in vitro production of cyclotides is of the utmost importance since it could assist further research on this peptide class, specifically the structure-activity relationship and its mechanism of action. The information obtained could be utilized to assist drug development and optimization. Here, we discuss several strategies for the synthesis of cyclotides using both chemical and biological routes.


Subject(s)
Cyclotides , Cyclotides/pharmacology , Cyclotides/therapeutic use , Cyclotides/chemistry , Amino Acid Sequence , Plants/metabolism , Cysteine , Structure-Activity Relationship
16.
Biotechnol Bioeng ; 120(2): 323-332, 2023 02.
Article in English | MEDLINE | ID: mdl-36349439

ABSTRACT

In recent years, antimicrobial peptides (AMPs) have become a promising alternative to the use of conventional and chemically synthesized antibiotics, especially after the emergence of multidrug-resistant organisms. Thus, this review aims to provide an updated overview of the state-of-the-art for producing antimicrobial peptides fused or conjugated with the elastin-like (ELP) peculiar carriers, and that are mostly intended for biomedical application. The elastin-like biopolymers are thermosensitive proteins with unique properties. Due to the flexibility of their modular structure, their features can be tuned and customized to improve the production of the antimicrobial domain while reducing their toxic effects on the host cells. Both fields of research faced a huge rise in interest in the last decade, as witnessed by the increasing number of publications on these topics, and several recombinant fusion proteins made of these two domains have been already described but they still present a limited variability. Herein, the approaches described to recombinantly fuse and chemically conjugate diverse AMPs with ELPs are reviewed, and the nature of the AMPs and the ELPs used, as well as the main features of the expression and production systems are summarized.


Subject(s)
Elastin , Peptides , Elastin/chemistry , Peptides/chemistry , Antimicrobial Peptides , Biopolymers/chemistry , Recombinant Fusion Proteins/metabolism
17.
Protein Expr Purif ; 211: 106336, 2023 11.
Article in English | MEDLINE | ID: mdl-37419399

ABSTRACT

The PARP1 (Poly (ADP-ribose) polymerase 1) enzyme is essential for single and double-strand break repair in humans. Alterations affecting PARP1 activity have severe consequences for human health and are associated with pathologies like cancer, and metabolic and neurodegenerative disorders. Here, we have developed a fast and easy procedure for the expression and purification of PARP1. Biologically active protein was purified to an apparent purity > 95%, with only two purification steps. A thermostability analysis revealed that PARP1 possessed improved stability in 50 mM Tris-HCl pH 8.0 (Tm = 44.2 ± 0.3 °C), thus this buffer was used throughout the whole purification procedure. The protein was shown to bind to DNA and has no inhibitor molecules bound to the active site. Finally, the yield of the purified PARP1 protein is sufficient for both biochemical, biophysical and structural analysis. The new protocol provides a fast and simple purification procedure while producing similar protein quantities to what has been described previously.


Subject(s)
DNA Repair , DNA , Humans , Poly (ADP-Ribose) Polymerase-1/genetics , Poly (ADP-Ribose) Polymerase-1/metabolism , DNA/chemistry
18.
Microb Cell Fact ; 22(1): 125, 2023 Jul 11.
Article in English | MEDLINE | ID: mdl-37434134

ABSTRACT

BACKGROUND: Mammalian metallothioneins (MTs) are small (6-7 kDa), intracellular, cysteine-rich, metal-binding proteins involved, inter alia, in the homeostasis of zinc and copper, detoxification of heavy metals, antioxidation against reactive oxygen species, and protection against DNA damage. The high cysteine content (~ 30%) in MTs makes them toxic to bacterial cells during protein production, resulting in low yield. To address this issue, we present for the first time a combinatorial approach using the small ubiquitin-like modifier (SUMO) and/or sortase as fusion tags for high-level expression of human MT3 in E. coli and its purification by three different strategies. RESULTS: Three different plasmids were generated using SUMO, sortase A pentamutant (eSrtA), and sortase recognition motif (LPETG) as removable fusion tags for high-level expression and purification of human MT3 from the bacterial system. In the first strategy, SUMOylated MT3 was expressed and purified using Ulp1-mediated cleavage. In the second strategy, SUMOylated MT3 with a sortase recognition motif at the N-terminus of MT3 was expressed and purified using sortase-mediated cleavage. In the final strategy, the fusion protein His6-SUMO-eSrtA-LPETG-MT3 was expressed and purified by one-step sortase-mediated inducible on-bead autocleavage. Using these three strategies the apo-MT3 was purified in a yield of 11.5, 11, and 10.8 mg/L, respectively, which is the highest yield achieved for MT expression and purification to date. No effect of MT3 on Ni2+-containing resin was observed. CONCLUSION: The SUMO/sortase-based strategy used as the production system for MT3 resulted in a very high expression level and protein production yield. The apo-MT3 purified by this strategy contained an additional glycine residue and had similar metal binding properties as WT-MT3. This SUMO-sortase fusion system is a simple, robust, and inexpensive one-step purification approach for various MTs as well as other toxic proteins with very high yield via immobilized metal affinity chromatography (IMAC).


Subject(s)
Calcium , Cysteine , Metallothionein 3 , Humans , Bacterial Proteins/genetics , Escherichia coli/genetics , Ubiquitin , Metallothionein 3/metabolism
19.
Microb Cell Fact ; 22(1): 39, 2023 Feb 25.
Article in English | MEDLINE | ID: mdl-36841778

ABSTRACT

BACKGROUND: Virus-like particles are an interesting vector platform for vaccine development. Particularly, Hepatitis B virus core antigen has been used as a promising VLP platform. It is highly expressed in different recombinant expression systems, such as E. coli, and self-assembled in vitro. It effectively improves the immunogenicity of foreign antigenic epitopes on its surface. Various foreign antigens from bacteria, viruses, and protozoa can be genetically inserted into such nanoparticles. The effective immunogenicity due to VLP vaccines has been reported. However, no research has been performed on the SARS-CoV2 vaccine within this unique platform through genetic engineering. Considering the high yield of target proteins, low cost of production, and feasibility of scaling up, E. coli is an outstanding expression platform to develop such vaccines. Therefore, in this investigation, we planned to study and develop a unique HBc VLP-based vaccine against SARS-Cov2 utilizing the E. coli expression system due to its importance. RESULTS: Insertion of the selected epitope was done into the major immunodominant region (MIR) of truncated (149 residues) hepatitis B core capsid protein. The chimeric protein was constructed in PET28a+ and expressed through the bacterial E. coli BL21 expression system. However, the protein was expressed in inclusion body forms and extracted following urea denaturation from the insoluble phase. Following the extraction, the vaccine protein was purified using Ni2 + iminodiacetic acid (IDA) affinity chromatography. SDS-PAGE and western blotting were used to confirm the protein expression. Regarding the denaturation step, the unavoidable refolding process was carried out, so that the chimeric VLP reassembled in native conformation. Based on the transmission electron microscopy (TEM) analysis, the HBC VLP was successfully assembled. Confirming the assembled chimeric VLP, we explored the immunogenic effectivity of the vaccine through mice immunization with two-dose vaccination with and without adjuvant. The utilization of adjuvant was suggested to assess the effect of adjuvant on improving the immune elicitation of chimeric VLP-based vaccine. Immunization analysis based on anti-spike specific IgG antibody showed a significant increase in antibody production in harvested serum from immunized mice with HBc-VLP harboring antigenic epitope compared to HBc-VLP- and PBS-injected mice. CONCLUSIONS: The results approved the successful production and the effectiveness of the vaccine in terms of humoral IgG antibody production. Therefore, this platform can be considered a promising strategy for developing safe and reasonable vaccines; however, more complementary immunological evaluations are needed.


Subject(s)
COVID-19 , Hepatitis B , Vaccines, Virus-Like Particle , Mice , Animals , Epitopes , Hepatitis B virus/genetics , Hepatitis B virus/metabolism , RNA, Viral/metabolism , Immunity, Humoral , Escherichia coli/genetics , SARS-CoV-2 , Adjuvants, Immunologic/metabolism , Mice, Inbred BALB C
20.
Bioorg Chem ; 131: 106330, 2023 02.
Article in English | MEDLINE | ID: mdl-36565673

ABSTRACT

Cytochrome P450 enzymes (CYPs) are one of the most important classes of oxidative enzymes in the human body, carrying out metabolism of various exogenous and endogenous substrates. In order to expand the knowledge of these enzymes' specificity and to obtain new natural product derivatives, CYP4F11, a cytochrome P450 monooxygenase, was used in the biotransformation of dialkylresorcinols 1 and 2, a pair of antibiotic microbial natural products. This investigation resulted in four biotransformation products including two oxidative products: a hydroxylated derivative (3) and a carboxylic acid derivative (4). In addition, acetylated (5) and esterified products (6) were isolated, formed by further metabolism by endogenous yeast enzymes. Oxidative transformations were highly regioselective, and took place exclusively at the ω-position of the C-5 alkyl chain. Homology modeling studies revealed that optimal hydrogen bonding between 2 and the enzyme can only be established with the C-5 alkyl chain pointing towards the heme. The closely-related CYP4F12 was not capable of oxidizing the dialkylresorcinol 2. Modeling experiments rationalize these differences by the different shapes of the binding pockets with respect to the non-oxidized alkyl chain. Antimicrobial testing indicated that the presence of polar groups on the side-chains reduces the antibiotic activity of the dialkylresorcinols.


Subject(s)
Anti-Bacterial Agents , Cytochrome P-450 Enzyme System , Resorcinols , Humans , Anti-Bacterial Agents/metabolism , Biotransformation , Cytochrome P-450 Enzyme System/metabolism , Oxidation-Reduction , Resorcinols/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL