Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Publication year range
1.
J Nutr Sci Vitaminol (Tokyo) ; 69(5): 340-346, 2023.
Article in English | MEDLINE | ID: mdl-37940574

ABSTRACT

Human serum albumin is categorized into human mercaptalbumin (HMA) and human non-mercaptalbumin (HNA), according to the redox state of the cysteine residue at position 34. The ratio of HMA to total albumin (%HMA) is a novel biomarker of oxidative stress as well as protein nutritional status, but measuring %HMA normally requires an expensive analyzer such as HPLC and LC-MS, and can hardly be conducted in many clinical sites. To address this issue, we aimed to develop a methodological basis for estimating %HMA without these analyzers. An analytical method was investigated consisting of three steps, i.e., 1) removal of HMA from serum or plasma by using a thiol-binding resin (i.e., thereby obtaining a HNA fraction), 2) determination of both total albumin and HNA concentrations by a colorimetric assay or ELISA, and 3) calculation of %HMA. Proof-of-concept experiments, using serum and plasma samples of 4 adult volunteers, showed that the estimated value of %HMA obtained by this analytical method was significantly correlated with the theoretical value of %HMA determined by HPLC. The subsequent validation experiment, using 86 serum samples of pregnant women in the Japanese participants of SMILE Iwamizawa, also confirmed the significant association between the estimated and theoretical values of %HMA. This analytical method can be a basis to determine %HMA without using HPLC or LC-MS, contributing to the universalization of %HMA measurement as a clinical test.


Subject(s)
Serum Albumin , Sulfhydryl Compounds , Pregnancy , Adult , Humans , Female , Serum Albumin/metabolism , Serum Albumin, Human/metabolism , Cysteine/metabolism , Chromatography, High Pressure Liquid , Oxidation-Reduction
2.
Nutrients ; 10(1)2017 Dec 24.
Article in English | MEDLINE | ID: mdl-29295548

ABSTRACT

Albumin is the major protein in the serum of mammals. It is synthesized exclusively in the liver, before being secreted into the circulation. Similar to skeletal muscle protein, albumin synthesis is stimulated by dietary amino acids and proteins as well as exercise. Albumin has three isoforms based on the redox states of the free cysteine residue at position 34. The redox state of serum albumin has long been extensively investigated in terms of oxidative stress-related chronic diseases, with the redox state of serum albumin having been regarded as a marker of systemic oxidative stress. However, according to recent animal studies, the redox state of serum albumin is modulated by albumin turnover and may also reflect amino acid/protein nutritional status. Furthermore, as the redox state of serum albumin is modulated by exercise training, measuring the pre- and post-exercise redox states of serum albumin in athletes may be useful in assessing amino acid/protein nutritional status and exercise-induced oxidative stress, which are closely associated with skeletal muscle adaptive responses. This article extensively reviews serum albumin and the redox state of albumin in the context of amino acid/protein nutritional status and exercise training.


Subject(s)
Amino Acids/metabolism , Dietary Proteins/metabolism , Exercise/physiology , Nutritional Status , Serum Albumin, Human/metabolism , Amino Acids/administration & dosage , Animals , Biomarkers/blood , Dietary Proteins/administration & dosage , Humans , Oxidation-Reduction , Oxidative Stress , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL