Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 7.495
Filter
Add more filters

Publication year range
1.
Cell ; 184(3): 615-627.e17, 2021 02 04.
Article in English | MEDLINE | ID: mdl-33453153

ABSTRACT

The microbiota shields the host against infections in a process known as colonization resistance. How infections themselves shape this fundamental process remains largely unknown. Here, we show that gut microbiota from previously infected hosts display enhanced resistance to infection. This long-term functional remodeling is associated with altered bile acid metabolism leading to the expansion of taxa that utilize the sulfonic acid taurine. Notably, supplying exogenous taurine alone is sufficient to induce this alteration in microbiota function and enhance resistance. Mechanistically, taurine potentiates the microbiota's production of sulfide, an inhibitor of cellular respiration, which is key to host invasion by numerous pathogens. As such, pharmaceutical sequestration of sulfide perturbs the microbiota's composition and promotes pathogen invasion. Together, this work reveals a process by which the host, triggered by infection, can deploy taurine as a nutrient to nourish and train the microbiota, promoting its resistance to subsequent infection.


Subject(s)
Gastrointestinal Microbiome , Host-Pathogen Interactions , Animals , Bacterial Infections/immunology , Bacterial Infections/microbiology , Colony Count, Microbial , Gastrointestinal Microbiome/drug effects , Host-Pathogen Interactions/drug effects , Immunity , Mice, Inbred C57BL , Sulfides/metabolism , Taurine/pharmacology
2.
Cell ; 181(3): 665-673.e10, 2020 04 30.
Article in English | MEDLINE | ID: mdl-32289252

ABSTRACT

A growing number of bacteria are recognized to conduct electrons across their cell envelope, and yet molecular details of the mechanisms supporting this process remain unknown. Here, we report the atomic structure of an outer membrane spanning protein complex, MtrAB, that is representative of a protein family known to transport electrons between the interior and exterior environments of phylogenetically and metabolically diverse microorganisms. The structure is revealed as a naturally insulated biomolecular wire possessing a 10-heme cytochrome, MtrA, insulated from the membrane lipidic environment by embedding within a 26 strand ß-barrel formed by MtrB. MtrAB forms an intimate connection with an extracellular 10-heme cytochrome, MtrC, which presents its hemes across a large surface area for electrical contact with extracellular redox partners, including transition metals and electrodes.


Subject(s)
ATP-Binding Cassette Transporters/ultrastructure , Bacterial Outer Membrane Proteins/ultrastructure , Bacterial Proteins/ultrastructure , RNA-Binding Proteins/ultrastructure , Transcription Factors/ultrastructure , ATP-Binding Cassette Transporters/metabolism , Bacterial Outer Membrane/metabolism , Bacterial Outer Membrane Proteins/metabolism , Bacterial Proteins/metabolism , Cell Membrane/metabolism , Cytochromes/metabolism , Electron Transport/physiology , Electrons , Heme/metabolism , Multiprotein Complexes/ultrastructure , Oxidation-Reduction , RNA-Binding Proteins/metabolism , Transcription Factors/metabolism
3.
Cell ; 177(3): 697-710.e17, 2019 04 18.
Article in English | MEDLINE | ID: mdl-30982600

ABSTRACT

Yeast ataxin-2, also known as Pbp1 (polyA binding protein-binding protein 1), is an intrinsically disordered protein implicated in stress granule formation, RNA biology, and neurodegenerative disease. To understand the endogenous function of this protein, we identify Pbp1 as a dedicated regulator of TORC1 signaling and autophagy under conditions that require mitochondrial respiration. Pbp1 binds to TORC1 specifically during respiratory growth, but utilizes an additional methionine-rich, low complexity (LC) region to inhibit TORC1. This LC region causes phase separation, forms reversible fibrils, and enables self-association into assemblies required for TORC1 inhibition. Mutants that weaken phase separation in vitro exhibit reduced capacity to inhibit TORC1 and induce autophagy. Loss of Pbp1 leads to mitochondrial dysfunction and reduced fitness during nutritional stress. Thus, Pbp1 forms a condensate in response to respiratory status to regulate TORC1 signaling.


Subject(s)
Carrier Proteins/metabolism , Mechanistic Target of Rapamycin Complex 1/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/metabolism , Signal Transduction , Amino Acid Sequence , Autophagy/drug effects , Carrier Proteins/chemistry , Carrier Proteins/genetics , Mechanistic Target of Rapamycin Complex 1/antagonists & inhibitors , Methionine/metabolism , Mitochondria/drug effects , Mitochondria/metabolism , Mutagenesis, Site-Directed , Phosphorylation , Protein Binding , Protein Domains , Saccharomyces cerevisiae/growth & development , Saccharomyces cerevisiae Proteins/chemistry , Saccharomyces cerevisiae Proteins/genetics , Signal Transduction/drug effects , Sirolimus/pharmacology
4.
Cell ; 173(7): 1636-1649.e16, 2018 06 14.
Article in English | MEDLINE | ID: mdl-29754813

ABSTRACT

Hydrogen gas-evolving membrane-bound hydrogenase (MBH) and quinone-reducing complex I are homologous respiratory complexes with a common ancestor, but a structural basis for their evolutionary relationship is lacking. Here, we report the cryo-EM structure of a 14-subunit MBH from the hyperthermophile Pyrococcus furiosus. MBH contains a membrane-anchored hydrogenase module that is highly similar structurally to the quinone-binding Q-module of complex I while its membrane-embedded ion-translocation module can be divided into a H+- and a Na+-translocating unit. The H+-translocating unit is rotated 180° in-membrane with respect to its counterpart in complex I, leading to distinctive architectures for the two respiratory systems despite their largely conserved proton-pumping mechanisms. The Na+-translocating unit, absent in complex I, resembles that found in the Mrp H+/Na+ antiporter and enables hydrogen gas evolution by MBH to establish a Na+ gradient for ATP synthesis near 100°C. MBH also provides insights into Mrp structure and evolution of MBH-based respiratory enzymes.


Subject(s)
Archaeal Proteins/metabolism , Hydrogenase/metabolism , Pyrococcus furiosus/metabolism , Amino Acid Sequence , Archaeal Proteins/chemistry , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Binding Sites , Cell Membrane/chemistry , Cell Membrane/metabolism , Cryoelectron Microscopy , Electron Transport Complex I/chemistry , Electron Transport Complex I/metabolism , Evolution, Molecular , Hydrogen/metabolism , Hydrogenase/chemistry , Hydrogenase/genetics , Mutagenesis , Protein Structure, Quaternary , Protein Subunits/chemistry , Protein Subunits/genetics , Protein Subunits/metabolism , Recombinant Proteins/biosynthesis , Recombinant Proteins/chemistry , Recombinant Proteins/isolation & purification , Sequence Alignment , Sodium/chemistry , Sodium/metabolism , Sodium-Hydrogen Exchangers/chemistry , Sodium-Hydrogen Exchangers/metabolism
5.
Cell ; 173(1): 196-207.e14, 2018 03 22.
Article in English | MEDLINE | ID: mdl-29502970

ABSTRACT

Microbial populations can maximize fitness in dynamic environments through bet hedging, a process wherein a subpopulation assumes a phenotype not optimally adapted to the present environment but well adapted to an environment likely to be encountered. Here, we show that oxygen induces fluctuating expression of the trimethylamine oxide (TMAO) respiratory system of Escherichia coli, diversifying the cell population and enabling a bet-hedging strategy that permits growth following oxygen loss. This regulation by oxygen affects the variance in gene expression but leaves the mean unchanged. We show that the oxygen-sensitive transcription factor IscR is the key regulator of variability. Oxygen causes IscR to repress expression of a TMAO-responsive signaling system, allowing stochastic effects to have a strong effect on the output of the system and resulting in heterogeneous expression of the TMAO reduction machinery. This work reveals a mechanism through which cells regulate molecular noise to enhance fitness.


Subject(s)
Escherichia coli/metabolism , Signal Transduction , Aerobiosis , Anaerobiosis , Base Sequence , Binding Sites , Escherichia coli/drug effects , Escherichia coli/growth & development , Escherichia coli Proteins/chemistry , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Methylamines/metabolism , Methylamines/pharmacology , Oxygen/metabolism , Periplasmic Proteins/chemistry , Periplasmic Proteins/genetics , Periplasmic Proteins/metabolism , Phosphotransferases/chemistry , Phosphotransferases/genetics , Phosphotransferases/metabolism , Promoter Regions, Genetic , Protein Binding , Transcription Factors/chemistry , Transcription Factors/genetics , Transcription Factors/metabolism , Transcription, Genetic , Up-Regulation
6.
Annu Rev Biochem ; 86: 357-386, 2017 06 20.
Article in English | MEDLINE | ID: mdl-28654328

ABSTRACT

A wide range of phylogenetically diverse microorganisms couple the reductive dehalogenation of organohalides to energy conservation. Key enzymes of such anaerobic catabolic pathways are corrinoid and Fe-S cluster-containing, membrane-associated reductive dehalogenases. These enzymes catalyze the reductive elimination of a halide and constitute the terminal reductases of a short electron transfer chain. Enzymatic and physiological studies revealed the existence of quinone-dependent and quinone-independent reductive dehalogenases that are distinguishable at the amino acid sequence level, implying different modes of energy conservation in the respective microorganisms. In this review, we summarize current knowledge about catabolic reductive dehalogenases and the electron transfer chain they are part of. We review reaction mechanisms and the role of the corrinoid and Fe-S cluster cofactors and discuss physiological implications.


Subject(s)
Bacterial Proteins/chemistry , Chloroflexi/enzymology , Coenzymes/chemistry , Corrinoids/chemistry , Halogens/chemistry , Oxidoreductases/chemistry , Amino Acid Sequence , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Benzoquinones/chemistry , Benzoquinones/metabolism , Biocatalysis , Chloroflexi/chemistry , Chloroflexi/genetics , Coenzymes/metabolism , Corrinoids/metabolism , Electron Transport , Energy Metabolism , Gene Expression , Halogens/metabolism , Kinetics , Models, Molecular , Oxidoreductases/genetics , Oxidoreductases/metabolism , Phylogeny , Substrate Specificity , Vitamin B 12/chemistry , Vitamin B 12/metabolism
7.
Cell ; 171(5): 1165-1175.e13, 2017 Nov 16.
Article in English | MEDLINE | ID: mdl-29149605

ABSTRACT

Biased agonism has been proposed as a means to separate desirable and adverse drug responses downstream of G protein-coupled receptor (GPCR) targets. Herein, we describe structural features of a series of mu-opioid-receptor (MOR)-selective agonists that preferentially activate receptors to couple to G proteins or to recruit ßarrestin proteins. By comparing relative bias for MOR-mediated signaling in each pathway, we demonstrate a strong correlation between the respiratory suppression/antinociception therapeutic window in a series of compounds spanning a wide range of signaling bias. We find that ßarrestin-biased compounds, such as fentanyl, are more likely to induce respiratory suppression at weak analgesic doses, while G protein signaling bias broadens the therapeutic window, allowing for antinociception in the absence of respiratory suppression.


Subject(s)
Analgesics, Opioid/administration & dosage , Analgesics, Opioid/adverse effects , Receptors, Opioid, mu/agonists , Animals , Fentanyl/administration & dosage , GTP-Binding Proteins/metabolism , Mice , Morphine/administration & dosage , Receptors, Opioid, mu/chemistry , Respiratory System/drug effects , Signal Transduction , beta-Arrestins/metabolism
8.
Cell ; 167(6): 1598-1609.e10, 2016 Dec 01.
Article in English | MEDLINE | ID: mdl-27912063

ABSTRACT

The mammalian respiratory chain complexes assemble into supercomplexes (SCs) and reside in the inner mitochondrial membrane to transfer electrons and establish the proton gradient for complex V to synthesize ATP. The precise arrangement of SCs is largely unknown. Here, we report a 4.0-Å cryo-electron microscopy (cryo-EM) structure of the major SC in porcine heart, the 1.7-MDa SCI1III2IV1. The complex III (CIII) dimer and complex IV (CIV) bind at the same side of the L-shaped complex I (CI). Several accessory or supernumerary subunits of CI, such as NDUFA11, NDUFB4, NDUFB8, and NDUFB9, directly contribute to the oligomerization of CI, CIII, and CIV. COX7C and COX7A of CIV attach CIV to the concave surface formed by CIII and the distal end of membrane arm of CI. The structure suggests a possible mechanism by which electrons are transferred from NADH to cytochrome c and provides a platform for future functional dissection of respiration.


Subject(s)
Electron Transport , Mitochondria, Heart/chemistry , Mitochondrial Membranes/chemistry , Animals , Cryoelectron Microscopy , Models, Molecular , Multienzyme Complexes/chemistry , Proton Pumps/chemistry , Sus scrofa
9.
Cell ; 167(3): 722-738.e23, 2016 Oct 20.
Article in English | MEDLINE | ID: mdl-27768893

ABSTRACT

A functional crosstalk between epigenetic regulators and metabolic control could provide a mechanism to adapt cellular responses to environmental cues. We report that the well-known nuclear MYST family acetyl transferase MOF and a subset of its non-specific lethal complex partners reside in mitochondria. MOF regulates oxidative phosphorylation by controlling expression of respiratory genes from both nuclear and mtDNA in aerobically respiring cells. MOF binds mtDNA, and this binding is dependent on KANSL3. The mitochondrial pool of MOF, but not a catalytically deficient mutant, rescues respiratory and mtDNA transcriptional defects triggered by the absence of MOF. Mof conditional knockout has catastrophic consequences for tissues with high-energy consumption, triggering hypertrophic cardiomyopathy and cardiac failure in murine hearts; cardiomyocytes show severe mitochondrial degeneration and deregulation of mitochondrial nutrient metabolism and oxidative phosphorylation pathways. Thus, MOF is a dual-transcriptional regulator of nuclear and mitochondrial genomes connecting epigenetics and metabolism.


Subject(s)
Energy Metabolism/genetics , Epigenesis, Genetic , Histone Acetyltransferases/metabolism , Mitochondria, Muscle/enzymology , Transcription Factors/metabolism , Transcription, Genetic , Animals , Cardiomyopathy, Hypertrophic/genetics , Cell Respiration/genetics , DNA, Mitochondrial/genetics , DNA, Mitochondrial/metabolism , HeLa Cells , Heart Failure/genetics , Histone Acetyltransferases/genetics , Humans , Intracellular Signaling Peptides and Proteins , Mice , Mice, Knockout , Mitochondria, Heart/enzymology , Mitochondria, Heart/genetics , Mitochondria, Muscle/genetics , Myocytes, Cardiac/metabolism , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Oxidative Phosphorylation , Transcription Factors/genetics
10.
Mol Cell ; 82(23): 4537-4547.e7, 2022 12 01.
Article in English | MEDLINE | ID: mdl-36327975

ABSTRACT

Inhibition of the electron transport chain (ETC) prevents the regeneration of mitochondrial NAD+, resulting in cessation of the oxidative tricarboxylic acid (TCA) cycle and a consequent dependence upon reductive carboxylation for aspartate synthesis. NAD+ regeneration alone in the cytosol can rescue the viability of ETC-deficient cells. Yet, how this occurs and whether transfer of oxidative equivalents to the mitochondrion is required remain unknown. Here, we show that inhibition of the ETC drives reversal of the mitochondrial aspartate transaminase (GOT2) as well as malate and succinate dehydrogenases (MDH2 and SDH) to transfer oxidative NAD+ equivalents into the mitochondrion. This supports the NAD+-dependent activity of the mitochondrial glutamate dehydrogenase (GDH) and thereby enables anaplerosis-the entry of glutamine-derived carbon into the TCA cycle and connected biosynthetic pathways. Thus, under impaired ETC function, the cytosolic redox state is communicated into the mitochondrion and acts as a rheostat to support GDH activity and cell viability.


Subject(s)
Malate Dehydrogenase , NAD , NAD/metabolism , Malate Dehydrogenase/genetics , Malate Dehydrogenase/metabolism , Oxidation-Reduction , Citric Acid Cycle/physiology , Respiration
11.
Mol Cell ; 82(18): 3321-3332, 2022 09 15.
Article in English | MEDLINE | ID: mdl-35961309

ABSTRACT

Mitochondrial energetics and respiration have emerged as important factors in how cancer cells respond to or evade apoptotic signals. The study of the functional connection between these two processes may provide insight into following questions old and new: how might we target respiration or downstream signaling pathways to amplify apoptotic stress in the context of cancer therapy? Why are respiration and apoptotic regulation housed in the same organelle? Here, we briefly review mitochondrial respiration and apoptosis and then focus on how the intersection of these two processes is regulated by cytoplasmic signaling pathways such as the integrated stress response.


Subject(s)
Mitochondria , Neoplasms , Apoptosis , Humans , Mitochondria/metabolism , Neoplasms/genetics , Neoplasms/metabolism , Oxidative Stress , Respiration , Signal Transduction
12.
Mol Cell ; 77(1): 189-202.e6, 2020 01 02.
Article in English | MEDLINE | ID: mdl-31668496

ABSTRACT

The proteolytic turnover of mitochondrial proteins is poorly understood. Here, we used a combination of dynamic isotope labeling and mass spectrometry to gain a global overview of mitochondrial protein turnover in yeast cells. Intriguingly, we found an exceptionally high turnover of the NADH dehydrogenase, Nde1. This homolog of the mammalian apoptosis inducing factor, AIF, forms two distinct topomers in mitochondria, one residing in the intermembrane space while the other spans the outer membrane and is exposed to the cytosol. The surface-exposed topomer triggers cell death in response to pro-apoptotic stimuli. The surface-exposed topomer is degraded by the cytosolic proteasome/Cdc48 system and the mitochondrial protease Yme1; however, it is strongly enriched in respiratory-deficient cells. Our data suggest that in addition to their role in electron transfer, mitochondrial NADH dehydrogenases such as Nde1 or AIF integrate signals from energy metabolism and cytosolic proteostasis to eliminate compromised cells from growing populations.


Subject(s)
Cell Death/physiology , Microtubule-Associated Proteins/metabolism , Mitochondria/metabolism , NADH Dehydrogenase/metabolism , Proteostasis/physiology , ATP-Dependent Proteases/metabolism , Animals , Apoptosis/physiology , Apoptosis Inducing Factor/metabolism , Cytosol/metabolism , Electron Transport/physiology , Humans , Membrane Proteins/metabolism , Mitochondrial Proteins/metabolism , Proteasome Endopeptidase Complex/metabolism , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/metabolism
13.
Mol Cell ; 75(6): 1131-1146.e6, 2019 09 19.
Article in English | MEDLINE | ID: mdl-31492636

ABSTRACT

The mitochondrial electron transport chain complexes are organized into supercomplexes (SCs) of defined stoichiometry, which have been proposed to regulate electron flux via substrate channeling. We demonstrate that CoQ trapping in the isolated SC I+III2 limits complex (C)I turnover, arguing against channeling. The SC structure, resolved at up to 3.8 Å in four distinct states, suggests that CoQ oxidation may be rate limiting because of unequal access of CoQ to the active sites of CIII2. CI shows a transition between "closed" and "open" conformations, accompanied by the striking rotation of a key transmembrane helix. Furthermore, the state of CI affects the conformational flexibility within CIII2, demonstrating crosstalk between the enzymes. CoQ was identified at only three of the four binding sites in CIII2, suggesting that interaction with CI disrupts CIII2 symmetry in a functionally relevant manner. Together, these observations indicate a more nuanced functional role for the SCs.


Subject(s)
Electron Transport Complex III/chemistry , Electron Transport Complex I/chemistry , Mitochondria, Heart/enzymology , Animals , Crystallography, X-Ray , Protein Structure, Quaternary , Sheep
14.
Proc Natl Acad Sci U S A ; 121(17): e2316452121, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38621125

ABSTRACT

The main sources of redox gradients supporting high-productivity life in the Europan and other icy ocean world oceans were proposed to be photolytically derived oxidants, such as reactive oxygen species (ROS) from the icy shell, and reductants (Fe(II), S(-II), CH4, H2) from bottom waters reacting with a (ultra)mafic seafloor. Important roadblocks to maintaining life, however, are that the degree of ocean mixing to combine redox species is unknown, and ROS damage biomolecules. Here, we envisage a unique solution using an acid mine drainage (AMD)-filled pit lakes analog system for the Europan ocean, which previous models predicted to be acidic. We hypothesize that surface-generated ROS oxidize dissolved Fe(II) resulting in Fe(III) (hydr)oxide precipitates, that settle to the seafloor as "iron snow." The iron snow provides a respiratory substrate for anaerobic microorganisms ("breathing iron"), and limits harmful ROS exposure since they are now neutralized at the ice-water interface. Based on this scenario, we calculated Gibbs energies and maximal biomass productivities of various anaerobic metabolisms for a range of pH, temperatures, and H2 fluxes. Productivity by iron reducers was greater for most environmental conditions considered, whereas sulfate reducers and methanogens were more favored at high pH. Participation of Fe in the metabolic redox processes is largely neglected in most models of Europan biogeochemistry. Our model overcomes important conceptual roadblocks to life in icy ocean worlds and broadens the potential metabolic diversity, thus increasing total primary productivity, the diversity and volume of habitable environmental niches and, ultimately, the probability of biosignature detection.


Subject(s)
Ice , Iron , Reactive Oxygen Species , Snow , Oxidation-Reduction , Ferrous Compounds
15.
Proc Natl Acad Sci U S A ; 121(4): e2310998121, 2024 Jan 23.
Article in English | MEDLINE | ID: mdl-38241442

ABSTRACT

Carbon near the Earth's surface cycles between the production and consumption of organic carbon; the former sequesters carbon dioxide while the latter releases it. Microbes attempt to close the loop, but the longer organic matter survives, the slower microbial degradation becomes. This aging effect leaves observable quantitative signatures: Organic matter decays at rates that are inversely proportional to its age, while microbial populations and concentrations of organic carbon in ocean sediments decrease at distinct powers of age. Yet mechanisms that predict this collective organization remain unknown. Here, I show that these and other observations follow from the assumption that the decay of organic matter is limited by progressively rare extreme fluctuations in the energy available to microbes for decomposition. The theory successfully predicts not only observed scaling exponents but also a previously unobserved scaling regime that emerges when microbes subsist on the minimum energy flux required for survival. The resulting picture suggests that the carbon cycle's age-dependent dynamics are analogous to the slow approach to equilibrium in disordered systems. The impact of these slow dynamics is profound: They preclude complete oxidation of organic carbon in sediments, thereby freeing molecular oxygen to accumulate in the atmosphere.

16.
Proc Natl Acad Sci U S A ; 121(27): e2400230121, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38913902

ABSTRACT

Climate influences near-surface biogeochemical processes and thereby determines the partitioning of carbon dioxide (CO2) in shale, and yet the controls on carbon (C) weathering fluxes remain poorly constrained. Using a dataset that characterizes biogeochemical responses to climate forcing in shale regolith, we implement a numerical model that describes the effects of water infiltration events, gas exchange, and temperature fluctuations on soil respiration and mineral weathering at a seasonal timescale. Our modeling approach allows us to quantitatively disentangle the controls of transient climate forcing and biogeochemical mechanisms on C partitioning. We find that ~3% of soil CO2 (1.02 mol C/m2/y) is exported to the subsurface during large infiltration events. Here, net atmospheric CO2 drawdown primarily occurs during spring snowmelt, governs the aqueous C exports (61%), and exceeds the CO2 flux generated by pyrite and petrogenic organic matter oxidation (~0.2 mol C/m2/y). We show that shale CO2 consumption results from the temporal coupling between soil microbial respiration and carbonate weathering. This coupling is driven by the impacts of hydrologic fluctuations on fresh organic matter availability and CO2 transport to the weathering front. Diffusion-limited transport of gases under transient hydrological conditions exerts an important control on CO2(g) egress patterns and thus must be considered when inferring soil CO2 drawdown from the gas phase composition. Our findings emphasize the importance of seasonal climate forcing in shaping the net contribution of shale weathering to terrestrial C fluxes and suggest that warmer conditions could reduce the potential for shale weathering to act as a CO2 sink.

17.
J Cell Sci ; 137(1)2024 01 01.
Article in English | MEDLINE | ID: mdl-38197775

ABSTRACT

The septation initiation network (SIN) is a conserved signal transduction network, which is important for cytokinesis in Schizosaccharomyces pombe. The SIN component Etd1p is required for association of some SIN proteins with the spindle pole body (SPB) during anaphase and for contractile ring formation. We show that tethering of Cdc7p or Sid1p to the SIN scaffold Cdc11p at the SPB, rescues etd1-Δ. Analysis of a suppressor of the mutant etd1-M9 revealed that SIN signalling is influenced by the carbon source of the cell. Growth on a non-fermentable carbon source glycerol reduces the requirement for SIN signalling but does not bypass it. The decreased need for SIN signalling is mediated largely by reduction of protein kinase A activity, and it is phenocopied by deletion of pka1 on glucose medium. We conclude that protein kinase A is an important regulator of the SIN, and that SIN signalling is regulated by the carbon source of the cell.


Subject(s)
Cyclic AMP-Dependent Protein Kinases , Schizosaccharomyces , Cyclic AMP-Dependent Protein Kinases/genetics , Schizosaccharomyces/genetics , Actin Cytoskeleton , Carbon , Signal Transduction
18.
Mol Cell ; 71(4): 567-580.e4, 2018 08 16.
Article in English | MEDLINE | ID: mdl-30118679

ABSTRACT

The electron transport chain (ETC) is an important participant in cellular energy conversion, but its biogenesis presents the cell with numerous challenges. To address these complexities, the cell utilizes ETC assembly factors, which include the LYR protein family. Each member of this family interacts with the mitochondrial acyl carrier protein (ACP), the scaffold protein upon which the mitochondrial fatty acid synthesis (mtFAS) pathway builds fatty acyl chains from acetyl-CoA. We demonstrate that the acylated form of ACP is an acetyl-CoA-dependent allosteric activator of the LYR protein family used to stimulate ETC biogenesis. By tuning ETC assembly to the abundance of acetyl-CoA, which is the major fuel of the TCA cycle and ETC, this system could provide an elegant mechanism for coordinating the assembly of ETC complexes with one another and with substrate availability.


Subject(s)
Acetyl Coenzyme A/metabolism , Acyl Carrier Protein/metabolism , Mitochondria/enzymology , Protein Processing, Post-Translational , Saccharomyces cerevisiae/enzymology , Acyl Carrier Protein/chemistry , Acyl Carrier Protein/genetics , Acylation , Allosteric Regulation , Binding Sites , Citric Acid Cycle/genetics , Electron Transport/genetics , Fatty Acids/biosynthesis , Gene Expression Regulation, Fungal , Mitochondria/genetics , Mitochondrial Proteins/chemistry , Mitochondrial Proteins/genetics , Mitochondrial Proteins/metabolism , Models, Molecular , Oxidation-Reduction , Protein Binding , Protein Conformation, alpha-Helical , Protein Conformation, beta-Strand , Protein Interaction Domains and Motifs , Protein Isoforms/chemistry , Protein Isoforms/genetics , Protein Isoforms/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/chemistry , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism
19.
Proc Natl Acad Sci U S A ; 120(13): e2214949120, 2023 03 28.
Article in English | MEDLINE | ID: mdl-36952383

ABSTRACT

Oxidative phosphorylation, the combined activity of the electron transport chain (ETC) and adenosine triphosphate synthase, has emerged as a valuable target for the treatment of infection by Mycobacterium tuberculosis and other mycobacteria. The mycobacterial ETC is highly branched with multiple dehydrogenases transferring electrons to a membrane-bound pool of menaquinone and multiple oxidases transferring electrons from the pool. The proton-pumping type I nicotinamide adenine dinucleotide (NADH) dehydrogenase (Complex I) is found in low abundance in the plasma membranes of mycobacteria in typical in vitro culture conditions and is often considered dispensable. We found that growth of Mycobacterium smegmatis in carbon-limited conditions greatly increased the abundance of Complex I and allowed isolation of a rotenone-sensitive preparation of the enzyme. Determination of the structure of the complex by cryoEM revealed the "orphan" two-component response regulator protein MSMEG_2064 as a subunit of the assembly. MSMEG_2064 in the complex occupies a site similar to the proposed redox-sensing subunit NDUFA9 in eukaryotic Complex I. An apparent purine nucleoside triphosphate within the NuoG subunit resembles the GTP-derived molybdenum cofactor in homologous formate dehydrogenase enzymes. The membrane region of the complex binds acyl phosphatidylinositol dimannoside, a characteristic three-tailed lipid from the mycobacterial membrane. The structure also shows menaquinone, which is preferentially used over ubiquinone by gram-positive bacteria, in two different positions along the quinone channel, comparable to ubiquinone in other structures and suggesting a conserved quinone binding mechanism.


Subject(s)
Electron Transport Complex I , Ubiquinone , Electron Transport Complex I/metabolism , Ubiquinone/metabolism , Vitamin K 2 , Quinones/metabolism , Mycobacterium smegmatis/metabolism
20.
Proc Natl Acad Sci U S A ; 120(18): e2213438120, 2023 05 02.
Article in English | MEDLINE | ID: mdl-37094161

ABSTRACT

Rapid eye movement sleep (REM) is believed to have a binary temporal structure with "phasic" and "tonic" microstates, characterized by motoric activity versus quiescence, respectively. However, we observed in mice that the frequency of theta activity (a marker of rodent REM) fluctuates in a nonbinary fashion, with the extremes of that fluctuation correlating with phasic-type and tonic-type facial motricity. Thus, phasic and tonic REM may instead represent ends of a continuum. These cycles of brain physiology and facial movement occurred at 0.01 to 0.06 Hz, or infraslow frequencies, and affected cross-frequency coupling and neuronal activity in the neocortex, suggesting network functional impact. We then analyzed human data and observed that humans also demonstrate nonbinary phasic/tonic microstates, with continuous 0.01 to 0.04-Hz respiratory rate cycles matching the incidence of eye movements. These fundamental properties of REM can yield insights into our understanding of sleep health.


Subject(s)
Neocortex , Sleep, REM , Humans , Animals , Mice , Sleep, REM/physiology , Sleep/physiology , Eye Movements , Neocortex/physiology
SELECTION OF CITATIONS
SEARCH DETAIL